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ABSTRACT 

Geometrically Exact Beam Theory is a general and powerful framework for writing the equations of motion of 

beams that can be subject to large motions, including large rotations in three dimensional space. Within this 

formalism, beams are described as 1D Cosserat continua, typically using a curvilinear abscissa s to parametrize 

the displacement of the centerline r=r(s)∈R^3 and the rotation of the section R=R(s)∈SO(R,3). We implement 

these functions via B-spline interpolation between a discrete number of control points. This formulation, among 

other things, requires the definition of the mass properties of the beam section(s). In a section at abscissa s we 

assume the most general case of a center-of-mass offset c=c(s)∈R
2
, a mass per unit length, a tensor of inertia-per-

unit-length, possibly rotated respect to section reference. The discretization of the equations of motion, with mass 

lumping for efficiency, leads to a second order ODE (or DAE) where the mass matrix is block diagonal, with 6x6 

mass blocks per each node. For generic angular velocity of the section, gyroscopic torques may arise. We recover 

also the linearization of the inertial forces, obtaining 6x6 block-diagonal gyroscopic-damping matrices and 6x6 

gyroscopic-stiffness matrices, whose formulation is quite intricate yet useful for implicit timesteppers or modal 

analysis. 

Keywords:  beams, inertia, gyroscopic damping, lumped masses. 

INTRODUCTION 
The Geometrically Exact Beam Theory (GEBT) originates from early works of Cosserat, that theorized continua 
that feature rotation information at each point [1]. Beams with arbitrary large deformation can be considered 1-D 
Cosserat continua, where at an abscissa s one has a position and a rotation of the section 

. 

Seminal works on the practical use of this theory in the field of computational mechanics were published decades 
later by Simo and coworkers [2]. Since then, many researchers have worked on the topic. Among the many 
sources in literature, we just mention the references [3-9] for additional details. 

One of the goals of GEBT is the simulation of non-linear dynamics of beams subject to large rotations and 
displacements, such as in the case of blades of helicopters and of wind turbines. Among the many applications we 
also mention in passing the cases of the simulation of cables and cable looms when studying the electrical layouts 
of vehicles, where beams are subject to arbitrary large deformations, or the case of wires in mooring lines or in 
winches of nautical devices. The cases of the straight Eulero-Bernoulli beam or the case of the Timoshenko-
Ehrenfest beam can be considered simpler bidimensional sub-cases of the GEBT. 

When dealing with dynamics, inertial loads must be modeled: these amount to distributed loads that depend on 
how the mass is distributed along the beam. In this paper we do not make the assumption of uniform density, 
neither we assume a constant section shape. 

Once the strong form of the dynamic equilibrium is discretized, one has two possible outcomes, as always in 
finite element theory: either one obtains a full per-element mass matrix, often called consistent mass matrix, or 
one obtains per-node lumped mass matrices. The former requires more computations, leads to more densely 
populated system matrices, but in terms of accuracy it offers only marginal improvements over the lumped mass 
model; for this reason in this work we will focus on the lumped mass approach. 
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In the following sections we will present a full treatment of inertial forces for generic beam sections. Moreover, 
we will present a systematic linearization of such forces, showing that the linearization produces a gyroscopic 
tangent damping matrix and a gyroscopic tangent stiffness matrix, the latter almost always neglected in literature. 
These tangent matrices can be useful for two reasons: either for implementing Newton iterations in implicit 
solvers, or to compute the complex eigenvalues of the system in view of a modal reduction or for stability 
analysis, for example. 

RIGID FRAME KINEMATICS 
We recall basic facts on the kinematics of rigid frames in three dimensional space. 

A. Rotations 

We use  to denote a rotation tensor from the special orthogonal Lie group.  The infinitesimal rotation, 
also virtual variation of the rotation tensor, is denoted , with subscript a for absolute basis or l for local 
(intrinsic, material) basis, as in 

 
where the tilde operator builds a skew symmetric matrix as in 

 

Thus , the Lie algebra of the  Lie group. Some properties that will be useful later are: 

 

Similarly, for angular velocity: 

 

At this point it is not difficult to recover the following results: 

 
and 

 
The variations of the angular velocity vectors are not intuitive at all, being: 
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B. Point kinematics in relative motion 

The absolute position of a point attached to a rigid frame B that has a rotation  respect to the absolute frame, 
and a translation respect to the origin of the absolute frame, is: 

 

where we use the subscript (B) to denote a vector expressed in a basis B, or we do not use that subscript if the 
basis is absolute, or obvious. 

The speed of the point can be obtained via differentiation of the above expression and remembering the already 
listed properties of the Lie algebra , obtaining: 

 

Taking another differentiation, one gets also the expression of the absolute acceleration of the point: 

 

INERTIAL FORCES 

If a mass density  is associated to all points that move attached to the frame B, one can compute the total effect 
of the inertia force simply using Newtonian mechanics. In fact, considering a rigid volume V that follows the 
frame motion in the absolute space, one has: 

 

 

that expands into 

 

and finally, 

 

where we define the total mass m and  , the static moment of masses, as 

 

Note that the position of the barycenter (center of mass) is a vector   for whom it holds: 

 

Along the same lines, it is possible to express the moment of the forces of inertia as 
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Defining the mass moment of inertia 

 
we have: 

 

This leads to the Newton-Euler equations for a rigid body subject to a force F and a torque M, where the force is 
assumed applied to the center of mass and both force and torque are assumed expressed in the absolute reference: 

 

 

where we simplified the notation by using the transformation of the inertia tensor into the absolute frame 
 . 

Note that if the center of mass corresponds to the origin of the B frame, one has the form that is often available in 
literature, for simple shapes, and where one has the contribution of the gyroscopic torque  anyway: 
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Figure 1: geometrically exact beam as a B-spline interpolation of centerline position and section rotation. 

We can extend the same reasoning to beam sections, where we will express the inertia properties on a per-unit-
length basis, namely: 

-  is the mass per unit length 

-  is the static moment of masses per unit length 

-  is the section moment of inertia per unit length 

In particular, given a section at abscissa s with a density distribution  where y an z are orthogonal unit 
vectors on the section surface area S, one has to compute: 

 

 

 

 

 

These values, in the material basis, are invariants that can be precomputed and stored at the beginning of the 
simulation. 

Exceptions are sections that change during large deformations, like in isochoric models where the section is 
squeezed because of extreme curvatures, or in functionally-graded sections whose shape change continuously 
along the abscissa (although, in the latter case, one can still precompute the inertia invariants at the Gauss points, 
or in general at the countable points that are needed later when discretizing the problem at a finite element level). 
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Figure 2: example of a generic section, with center of mass C being offset from the centerline reference of the 

section. 

 
Figure 3: meshing of the section with triangles, to allow an automatic computation of integrals for the inertia 

invariants. 

In case the section has a complex shape, with cavities, slots and inserts of different densities, the surface integrals 
may be less immediate than in the case for whom one can use analytical results. Anyway, for complex shapes we 
simply operate the integral on a triangulated mesh of the cross section, or sub-components of it, because the 
integrals of the formulas above have a closed form expression for single triangles, and these triangle integrals can 
be just summed (see Fig.3). 

The strong form of the dynamic equilibrium of a section of the beam is then 

    (1.1) 

    (1.2) 

Here, and are generalized shear/tension stresses and curvature stresses, that depend on the generalized 
strains and curvature of the geometrically exact beam at the section, and on the chosen constitutive law. The 
constitutive law is often expressed in the local basis as 
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And, for linear elastic cases (like in the special cases of Timoshenko-Ehrenfest beam model or in the Euler-
Bernoulli beam model) this becomes a linear mapping with a 6x6 symmetric matrix with E,F,G blocks: 

 

Also,   and  are per-unit-length distributed forces and distributed torques, if any (the gravitational load can 
be an example) 

In case of simple beams, with uniform density and simple symmetric cross section (such as T beams, I beams, 
rectangular sections etc.) one has  and therefore the equilibrium becomes simpler: 

 

 

Either way, one will use the equilibrium equations to obtain a discretized form of the problem (for instance, using 
a Galërkin method for finite elements, or a collocation method, but this is not part of the discussion of these 
pages). 

SYSTEM-LEVEL MASS MATRICES 

The complete expression of the equations of motion of a multibody system involving beams and other 
components (other finite elements, rigid bodies, constraints, motors, etc.) is a Differential Algebraic Equation 
(DAE) of the form: 

      (2) 

where we denote constraints as a vector of nonlinear algebraic equations , their jacobians are represented by 
the   matrix, and constraint multipliers with  [10]. The term  contains all the applied forces, including 
gyroscopic terms. We assume that the configuration of the system is expressed by coordinates . 

More in general, using quasi-velocities  and accelerations , with the linear mapping    one has a more 
intuitive form of DAE: 

       (3) 

where, for instance, each beam node inserts  in , inserts  in , and where the rotation of the node is inserted 
in  through some convenient parametrization, for example quaternions or three Tait angles. 

In detail, looking at (1.1) and (1.2) it is easy to see that each i-th beam node adds the following 6x6 block on the 
diagonal of the global M matrix: 

 

where the  value has the dimension of a length and it works like a weight that tells how much mass is lumped to 
the node. For example, in a simple straight finite element of length L with two end nodes, one can set ; the 
total mass would be preserved but the rotational inertia would be approximated. 

A positive remark about the lumped mass approach is that, despite the approximation of the real mass properties, 
the error tends to zero for an increasingly dense discretization of the beam. Moreover various Authors have 
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experienced that computing the exact mass stiffness of a finite element (the so called consistent mass matrix) does 
not provide relevant improvements on the accuracy respect to the lumped mass matrix, but at the same time it 
impacts a lot on the performance of the code, because the lumped mass assumption guarantees that the mass 
matrix is block diagonal and very sparse: this is a significant aspect when using explicit integrators that, in case of 
small mass blocks on the diagonal, could even operate with a precomputed inverse of the mass matrix. 

Similarly, for lumped masses at beam nodes, each i-th node adds the following 1x6 vector of 
centrifugal/gyroscopic forces and torques to the f global forces in (3) : 

 

LINEARIZATION OF THE DAE 

The linearization of the DAE (3), that is in the case of quasi-velocities, leads to: 

 

 

 

 

 

where, for instance, each beam node inserts the virtual rotation in  , where  is the global vector of virtual 
increments of rotations and positions. 

Here the mass matrix is the same  used in (3). However the expressions of the tangent damping matrix 
 and of the tangent stiffness matrix  are not as trivial as for , because they include 

the quite complex linearization of inertial forces and torques, that is, the linearization of the left hand side of (1.1) 
and (1.2) that contain gyroscopic/centrifugal terms. 

Assuming a linearization about , and focusing only on the node inertial effects, each i-th node adds 
the following 6x6 block on the diagonal of the global  matrix. 

The expression of that term requires lengthy algebraic manipulations, here we report only the results in sake of 
compactness: 

 

Similarly, again for a linearization about , each i-th node adds the following 6x6 block on the 
diagonal of the global  matrix: 

 

The effect of  and  matrices is not different from the effect of damping and stiffness matrices caused by 
structural damping, structural stiffness, dampers and springs. As such, they affect the natural frequencies of the 
system, they affect stability etc. 
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In rotordynamics literature, a version of the  matrix that includes only the lower-right 3x3 part, and assuming a 
simplification of some terms for a specific orientation of the X axis along the rotation shaft, is cited as gyroscopic 

damping matrix. However the  is most often neglected in literature. One can see that  can be null in some 
circumstances, but not always. 

For the special case where the section centroid corresponds with the center of mass, one has the following 
gyroscopic damping and stiffness: 

 

 

Another thing to consider is that a linearization about  does not produce the same mass, damping and 
stiffness matrices that we would obtain doing a linearization about  starting from the DAE in the form 
(2). Only the second type of linearization is helpful if we want to use those matrices for an eigenvalue analysis of 
the structure, as in modal problems. To this end, an option could be to start from matrices for the  
linearization, as presented in these pages, then assume that   of each node are used in and 
use the property    to obtain the final matrices. 

CONCLUSION 
We presented an analytical expression of gyroscopic and centrifugal terms for generic sections of geometrically-
exact beams, under the assumption of mass lumping. The mass properties are defined via per-unit-length inertia 
tensors, per-unit-length mass, and center of mass offset respect to the centroid reference. Finally, we also present 
the tangent damping and tangent stiffness matrices originating from such gyroscopic/centrifugal effects, leading 
to non-trivial expressions. These tangent matrices can be used in Newton iterations required by implicit 
integrators, or in eigenproblems originating from modal analysis or from reduced order modeling. 

REFERENCES 
[1] F. Cosserat, E. Cosserat, Théorie des corps déformables, A. Hermann et fils, 1909. 

[2] J.C. Simo, “A finite strain beam formulation. the three-dimensional dynamic problem. part I”, Comput. 
Methods Appl. Mech. Engrg. 49 (1985) pp.55–70. 

[3] Oliver Weeger, Bharath Narayanan, Martin L. Dunn, “Isogeometric collocation for nonlinear dynamic 
analysis of Cosserat rods with frictional contact”, Nonlinear Dynam. 91 (2) (2018) pp1213–1227. 

[4] Oliver Weeger, Sai-Kit Yeung, Martin L. Dunn, “Isogeometric collocation methods for Cosserat rods and 
rod structures”, Comput. Methods Appl. Mech. Engrg. 316 (2017) pp.100–122, Special Issue on 
Isogeometric Analysis: Progress and Challenges. 

[5] Oliver Weeger, Bharath Narayanan, Laura DeLorenzis, Josef Kiendl, MartinL Dunn, “An isogeometric 
collocation method for frictionless contact of Cosserat rods”, Comput. Methods Appl. Mech. Engrg. 321 
(2017) pp.361–382. 

[6] O.A. Bauchau, Flexible Multibody Dynamics, Springer, 2010 

[7] D.H. Hodges, “Geometrically Exact, Intrinsic Theory for Dynamics of Curved and Twisted Anisotropic 
Beams”, AIAA Journal , Vol. 41, No. 6, 2003, pp. 1131-1137 

[8] E. Marino, “Locking-free isogeometric collocation formulation for three-dimensional geometrically exact 
shear-deformable beams with arbitrary initial curvature”, Computer Methods in Applied Mechanics and 
Engineering, 2017, Vol. 324 pp. 546 – 572 



ISSN: 2633-4828  Vol. 5 No.4, December, 2023  

 

International Journal of Applied Engineering & Technology 
 

 

Copyrights @ Roman Science Publications Ins.  Vol. 5 No.4, December, 2023 

 International Journal of Applied Engineering & Technology 

 

 2475 

 

[9] A. Tasora, S. Benatti, D. Mangoni, R. Garziera, “A geometrically exact isogeometric beam for large 
displacements and contacts”, Computer Methods in Applied Mechanics and Engineering , 2020, Vol. 358, 
pp. 112635 

[10] D. Negrut, R. Serban, A. Tasora, “Posing Multibody Dynamics with Friction and Contact as a Differential 
Complementarity Problem”, ASME Journal of Computational and Nonlinear Dynamics, 2017, Vol. 13, No. 
1. pp. 014503 

 


