A REVIEW OF INPUT PARAMETERS ON SURFACE INTEGRITY FOR QUALITY AND PRODUCTIVITY IMPROVEMENT IN HARD TURNING

Vipan Bansal¹*, Harish Garg²* and Mohinder Pal Garg³ ^{1,2}DAV University, Jalandhar, Punjab ³Punjab Engineering College, Chandigarh ¹vipan10028@davuniversity.²org, harish10026@davuniversity.org and³mpgargacad@gmail.com

ABSTRACT

Hard turning is the turning of the material at hardened state. It reduces the re-processing of the component; thus, it is an economic alternative to grinding, but its reliability is often unpredictable and challengeable. The reliability of hard turning surfaces mainly depends on their surface integrity. Surface integrity factors, i.e., external and internal factors, play a prominent role in the performance of the machined components. High service integrity delivers the good service performance of the component or vice versa; thus, the control of surface integrity is of uttermost importance in hard turning processes. This paper aims to conduct a thorough analysis of the machining parameters, cutting tools, and work piece material used in hard turning. It also aims to identify the various response parameters that affect the surface integrity of work piece material with a view to enhancing quality and productivity.

Index Terms – Hard Turning; Material Removal Rate; Micro hardness; Microstructures; Surface integrity; Surface roughness; Tool Life; Tool wear.

* Corresponding Authors

1. INTRODUCTION

Productivity is now become watchword for all the manufacturing industries. The manufacturers in the world are continuously identifying the higher productivity solutions to sustain the competitiveness of manufactured products [1]. High productivity means work with minimum investment on inputs and in the optimized possible time without sacrificing quality, and with least wastage of resources i.e. the aim is higher quality, lower cost and less wastage. Therefore, it is required to identify appropriate technological advancements that can help the manufacturing industry to improve the quality of the product and reduce the cost. It is known that 8-10 percent of material generated by machining processes goes to waste. By utilizing better machining conditions and tools, this waste can be reduced to an extent [2].

In manufacturing industries, practical knowledge, experience, and skill of supervisors are considered to assess the cutting conditions, cutting tools and tool geometries but these cannot be accepted all the time. This irrational approach shows lower efficiency because of improper utilization of machine tool capabilities. This can be enhanced by carefully selecting the important evaluation factors to achieve the commanded responses within the constraints of low-cost production [3]. Any incorrect judgment in this area results in increased manufacturing costs and lower product quality.

Although in the production industry continue advancement takes place but turning still leftover as the most significant process used for shaping the different materials because the conditions of operations are varied [4]. Turning focus on the features of the tool, input work material, output quality characteristics (or responses) and the cutting conditions which perform a significant role in the productive use of a machine tool [4]. The materials mostly required in the tooling applications have high wear resistance. Wear resistant materials are difficult to machine [1]. These wear resistance materials used in blanking or forming dies and thread rolling dies, shear blades and planer blades. The hard turning has the potential for improving the output quality characteristics of these wear resistance work piece materials [5].

INPUT PARAMETERS THAT AFFECTING RESPONSE PARAMETERS

2. HARD TURNING

During the 1970's the work on hard turning was started and primarily gets its reorganization with the development of new advanced cutting tools [6] [7]. These tools phase out the need for annealing and grinding since these are able to produce complex geometrical surfaces with precision[8] [9]. Hard turning enables the manufacturers to machine hardened materials having hardness values typically in between the 50–60 HRC to obtain finished work pieces directly under dry conditions [10], [11], [12], [13], [14], [15], [16].

Even at smaller depth of cut and feed rates, the material removal rate is much greater than in grinding for some applications in hard turning [10] [17]. Thermal distortion takes place on the surface of work piece, due to the rubbing action of the grinding wheel, which allows high temperatures to penetrate deep into the work piece resulting in the formation of a white layer. Hard turning drops the number of operations including rough turning, heat treatment needed to manufacture a component as shown in figure II and thereby utilizing the input resources effectively thus enhancing productivity [18].

(a) CONVENTIONAL TURNING and (b1) & (b2) OPTIMIZED TURNING PROCESS

2.1 Surface Integrity

Surface integrity have the prominent role in the mechanical performance of machined components [19]. Service performance of the component will be proportional to surface integrity. Thus the control of surface integrity is of substantial importance in machining processes and depends upon internal and external factors as shown in figure III,

Figure III

SCHEMATIC DIAGRAM OF WORKED (MACHINED) SURFACE

3. LITERATURE REVIEW

Various studies have been performed by the researchers showing the effect of machining parameters such as feed, depth of cut, speed and tool geometry on residual stresses, microstructure, tool wear and surface roughness and their combinations in hard turning by using different workpiece materials. The summary of their work has been listed in table 1.

Author's	Material	Machining	Tool	Tool Material	Response Parameters
Name		Parameters	(Single		
			/		
			Multipl		
			e)		
Meyer R,	AISI	Feed/	Single	WBN560 with a	Tool wear and
Köhler J,	5115	Corner		CBN content of 56%	Cutting forces
Denkena B	(16MnCr	radius/		with different corner	-
[5]	S5)	Depth of Cut		radius	
Hosseini S.	AISI	Speed	Single	CBN insert - grade	Cutting temperature &
et al. [20]	52100			BNC200	its correlation with
					white layer,
					microstructure & the
					residual stresses.
Suha K.	AISI	Feed/	Single	Multicoated carbide	Cutting forces
Shihab,	52100	Speed/		inserts	
Zahid A.		Depth of Cut		(TiN-TiCN-Al ₂ O ₃ -	
Khan A				TiN) under cryogenic	
[21]				cooling conditions	
Zhou J,	AISI	Feed/ Speed/	Single	CBN10 with 50% of	Flank wear and
Andersson	52100	Depth of Cut		CBN grit	Cutting forces
M, Stahl J		(Fixed			

Table I Machining Parameters, Tool & Workpiece Material And Response Parameters In Hard Turning

[22]		parameter)			
		1			
Singh D, Rao P [18]	AISI 52100	Speed/ Feed/ Nose radius/ Rake angle/	Single	Mixed ceramic inserts of different geometry	Surface roughness
Singh D, Rao P [23]	AISI 52100	Speed/ Feed/ Nose radius/ Chamfer angle	Single	Mixed ceramic inserts of different geometry with solid lubricants	Surface roughness
Umbrello D. et. al [10]	AISI 52100	Feed/ Speed/ HRC/ Chamfer- Hone	Single	CBN Tool	Residual stresses
Dahlman P, Gunnberg F, Jacobson M [24]	AISI 52100	Rake angle/ Feed/ Depth of Cut.	Single	CBN100 with different geometry (Rake angle)	Residual stresses
Liu M, Takagi J, Tsukuda A [25]	AISI 52100	Feed/ Speed/ Depth of Cut / Nose radius	Single	CBN tool (TiC & Al ₂ O ₃) with different nose radius	Tool wear, Cutting forces and Residual stresses
Thiele J, Melkote S [26]	AISI 52100	Hardness/Fee d/ Chamfer edge / Hone edge	Single	PCBN inserts with three types of edge preparation	Residual stresses and Microstructures
Yallese M. et.al [27]	100 Cr 6	Feed/ Speed/ Depth of Cut	Single	CBN7020	Surface roughness, Tool wear, Cutting force and Chip volume
Xueping Z, Erwei G, Richard Liu C [28]	AISI 52100	Feed/ Speed/ Depth of Cut	Single	CBN	Residual stresses
Zhou J, Hognas S, Stahl J [29]	AISI 52100	Feed/ Speed/ Depth of Cut (Fixed parameter)	Single	PCBN tool with low CBN contents (50%) & ceramic (TiAl) as binder	Surface roughness, Tool wear and Cutting forces
Guddata J. et al. [30]	AISI 52100	Speed	Single	CBN inserts of grade BNX10	Cutting forces, Tool wear, Residual stresses and Microstructure
Shihaba K. et al. [31]	AISI 52100	Feed/ Speed/ Depth of Cut	Single	Coated carbide inserts under cryogenic	Surface roughness and Micro hardness

				cooling conditions	
Shihab S. et al. [32]	AISI 52100	Feed/ Speed/ Depth of Cut	Single	Multilayer coated carbide inserts	Tool - chip interface temperature
Revel P. et al. [33]	AISI 52100	Feed/ Speed/ Depth of Cut	Single	CBN insert	Surface roughness, Micro structural analysis, Residual stresses and Chip morphology
Bapat P. et al. [34]	AISI 52100	Speed	Single	PCBN	Temperature measurement
Bhokse V. et al. [35]	AISI 52100	Feed/ Speed/ Depth of Cut	Single	PVD coated Nano- laminated carbide inserts (TiSiN – TiAlN)	Plowing cutting forces and Chip morphology
Hosseini S. et al. [36]	AISI 52100	Speed	Single	CBN insert	Microstructures of different types of White layers
Dawson T, Kurfess T [37]	AISI 52100	Feed/ Speed/ Depth of Cut/ HRC/ Tool material	Multipl e	High CBN & Low CBN	Tool life
Suhail H. A. et al. [15]	AISI 1020	Feed/ Speed/ Depth of Cut	Single	CNMG 432TT5100 Carbide insert	Surface roughness and Temperature
Noordin M. et al. [38]	AISI 1045	Feed/ Speed/ Side cutting edge angle	Single	CVD Coated Carbide Tools with different Side cutting edge angle	Surface roughness and Cutting force
Choi Y, Liu C [39]	AISI 1053	Feed/ Speed/ Depth of Cut/ Rake angle (Fixed parameter for both tools)	Multipl e	CBN particle coated tools and solid PCBN tool	Residual stresses, Microstructure and Micro hardness
Rashid W. et al. [9]	AISI 4340	Feed/ Speed/ Depth of Cut	Single	Al ₂ O ₃ insert	Tool life, Residual stresses, Cutting force and Microstructure with simulations.
Sahu S, Choudhury B	AISI 4340	Feed/ Speed	Multipl e	Uncoated carbide tool and TiN coated carbide inserts	Surface roughness and Tool wear

[40]					
Maia L. et al. [41]	AISI 4340	Feed/ Speed/ Depth of Cut	Single	Polycrystalline cubic boron nitride (PCBN) tools	Tool wear and Tool life using acoustic emission
Diniz A, de Oliveira A [42]	AISI 4340 (Continu ous, Semi- interrupte d and Full interrupte d surfaces)	Feed/ Speed/ Depth of Cut/ Cutting geometry: Chamfered and Edge rounding. (Fixed parameter for both tools)	Multiple	CBN Low CBN 7020 and High CBN 7050	Tool wear and Tool life
De Godoy V, Diniz A [7]	AISI 4340 (Continu ous and Interrupt ed surfaces were taken)	Speed as recommende d by the manufacturer for each tool	Multipl e	CBN Low 7015 and High 7025 Ceramic CC670 & CC650	Tool wear and Tool life
Thamizhma nii S. [43]	AISI 440C	Feed/ Speed/ Depth of Cut	Single	CBN	Surface roughness and Tool wear
Grzesik W [17]	AISI 5140	Feed/ Speed/ Depth of Cut	Multipl e	Mixed ceramic inserts (71% Al ₂ O ₃ , 28% TiC and 1% other) and Wiper insert	Surface roughness and Tool wear
Özel T. et al. [16]	AISI D2	Feed/ Speed/ Cutting time	Single	Wiper mixed alumina ceramic inserts with TiN coating	Surface roughness and Tool wear
Varaprasad B, Srinivasa Rao C, Vinay P [6]	AISI D3	Feed/ Speed/ Depth of Cut	Single	Al ₂ O ₃ /TiC mixed ceramic tool	Tool wear
Camargo J. et al. [12]	AISI D6	Feed/ Speed	Single	PCBN tools in the form of inserts (CB7015 of CBN with PVD TiN coating and ceramic binder)	Surface roughness, Cutting force and Tool wear

Rao C, Sreeamulu D, Mathew A [4] Chen J, Zhao Q [44] El-Axir M [45]	Aluminu m Al 7075 S.S 304 Steel – 37 Al alloy	Feed/ Speed/ Depth of Cut Feed/ Speed/ Depth of Cut Feed/ Speed/ Tensile strength	Single	Tungsten carbide Single point diamond tool with different nose radius Not Mentioned	Surface roughness, Cutting force, Tool wear, MRR and Power consumption 3D Micro topography and Tool wear Residual stresses
	2024 Al alloy 7001 Brass				
Rajasekaran T, Palanikuma r K, Arunachala m S [46]	Carbon Fiber Reinforc ed Polyester Material	Feed/ Speed/ Depth of Cut	Single	CBN	Surface roughness
Natarajan C, Muthu S, Karuppusw amy P [47]	Brass C26000	Feed/ Speed/ Depth of Cut	Single	CNMG 120408 insert	Surface roughness
Bordin A, Bruschi S, Ghiotti A [48]	CoCrMo alloy	Feed/ Speed	Single	Single layer PVD coated TiAlN carbide tools	Surface finish, Microstructure, Micro hardness and Residual stresses
Chen T. et al. [49]	GCr15 steel or SAE5210 0	Feed/ Speed	Single	PCBN tools (7015)	3D Micro topography and Cutting forces
D Y. [50]	H11	Tool material/ Feed/ HRC/ Speed	Multipl e	High CBN, Low CBN, Mixed ceramic	Tool wear
Aramcharoe n A, Mativenga P [51]	H13	Speed/ Depth of Cut	Single	CBN	White layer, Tool wear, Temperature measurement and Microstructure

Mamalis A. et al. [8]	H13	Feed/ Speed	Single	CBN	Cutting forces and Temperature measurement
Sharman A, Hughes J, Ridgway K [52]	Inconel 718	Feed/ Nose radius/ Entry angle	Single	Coated tungsten carbide inserts with a multilayer coating	Residual stresses, Cutting forces, Surface roughness, Tool wear and Microstructure analysis
Jafarian F, Amirabadi H Sadri J [53]	Inconel 718	Feed/ Speed/ Depth of Cut	Single	Cemented carbide inserts	Residual stresses
Bushlya V, Zhou J, Ståhl J [54]	Inconel 718	Feed/ Speed	Multipl e	PCBN Tools Uncoated and TiN Coated tools	Cutting forces, Tool life, Tool wear and Surface integrity
Cantero J. et al. [55]	Inconel 718	Speed/ Side cutting edge angle	Multipl e	Carbide substrates (CP500 and TS2000)	Cutting forces, Surface roughness and Tool wear
Lalwani D, Mehta N, Jain P [56]	MDN250	Feed/ Speed/ Depth of Cut	Single	Coated ceramic inserts	Surface roughness and Cutting forces
Rodrigues L, Kantharaj [57]	Mild Steel	Feed/ Speed/ Depth of Cut	Single	High speed steel tool	Tool wear and Surface roughness
Breidenstei n B, Denkena B [58]	Not Defined	Feed/ Speed/ Depth of Cut	Single	PVD-coated carbide cutting tool	Residual stresses
Chen X, Cheng K, Wang C [59]	Not Defined	Feed/ Speed/ Depth of Cut (Fixed parameters)	Single	Smart turning tool embedded piezoelectric film sensors	Cutting forces
Hu H, Huang W [11]	H 13	Feed/ Speed/ Depth of Cut (Fixed parameters)	Multipl e	Ultrafine-grained ceramic and Common ceramic tool	Simulation results were used to explicate the differences of wear mechanism for different tools.
Kalyan Kumar K, Choudhury S [60]	SS202	Feed/ Speed/ Depth of Cut	Single	Carbide insert tool under cryogenic cooling conditions	Tool wear and Cutting forces
Nouari M, Makich H [61]	Ti–6Al– 4V and Ti-555	Feed/ Speed/ Rake angle/	Multipl e	Coated carbide inserts made of tungsten carbide	Tool wear, Cutting force, Cutting temperature

		(Flank angle was fixed)		(WC–Co)	Microstructure and Micro-hardness
Gómez- Parra A. et. al [62]	UNS A92024 alloy	Feed/ Speed/ Depth of Cut	Single	Uncoated WC-Co inserts	Surface roughness and Ultimate tensile strength (UTS)
Wojtowicz N. et. al [19]	Elektron- 21 wrought Mg-Zn- Zr-RE alloy	Feed/ Speed/ Nose radius (Fixed parameters)	Single	Carbide inserts with different nose radius	Residual stresses, Surface roughness, Microstructure and Micro-hardness
Darshan C, Singh L, Sethi A [14]	EN-31	Feed/ Speed/ Depth of Cut	Single	Mixed ceramic with PVD coated ceramic	Tool wear and Surface roughness
Abhang L, Hameedulla h M [63]	EN-31	Feed/ Speed/ Depth of Cut Nose radius	Single	Diamond shape carbide tool with different nose radius	Tool wear and Surface roughness
R. Karimdadas hi, M. A. Mohtadi- bonab [64]	AISI D3 Tool steel	Feed/ Speed/ Depth of Cut	Single	Not mentioned	Surface roughness
Oussama Zerti et al. [65]	AISI D3 Tool steel	Speed/ Feed/ Depth of Cut/ Nose Radius/ Major cutting edge angle	Multipl e	Mixed ceramic inserts CC650 (Sandvik Coromant) and ISO geometric designations SNGA120408T01020 , SNGA120412T01020 , SNGA120416T01020	Surface roughness Tangential force and Cutting Power
Varaprasad Bhemuni et al. [66]	AISI D3 Tool steel	Speed/ Feed/ Depth of Cut	Single	Ceramic Insert of TiC SNGA120408T01020 (CC6050 of Sandvik make)	Experimental and CAE simulations results are Compared for Surface roughness, Temperature and Force
Vikas Sharma, Joy Prakash Misra [67]	AISI D3 Tool steel	Speed/ Feed/ Depth of Cut	Single	Carbide inserts CCMT060208 (Sandvik Coromant)	Surface roughness and MRR

Rath D, Panda S, Pal K [68] Srinivas C.	AISI D3 Tool steel EN 8	Speed/ Feed/ Depth of Cut Speed/	Single	Coated Al2O3 + Ti (C, N) Mixed Ceramic Insert AB2010 (Taegu Tec limited) Carbide inserts	Surface roughness Tool wear, Cutting force and Chip Morphology Surface roughness
et al. [69]	Steel	Feed/ Depth of Cut		CNMG 09 03 08-PF 4325 (Sandvik Coromant)	MRR
Norfauzi Tamin et al. [70]	AISI 1045 Carbon Steel	Speed/ Feed/ Depth of Cut (Constant)	Single	Carbide inserts TNMG 160404-MB (Sandvik Coromant)	Surface roughness Tool wear,
Okechukwu Izelu C et al. [71]	41Cr4 Alloy Steel	Speed/ Feed/ Depth of Cut	Single	Carbide insert, F30	Surface roughness machining induced vibration
Jabri A, Barkany A, Khalfi A [72]	EN -19	Speed/ Feed/ Depth of Cut/ Coolant flow rate	Single	Not Mentioned	Surface Finish, Tool – Work piece interface Temperature
Azizi M. et al. [73]	EN -19	Speed/ Feed/ Depth of Cut	Single	Coated carbide insert SNGA 120408T01520 (GC3015) (Sandvik Coromant)	Surface roughness MRR
Mallick R. et al. [74]	AISI D2 Tool Steel	Speed/ Feed/ Depth of Cut	Single	CVD coated carbide TiCN-Al2O3 (KCK05) (KENNAMETAL) CNMG120408FN	Surface roughness, Tool wear, Cutting temperature, Power consumption, Noise emission, and Chip morphology
Thi D. et al. [75]	90CrSi steel	Speed/ Feed/ Depth of Cut	Single	Not Mentioned	Surface roughness

4. DISCUSSION AND CONCLUSION

Most of the literature has revealed that researchers have attempted their study with bearing steel with the single insert of tool material. Very few researchers reported on alloy steel (EN-19) with different input and output parameters so far. Alloy Steel (EN-19) is heat treatable and also known for good strength. With a combination of good ductility and shock resistance, EN-19 is suitable for applications with very high loading such as engine gearboxes. Popular in the automotive sector it is possible to machine the material extremely accurately, in recent years. The material lends itself well to any application where strength is a primary consideration.

Therefore, it is valuable to determine the effect of the machining process parameters on the alloy steel and subsequently, prefer those machining parameters which may enhance the product life and reduce the maching time and ultimately increase the productivity of the organization.

REFERENCE

- S. Saini, I. S. Ahuja, and V. S. Sharma, "Residual Stresses, Surface Roughness, and Tool Wear in Hard Turning: A Comprehensive Review," *Materials and Manufacturing Processes*, vol. 27, no. 6, pp. 583–598, 2012, doi: 10.1080/10426914.2011.585505.
- [2] V. S. Sharma, M. Dogra, and N. M. Suri, "Cooling techniques for improved productivity in turning," *Int J Mach Tools Manuf*, vol. 49, no. 6, pp. 435–453, 2009, doi: 10.1016/j.ijmachtools.2008.12.010.
- [3] M. Dogra, V. S. Sharma, and J. Dureja, "Effect of tool geometry variation on finish turning A review," *Journal of Engineering Science and Technology Review*, vol. 4, no. 1, pp. 1–13, 2011, doi: 10.1115/1.1644543.
- [4] C. J. Rao, D. Sreeamulu, and A. T. Mathew, "Analysis of tool life during turning operation by determining optimal process parameters," *Procedia Eng*, vol. 97, pp. 241–250, 2014, doi: 10.1016/j.proeng.2014.12.247.
- [5] R. Meyer, J. Köhler, and B. Denkena, "Influence of the tool corner radius on the tool wear and process forces during hard turning," *International Journal of Advanced Manufacturing Technology*, vol. 58, no. 9–12, pp. 933–940, 2012, doi: 10.1007/s00170-011-3451-y.
- [6] B. Varaprasad, C. Srinivasa Rao, and P. V. Vinay, "Effect of machining parameters on tool wear in hard turning of AISI D3 Steel," *Procedia Eng*, vol. 97, pp. 338–345, 2014, doi: 10.1016/j.proeng.2014.12.257.
- [7] V. A. A. De Godoy and A. E. Diniz, "Turning of interrupted and continuous hardened steel surfaces using ceramic and CBN cutting tools," *J Mater Process Technol*, vol. 211, no. 6, pp. 1014–1025, 2011, doi: 10.1016/j.jmatprotec.2011.01.002.
- [8] A. G. Mamalis, J. Kundrák, A. Markopoulos, and D. E. Manolakos, "On the finite element modelling of high speed hard turning," *International Journal of Advanced Manufacturing Technology*, vol. 38, no. 5–6, pp. 441–446, 2008, doi: 10.1007/s00170-007-1114-9.
- [9] W. Bin Rashid, S. Goel, X. Luo, and J. M. Ritchie, "The development of a surface defect machining method for hard turning processes," *Wear*, vol. 302, no. 1–2, pp. 1124–1135, 2013, doi: 10.1016/j.wear.2013.01.048.
- [10] D. Umbrello, G. Ambrogio, L. Filice, and R. Shivpuri, "An ANN approach for predicting subsurface residual stresses and the desired cutting conditions during hard turning," *J Mater Process Technol*, vol. 189, no. 1–3, pp. 143–152, 2007, doi: 10.1016/j.jmatprotec.2007.01.016.
- [11] H. J. Hu and W. J. Huang, "Studies on wears of ultrafine-grained ceramic tool and common ceramic tool during hard turning using Archard wear model," *International Journal of Advanced Manufacturing Technology*, vol. 69, no. 1–4, pp. 31–39, 2013, doi: 10.1007/s00170-013-5003-0.
- [12] J. C. Camargo, D. S. Dominguez, E. O. Ezugwu, and Á. R. Machado, "Wear model in turning of hardened steel with PCBN tool," *Int J Refract Metals Hard Mater*, vol. 47, pp. 61–70, 2014, doi: 10.1016/j.ijrmhm.2014.06.019.
- [13] S. B. Hosseini, K. Ryttberg, J. Kaminski, and U. Klement, "Characterization of the surface integrity induced by hard turning of bainitic and martensitic AISI 52100 steel," *Procedia CIRP*, vol. 1, no. 1, pp. 494–499, 2012, doi: 10.1016/j.procir.2012.04.088.

- [14] C. Darshan, L. Singh, and A. P. S. Sethi, "Analysis and Optimization of Ceramic Cutting Tool In Hard Turning of EN-31 Using Factorial Design," no. 2231, pp. 49–54, 2012.
- [15] A. Suhail H. et al., "Optimization of Cutting Parameters Based on Surface Roughness and Assistance of Workpiece Surface Temperature in Turning Process," American Journal of Engineering and Applied Sciences, vol. 3, no. 1, pp. 102–108, 2010.
- [16] T. Özel, Y. Karpat, L. Figueira, and J. P. Davim, "Modelling of surface finish and tool flank wear in turning of AISI D2 steel with ceramic wiper inserts," *J Mater Process Technol*, vol. 189, no. 1–3, pp. 192– 198, 2007, doi: 10.1016/j.jmatprotec.2007.01.021.
- [17] W. Grzesik, "Influence of tool wear on surface roughness in hard turning using differently shaped ceramic tools," *Wear*, vol. 265, no. 3–4, pp. 327–335, 2008, doi: 10.1016/j.wear.2007.11.001.
- [18] D. Singh and P. V. Rao, "A surface roughness prediction model for hard turning process," *International Journal of Advanced Manufacturing Technology*, vol. 32, no. 11–12, pp. 1115–1124, 2007, doi: 10.1007/s00170-006-0429-2.
- [19] N. Wojtowicz, I. Danis, F. Monies, P. Lamesle, and R. Chieragati, "The influence of cutting conditions on surface integrity of a wrought magnesium alloy," *Procedia Eng*, vol. 63, pp. 20–28, 2013, doi: 10.1016/j.proeng.2013.08.212.
- [20] S. B. Hosseini, T. Beno, U. Klement, J. Kaminski, and K. Ryttberg, "Cutting temperatures during hard turning - Measurements and effects on white layer formation in AISI 52100," *J Mater Process Technol*, vol. 214, no. 6, pp. 1293–1300, 2014, doi: 10.1016/j.jmatprotec.2014.01.016.
- [21] A. M. and A. N. S. Suha K. Shihab, Zahid A. Khan, "Cryogenic Hard Turning of Alloy Steel with Multilayer Hard Surface Coatings insert using RSM.," *International Journal of Current Engineering and Technology*, no. Special Issue-2, 2014.
- [22] J. M. Zhou, M. Andersson, and J. E. Stahl, "The monitoring of flank wear on the CBN tool in the hard turning process," *International Journal of Advanced Manufacturing Technology*, vol. 22, no. 9–10, pp. 697–702, 2003, doi: 10.1007/s00170-003-1569-2.
- [23] S. Dilbag and P. V. Rao, "Performance improvement of hard turning with solid lubricants," *International Journal of Advanced Manufacturing Technology*, vol. 38, no. 5–6, pp. 529–535, 2008, doi: 10.1007/s00170-007-1079-8.
- [24] P. Dahlman, F. Gunnberg, and M. Jacobson, "The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning," *J Mater Process Technol*, vol. 147, no. 2, pp. 181–184, 2004, doi: 10.1016/j.jmatprotec.2003.12.014.
- [25] M. Liu, J. I. Takagi, and A. Tsukuda, "Effect of tool nose radius and tool wear on residual stress distribution in hard turning of bearing steel," *J Mater Process Technol*, vol. 150, no. 3, pp. 234–241, 2004, doi: 10.1016/j.jmatprotec.2004.02.038.
- [26] J. D. Thiele and S. N. Melkote, "Effect of tool edge geometry on workpiece subsurface deformation and through-thickness residual stresses for hard turning of AISI 52100 steel," *J Manuf Process*, vol. 2, no. 4, pp. 270–276, 2000, doi: 10.1016/S1526-6125(00)70028-4.
- [27] M. A. Yallese, K. Chaoui, N. Zeghib, L. Boulanouar, and J. F. Rigal, "Hard machining of hardened bearing steel using cubic boron nitride tool," *J Mater Process Technol*, vol. 209, no. 2, pp. 1092–1104, 2009, doi: 10.1016/j.jmatprotec.2008.03.014.

- [28] Z. Xueping, G. Erwei, and C. Richard Liu, "Optimization of process parameter of residual stresses for hard turned surfaces," *J Mater Process Technol*, vol. 209, no. 9, pp. 4286–4291, 2009, doi: 10.1016/j.jmatprotec.2008.10.011.
- [29] J. M. Zhou, S. Hognas, and J. E. Stahl, "Improving waviness of bore in precision hard turning by pressurized coolant," *International Journal of Advanced Manufacturing Technology*, vol. 49, no. 5–8, pp. 469–474, 2010, doi: 10.1007/s00170-009-2430-z.
- [30] J. Guddata, R. M'Saoubi, P. Alma, and D. Meyer, "Hard turning of aisi 52100 using pcbn wiper geometry inserts and the resulting surface integrity," *Procedia Eng*, vol. 19, pp. 118–124, 2011, doi: 10.1016/j.proeng.2011.11.089.
- [31] K. Shihaba, A. N. Siddiquee, M. Engineering, J. Millia, M. Engineering, and J. Millia, "Effect of Cryogenic Cooling on Surface Integrity in Turning of Hard Alloy Steel Aas Mohammad," no. July, pp. 64–68, 2013.
- [32] S. K. Shihab, Z. A. Khan, A. Mohammad, and A. N. Siddiqueed, "RSM based Study of Cutting Temperature During Hard Turning with Multilayer Coated Carbide Insert," *Procedia Materials Science*, vol. 6, no. Icmpc, pp. 1233–1242, 2014, doi: 10.1016/j.mspro.2014.07.197.
- [33] P. Revel, N. Jouini, G. Thoquenne, and F. Lefebvre, "High precision hard turning of AISI 52100 bearing steel," *Precis Eng*, vol. 43, pp. 24–33, 2016, doi: 10.1016/j.precisioneng.2015.06.006.
- [34] P. S. Bapat, P. D. Dhikale, S. M. Shinde, A. P. Kulkarni, and S. S. Chinchanikar, "A Numerical Model to Obtain Temperature Distribution During Hard Turning of AISI 52100 Steel," *Mater Today Proc*, vol. 2, no. 4–5, pp. 1907–1914, 2015, doi: 10.1016/j.matpr.2015.07.150.
- [35] V. Bhokse, S. Chinchanikar, P. Anerao, and A. Kulkarni, "Experimental Investigationson Chip Formation and Plowing Cutting Forces During Hard Turning," *Mater Today Proc*, vol. 2, no. 4–5, pp. 3268–3276, 2015, doi: 10.1016/j.matpr.2015.07.138.
- [36] S. B. Hosseini, U. Klement, Y. Yao, and K. Ryttberg, "Formation mechanisms of white layers induced by hard turning of AISI 52100 steel," *Acta Mater*, vol. 89, pp. 258–267, 2015, doi: 10.1016/j.actamat.2015.01.075.
- [37] T. G. Dawson and T. R. Kurfess, "Wear Trends of Pcbn Cutting Tools in Hard Turning," *Metal Cutting and High Speed Machining*, pp. 1–10, 2002.
- [38] M. Y. Noordin, V. C. Venkatesh, S. Sharif, S. Elting, and A. Abdullah, "Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel," *J Mater Process Technol*, vol. 145, no. 1, pp. 46–58, 2004, doi: 10.1016/S0924-0136(03)00861-6.
- [39] Y. Choi and C. R. Liu, "Performance of nano/micro CBN particle coated tools in superfinish hard machining," *Int J Mach Tools Manuf*, vol. 49, no. 9, pp. 683–689, 2009, doi: 10.1016/j.ijmachtools.2009.03.005.
- [40] S. Sahu and B. B. Choudhury, "Optimization of Surface Roughness Using Taguchi Methodology & Prediction of Tool Wear in Hard Turning Tools," *Mater Today Proc*, vol. 2, no. 4–5, pp. 2615–2623, 2015, doi: 10.1016/j.matpr.2015.07.218.
- [41] L. H. A. Maia, A. M. Abrao, W. L. Vasconcelos, W. F. Sales, and A. R. Machado, "A new approach for detection of wear mechanisms and determination of tool life in turning using acoustic emission," *Tribol Int*, vol. 92, pp. 519–532, 2015, doi: 10.1016/j.triboint.2015.07.024.
- [42] A. E. Diniz and A. J. de Oliveira, "Hard turning of interrupted surfaces using CBN tools," J Mater Process Technol, vol. 195, no. 1–3, pp. 275–281, 2008, doi: 10.1016/j.jmatprotec.2007.05.022.

- [43] S. Thamizhmanii, B. Bin Omar, S. Saparudin, and S. Hasan, "Surface roughness analyses on hard martensitic stainless steel by turning," *Manufacturing Engineering*, vol. 26, no. 2, pp. 139–142, 2008.
- [44] J. Chen and Q. Zhao, "A model for predicting surface roughness in single-point diamond turning," *Measurement (Lond)*, vol. 69, no. March, pp. 20–30, 2015, doi: 10.1016/j.measurement.2015.03.004.
- [45] M. H. El-Axir, "A method of modeling residual stress distribution in turning for different materials," Int J Mach Tools Manuf, vol. 42, no. 9, pp. 1055–1063, 2002, doi: 10.1016/S0890-6955(02)00031-7.
- [46] T. Rajasekaran, K. Palanikumar, and S. Arunachalam, "Investigation on the turning parameters for surface roughness using taguchi analysis," *Procedia Eng*, vol. 51, pp. 781–790, 2013, doi: 10.1016/j.proeng.2013.01.112.
- [47] C. Natarajan, S. Muthu, and P. Karuppuswamy, "Prediction and analysis of surface roughness characteristics of a non-ferrous material using ANN in CNC turning," *International Journal of Advanced Manufacturing Technology*, vol. 57, no. 9–12, pp. 1043–1051, 2011, doi: 10.1007/s00170-011-3343-1.
- [48] A. Bordin, S. Bruschi, and A. Ghiotti, "The effect of cutting speed and feed rate on the surface integrity in dry turning of CoCrMo alloy," *Procedia CIRP*, vol. 13, pp. 219–224, 2014, doi: 10.1016/j.procir.2014.04.038.
- [49] T. Chen, S. Li, B. Han, and G. Liu, "Study on cutting force and surface micro-topography of hard turning of GCr15 steel," *International Journal of Advanced Manufacturing Technology*, vol. 72, no. 9–12, pp. 1639–1645, 2014, doi: 10.1007/s00170-014-5778-7.
- [50] C. Y. D, "Investigation Of Tool Wear In Hard Turning Using Taguchi Method," *Int J Eng Res Appl*, vol. 3, no. 2, pp. 317–321, 2013.
- [51] A. Aramcharoen and P. T. Mativenga, "White layer formation and hardening effects in hard turning of H13 tool steel with CrTiAlN and CrTiAlN/MoST-coated carbide tools," *International Journal of Advanced Manufacturing Technology*, vol. 36, no. 7–8, pp. 650–657, 2008, doi: 10.1007/s00170-006-0899-2.
- [52] A. R. C. Sharman, J. I. Hughes, and K. Ridgway, "The effect of tool nose radius on surface integrity and residual stresses when turning Inconel 718???," *J Mater Process Technol*, vol. 216, pp. 123–132, 2015, doi: 10.1016/j.jmatprotec.2014.09.002.
- [53] F. Jafarian, H. Amirabadi, and J. Sadri, "Experimental measurement and optimization of tensile residual stress in turning process of Inconel718 superalloy," *Measurement (Lond)*, vol. 63, pp. 1–10, 2015, doi: 10.1016/j.measurement.2014.11.021.
- [54] V. Bushlya, J. Zhou, and J. E. Ståhl, "Effect of cutting conditions on machinability of superalloy inconel 718 during high speed turning with coated and uncoated PCBN tools," *Procedia CIRP*, vol. 3, no. 1, pp. 370–375, 2012, doi: 10.1016/j.procir.2012.07.064.
- [55] J. L. Cantero, J. Díaz-Álvarez, M. H. Miguélez, and N. C. Marín, "Analysis of tool wear patterns in finishing turning of Inconel 718," *Wear*, vol. 297, no. 1–2, pp. 885–894, 2013, doi: 10.1016/j.wear.2012.11.004.
- [56] D. I. Lalwani, N. K. Mehta, and P. K. Jain, "Experimental investigations of cutting parameters influence on cutting forces and surface roughness in finish hard turning of MDN250 steel," *J Mater Process Technol*, vol. 206, no. 1–3, pp. 167–179, 2008, doi: 10.1016/j.jmatprotec.2007.12.018.
- [57] L. Rodrigues and an Kantharaj, "Effect of Cutting Parameters on Surface Roughness and Cutting Force in Turning Mild Steel," *Res J Recent Sci*, vol. 1, no. 10, pp. 19–26, 2012, doi: 10.4028/www.scientific.net/AMR.845.708.

- [58] B. Breidenstein and B. Denkena, "Significance of residual stress in PVD-coated carbide cutting tools," *CIRP Ann Manuf Technol*, vol. 62, no. 1, pp. 67–70, 2013, doi: 10.1016/j.cirp.2013.03.101.
- [59] X. Chen, K. Cheng, and C. Wang, "Design of a smart turning tool with application to in-process cutting force measurement in ultraprecision and micro cutting," *Manuf Lett*, vol. 2, no. 4, pp. 112–117, 2014, doi: 10.1016/j.mfglet.2014.07.001.
- [60] K. V. B. S. Kalyan Kumar and S. K. Choudhury, "Investigation of tool wear and cutting force in cryogenic machining using design of experiments," *J Mater Process Technol*, vol. 203, no. 1–3, pp. 95–101, 2008, doi: 10.1016/j.jmatprotec.2007.10.036.
- [61] M. Nouari and H. Makich, "Experimental investigation on the effect of the material microstructure on tool wear when machining hard titanium alloys: Ti-6Al-4V and Ti-555," *Int J Refract Metals Hard Mater*, vol. 41, pp. 259–269, 2013, doi: 10.1016/j.ijrmhm.2013.04.011.
- [62] A. Gómez-Parra, F. J. Puerta, E. I. Rosales, J. M. González-Madrigal, and M. Marcos, "Study of the influence of cutting parameters on the Ultimate Tensile Strength (UTS) of UNS A92024 alloy dry turned bars," *Procedia Eng*, vol. 63, no. 2010, pp. 796–803, 2013, doi: 10.1016/j.proeng.2013.08.250.
- [63] L. Abhang and M. Hameedullah, "Simultaneous Optimization of Multiple Quality Characteristics In Turning EN-31Steel," *Mater Today Proc*, vol. 2, no. 4–5, pp. 2640–2647, 2015, doi: 10.1016/j.matpr.2015.07.224.
- [64] R. Karimdadashi, "The effect of turning parameters on surface smoothness of D3 cold work steel," vol. 4, no. Xii, pp. 419–423, 2016.
- [65] O. Zerti, M. A. Yallese, R. Khettabi, K. Chaoui, and T. Mabrouki, "Design optimization for minimum technological parameters when dry turning of AISI D3 steel using Taguchi method," *International Journal* of Advanced Manufacturing Technology, vol. 89, no. 5–8, pp. 1915–1934, 2016, doi: 10.1007/s00170-016-9162-7.
- [66] V. Bhemuni, S. R. Chalamalasetti, P. K. Konchada, and V. V. Pragada, "Experimental, cae evaluation and optimization of hard turning of aisi D3 tool steel," *Journal of Mechanical Engineering Research and Developments*, vol. 40, no. 2, pp. 349–356, 2017.
- [67] V. Sharma and J. P. Misra, "Multi- Optimization of Surface Roughness & Material Removal Rate of D3 Tool Steel While Wet Turning Using Multi-Criterion Decision Making Methods," *International Journal of Engineering and Advance Technology*, no. April, pp. 5–9, 2018.
- [68] D. Rath, S. Panda, and K. Pal, "Dry turning of AISI D3 steel using a mixed ceramic insert: A study," *Proc Inst Mech Eng C J Mech Eng Sci*, vol. 233, no. 19–20, pp. 6698–6712, 2019, doi: 10.1177/0954406219862844.
- [69] CH. L. Srinivas, P. Umamaheswarro, & T. S., and M. C. Sekhar, "Experimental investigations on Material Removal Rate and Surface Roughness in Turning of EN 8 Steel," *TRANS STELLAR*, vol. 10, no. 3, pp. 1769–1776, 2020, doi: 10.4028/3-908454-05-0.23.
- [70] Norfauzi Tamin et al., "Effect of Feed Rate on Surface Integrity and Tool Wear during Short Turning of AISI 1045 Carbon Steel," *International Journal of Mechanical and Production Engineering Research and Development*, vol. 10, no. 3, pp. 15305–15314, 2020, doi: 10.24247/ijmperdjun20201459.
- [71] C. Okechukwu Izelu, "Modeling and Optimization of Hard Turning Operation on 41Cr4 Alloy Steel Using Response Surface Methodology," *International Journal of Mechanical Engineering and Applications*, vol. 4, no. 2, p. 88, 2016, doi: 10.11648/j.ijmea.20160402.18.

- [72] A. Jabri, A. El Barkany, and A. El Khalfi, "Multi-Objective Optimization Using Genetic Algorithms of Multi-Pass Turning Process," *Engineering*, vol. 05, no. 07, pp. 601–610, 2013, doi: 10.4236/eng.2013.57072.
- [73] M. W. Azizi, O. Keblouti, L. Boulanouar, and M. A. Yallese, "Design optimization in hard turning of E19 alloy steel by analysing surface roughness, tool vibration and productivity," *Structural Engineering and Mechanics*, vol. 73, no. 5, pp. 501–513, Mar. 2020, doi: 10.12989/sem.2020.73.5.501.
- [74] R. Mallick, R. Kumar, A. Panda, and A. K. Sahoo, "Hard Turning Performance Investigation of AISI D2 Steel under a Dual Nozzle MQL Environment," *Lubricants*, vol. 11, no. 1, Jan. 2023, doi: 10.3390/lubricants11010016.
- [75] D. Thi, H. Thuong, | Page, and T. Q. Chien, "Investigation of cutting parameters on hard turning of 90CrSi steel under dry condition," 2023. [Online]. Available: www.questjournals.org