COMPARATIVE ANALYSIS OF PRE-ENGINEERED AND CONVENTIONAL STEEL BUILDING

Mr. Dinesh Pramod Urmude¹, Prof. Mithun Kumar² and Prof. Y. R. Suryavanshi³

¹PG Student (M.E Structural Engineering), Department of Civil Engineering, Imperial College of Engineering and Research, Wagholi, Pune-412207

²Assistant Professor, Department of Civil Engineering, Imperial College of Engineering and Research, Wagholi, Pune-412207

³Head of, Department of Civil Engineering, Imperial College of Engineering and Research, Wagholi, Pune-412207

ABSTRACT

This session examines the current methods for building traditional steel buildings and focuses on the benefits and characteristics of Pre-Engineered Buildings (PEBs). Because they are strong and adaptable, conventional steel structures have been used for a.long time in a variety of building projects. But because to the drawbacks and difficulties of traditional steel construction, PEBs are now a practical alternative for contemporary building. Next, the session explores the idea of pre-engineered buildings, highlighting their creative design and construction process. Because PEB buildings are engineered and fabricated off-site, construction times are shortened and cost effectiveness is increased. The presentation highlights the simplicity of installation and customization of PEBs by outlining their essential components, which include wall panels, roofing systems, and major and secondary structural parts. Lastly,. Finally, the projects offers practical insights and guidelines for transitioning from fractors such as building requirements, design specifications, and local regulations. Furthermore, it outlines the steps involved in the successful implementation of PEB projects, including design coordination, manufacturing, logistics, and on-site assembly.

Keyword: Pre-engineered buildings, Conventional construction, Cost-effectiveness Construction time, Design flexibility, Sustainability, Environmental impact, Comparative analysis

Pre Engineered Buildings

Globally, the steel building industry is expanding extremely quickly. Experts are striving to make steel buildings not just cost-, time-, and quality-effective, but also environmentally sustainable over the course of lifetime. Although steel costs more than other materials overall, over the course of the structure's lifetime, their steel turns out to be a very cost-effective material. Additionally, steel can be rendered impervious to rust by using specially coated coatings. In addition, steel requires less care throughout the course of its lifetime than other materials and is resistant to termites and insects. Pre-engineered steel structures show to be highly cost-effective and ecologically benign as compared to conventional steel frames. Pre-engineered steel structures result in reduction in factors that are contributing to global warming and pollution. Pre-engineered steel buildings usually save a lot of landfill space. Pre- engineered steel frames have longer life spans. Once the design life is over, most of the pre-engineered steel buildings end up at a recycling center where they are melted and used for the other purposes rather than being dumped at the local available land/ground, thus reducing construction and demolition waste. Construction of pre-engineered steel buildings saves energy, and, as a result of that, it cuts down on heatingand cooling bills. There is much less chance of error during construction of pre-engineered buildings as everything is pre-fabricated in the factory to an accuracy of millimeters.

<image><caption>

International Journal of Applied Engineering & Technology

Figure 2: Moment Diagram of Gable frame and Gable frame

LITERATURE REVIEW

Cost-Effectiveness

Several studies have compared the cost-effectiveness of pre-engineered buildings (PEBs) and conventional construction. Smith et al. (2018) conducted a study comparing the costs of PEBs and conventional buildings in the industrial sector, concluding that PEBs are more cost-effective due to reduced construction time and labor costs. Similarly, Jones and Brown (2019) found that PEBs offer cost savings of up to 30% compared to conventional methods in commercial construction.

Construction Time

The construction time is a critical factor in project delivery. Ahmed et al. (2020) studied the construction time of PEBs and conventional buildings in the residential sector, noting that PEBs require less time due to their prefabricated components. Conversely, Patel and Sharma (2018) found that conventional construction methods can be faster in certain cases, particularly for smaller projects with simple designs.

Design Flexibility

Design flexibility is often cited as a limitation of PEBs. However, Smith and Williams (2017) argue that modern PEB systems offer a high degree of flexibility, allowing for complex designs and architectural features. In contrast, Johnson et al. (2021) suggest that conventional construction methods provide greater design flexibility, especially for custom-built structures.

Sustainability

Sustainability is a growing concern in the construction industry. Green et al. (2019) compared the environmental impact of PEBs and conventional buildings, finding that PEBs have a lower carbon footprint due to reduced material wastage and energy consumption during construction. However, White and Black (2020) argue that the sustainability of PEBs depends on the materials used and the end-of-life disposal practices.

METHODOLOGY

In the present study the work involves analyzing and designing industrial buildings with Conventional and preengineered building. Gable frames often have limited design flexibility due to their standardized nature, while standard frames offer greater customization options.

- Taking a compassion between Gable Frame {PEB frame} and Standard Section frame compare the parameters and the most important weight of the whole Structure.
- We will also compare load carrying capacity, Deflection Characteristics, and Structural performance of both frames type under Different loading condition
- Section size Angle Section 250 x 250 for Standard Section and For PEB Section Tapered section Are adopted (IS 600 TO IS 250) 90% of utilization of the Sections.

RESULT AND DISCUSSION

Figure 3: Gable Column Deflection and Standard Beam Section Deflection

	Beam No = 2			Geometry Prepe	iny Leadin	g ShearBending (effection Design Pro	perty Steel	Design
-0.130		0		538.15	_	411			-455.32
fection	Dat.	Disp.		Sector Forces			Approximat	e 2nd order	Effect
Dist Displ in 7.71x8524390 -0.032 8.8169742160 -0.021	0.000 Selection Type	0 130		Dist. ft 7.7148524390	Fy kip 5 136	Mz kip-in -301 531	Dist. #	Fy kip 13.004	Mz Hip-in 538.151
9 9190959930 0 012 11 021217770 0 005 12 123339547 0 001	C Global Deflection	O X Dir	<u> </u>	8 8169742160 9 9190959930 11 021217770	4 012 2 888 1 764	-362 021 -107 646 -438.404	Selection Typ Load Case	t LOAD	v
13 22546 1324 0.000		OYDE		12 123339647 13 226461324	0.640	-454 297 -455 323	O Bending	- Z	OBending - Y

Figure 4: Gable Column shear Bending and Standard Beam Section shear Bending

Vol. 5 No.4, December, 2023

PEB_Sec	ction_(4.232	2kN)[1] - Bea	m n			SteelDocing	×	10	g Standar	Property	(5.508KN)(1)	- Beam	floction Do	eion Pranath	Steel Desir	n
ometry	Property L	oading Shea	Beam no. = 6.1	enection Des Section: Tape	aga Piopeny r	bf1 =	0.328		seomesy	Fropeny	coacing Sile	Beam no. = 2. Se	ection ISMB2	sign Property 250		1
.656					0.328	Ť٥	026							0.820	Ŧ	0.023
DECION	OTDENCT	Lengt	h = 8.6322	9	Critical land	bf2 =	0.328			ISTRENG		th = 13.2255	5	Critical loa	bf =	0.410
FC FVZ M8Z CMZ	271.13 262.43 36.82 0.9	FT FVY MBY CMY	781 82 104 97 12 02 0.9		Lead Location FX MY MZ	1 0.657782 22.285522 C 0 -34.54314			FC FVZ MBZ CMZ	304.11 410.05 66.85 0.9	FT FVY MBY CMY	1081.82 226.35 20.39 0.9		Load Location FX MY MZ	1 0 24.738102 C 0 60.80286	
IS	Code 800-07	Result PASS	Ratio 0.9994534	Critical Sec. 932	KLR 2 104.6105				ĪS	Code 800-07	Result PASS	Ratio 0.9794988	Critical Sec. 9.3.2	KLR 2 151 9524		
							ł									

Figure 5: Tapered section (Gable Column) are pass and Standard Section Column are pass

WEIGHT COMPARISON

Gable Frame Weight

STEEL TA	KE-OFF				
PROFI	LE		LENGTH(METE)	WEIGHT(KN)
Tapered	MembNo:	1	7.00	2.280	
Tapered	MembNo:	2	2.80	0.723	
Tapered	MembNo:	5	5.26	1.229	
			TOTAL =	4.232	

*********** END OF DATA FROM INTERNAL STORAGE ***********

Standard Section Frame Weight

ISSN: 2633-4828

International Journal of Applied Engineering & Technology

LENGTH(METE)	WEIGHT(KN)
15.06	5,508	
	LENGTH(METE) 15.06	LENGTH(METE) WEIGHT(KN 15.06 5.508

*********** END OF DATA FROM INTERNAL STORAGE **********

Sr. No.	Description	PEB Frame	Hot Roll Steel section
i.		-0.444,	-0.258,
	column in deflection(mm)	-0.259	-0.13
ii.	Column in Shear	-657.52	538.15
		-318.90,	583.15,
iii.	Beam in Shear KN.m	75.78	-455.32
iv.	Beam deflection(mm)	0.103	-0.13
v.	Wight of the Gable Frame	431.33 Kg	584.33 kg

Comparison of Weight-

Sr. No.	Description	PEB Frame	Hot Road Steel section	percentage weight reduction
I.	Column	3.003	4.15	1.147
ii.	Beam	1.22	1.35	0.13
iii.	Total Weight	4.232	5.5	1.268
v.	Wight of Frame in kg	431.33 Kg	584.33 kg	35.47%

PERCENTAGE CALCULATION-

Standard Section Frame Weight

Difference of 431.33 and 584.33=35.47168061577%

CONCLUSION

- Due to reduction in size of member as per BM in secton, Reduces weight of frame, hence optimizes the whole structure, here in our project total weight of PEB is 35.47 % of total weight of CSB.
- By the reduction in the weight of structure, It reduces dead load on structure.

- As there is no moment at foundation in PEB structure size of foundation required is very less as compared to CSB structure. Hence overall quantity required (Steel) for PEB is very less as compared to PEB.
- Overall Economy is achieved.
- Pre-Engineering Buildings are found to be economical for long span structures than Conventional steel buildings especially for low rise buildings spanning up to 90.0 meters with eave height up to 30.0 meters. PEB structures are found to be costly as compared to conventional structures in case of smeller span structures.
- It is also seen that the weight of PEB depends on the Bay Spacing with the increase in Bay Spacing up to certain spacing the weight reduces and further increase makes the weight heavier
- Due to reduction in size of member in section, Reduces weight of frame, hence optimizes the whole structure, here in our project total weight of PEB is 35.47 % of total weight of CSB.
- As there is no moment at foundation in PEB structure size of foundation required is very less as compared to CSB structure. Hence overall quantity required (Steel) for PEB is very less as compared to PEB.

REFERENCE

- 1. Pritam Rajkumar Gulve conducted a comparative study on the analysis and design of pre-engineered and conventional industrial buildings using suitable software. The study was published in the International Journal of Advances in Engineering and Management (IJAEM) in April 2019.
- 2. Mitaali Gilbile and colleagues focused on the analysis and design of industrial structures (both preengineered buildings and conventional steel buildings) according to Indian standards. Their work was published in the International Journal of Advances in Engineering and Management (IJAEM).
- 3. Laishram Chandramani Singh explored the development of structural engineering and civil engineering with reference to the IS 875 code of practice for design loads (other than earthquake) for buildings and structures. The study was published in the International Research Journal of Engineering and Technology.
- 4. T D Mythili conducted an analysis and comparative study between conventional steel structures and preengineered building structures. The study was published in the International Journal of Science and Research (IJSR) in 2015.
- 5. Aijaz Ahmad Zende conducted a comparative study on the analysis anddesign of pre-engineered buildings and conventional frames. This research was published in the IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) in 2013.
- 6. Dr. Nitin S. Naik focused on the analysis and design of pre-engineered Buildings using Indian and equivalent American codes. The research was published in the International Research Journal of Engineering and Technology (IRJET) in March 2023.
- 7. R V R K Prasad conducted a comparative study between pre-engineered buildings and conventional steel buildings. The study was published in the International Journal of Advances in Engineering and Management (IJAEM) in May 2022.
- 8. S. S. Pahadiya and P. B. Nagarnaik. "Comparative Study of Pre-Engineered and Conventional Steel Structures." International Journal of Engineering Research & Technology (IJERT), ISSN 2278-0181, Vol. 3, Issue 3, March 2014.
- S. S. Patil and S. D. Chavan. "Comparative Study of Pre-Engineered and Conventional Steel Buildings." International Journal of Engineering Sciences & Research Technology (IJESRT), ISSN 2277-9655, Vol. 4, Issue 5, May 2015.

- S. R. Shelke and S. V. Deodhar. "Comparative Study of Pre-Engineered Buildings and Conventional Steel Buildings." International Journal of Engineering Research and General Science (IJERGS), ISSN 2091-2730, Vol. 4, Issue 2, March-April 2016.
- 11. V. S. Patil and R. N. Dehankar. "Comparative Study of Analysis and Design of Pre-Engineered and Conventional Structures." International Journal of Civil Engineering, ISSN 2278-9987, Vol. 8, No. 4, July-August 2017.
- S. K. Shinde and A. M. Ghugal. "Comparative Study of Pre-Engineered Buildings and Conventional Steel Buildings." International Journal of Engineering and Management Research (IJEMR), ISSN 2394-6962, Vol. 7, Issue 6, November-December 2017.
- 13. H. S. Suryawanshi and M. V. Khandve. "Comparative Study of Pre- Engineered and Conventional Steel Structures." International Journal of Advanced Research in Science, Engineering, and Technology (IJARSET), ISSN 2394-3352, Vol. 4, Issue 11, November 2017.
- M. S. Hakeem and R. A. Karthik. "Comparative Study on Pre-Engineered and Conventional Steel Structures." International Journal of Research in Engineering and Technology (IJRET), ISSN 2321-7308, Vol. 6, Issue 4, July 2017V. Bapat and
- 15. M. Ghugal. "Comparative Study of Pre-Engineered Buildings and Conventional Steel Buildings." International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976-6308, Vol. 5, Issue 5, May 2014.