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ABSTRACT  
Underwater mine classification utilizing Convolutional Neural Networks (CNNs) represents a cutting-edge 
approach to deep learning for maritime security. CNNs, known for their effectiveness in image processing tasks, 
are adapted to analyze sonar or imaging data for the identification and categorization of underwater mines. This 
methodology involves the CNN's training process on diverse datasets containing images or features associated 
with different mine types. The network learns to automatically extract hierarchical and spatial features, enabling 
it to discern subtle patterns indicative of various mine classes. The application of CNNs in underwater mine 
classification aims to improve the precision and effectiveness of this process, contributing to improved maritime 
safety and security by providing automated, real-time mine detection capabilities. 

Keywords:  CLAHE, Convolutional Neural Networks, RVUMR-14 (RV College of Engineering Underwater Mine 
Research), YOLOv8. 

INTRODUCTION 
Lately, Convolutional Neural Networks (CNNs) have emerged as a powerful and versatile class of deep learning 
models, revolutionizing the field of computer vision and making significant contributions to various other fields 
like natural language processing and medical image analysis represent specific areas of expertise. Developed and 
inspired by the visual processing capabilities of the human brain, CNNs have demonstrated unparalleled success 
in tasks such as image classification, object detection, and image segmentation. 

Traditional neural networks, while effective for many tasks, face challenges in handling high-dimensional data 
like images. CNNs address this limitation by introducing convolutional layers that enable the networks to learn 
hierarchical representations of patterns in the input data automatically. This architectural innovation has proven 
particularly adept at capturing spatial hierarchies and local dependencies, making CNNs well-suited for tasks 
involving grid-like data such as images and, more recently, even sequential data like time series and text. 

CNNs have revolutionized object detection by offering a durable and effective framework for automated visual 
recognition. Unlike traditional methods that rely on handcrafted features. CNNs autonomously acquire 
hierarchical representations of features starting from unprocessed pixel data, enabling them to discern complex 
patterns and objects in images. The application of CNNs in object detection involves the utilization of 
convolutional layers to localize and identify objects inside an image. These networks can effectively capture 
spatial hierarchies and relationships between pixels, allowing for precise localization and classification of objects. 
One of the major advantages lies in their ability to handle varying scales and orientations of objects, making them 
highly suitable for real-world scenarios. State-of-the-art architectures like Faster R-CNN, YOLO (You Only Look 
Once), and SSD (Single Shot MultiBox Detector) leverage CNNs to achieve remarkable accuracy and real-time 
performance, making CNN-based object detection a pivotal technology with a spectrum of applications from 
autonomous vehicles and surveillance systems to healthcare and industrial automation. 

Our research leverages the cutting-edge YOLO v8 (You Only Look Once) model, representing the pinnacle of 
object detection capabilities in the field of computer vision. YOLO v8 stands out as a state-of-the-art model, 
embodying the latest advancements in advanced learning techniques and convolutional neural networks. 
Renowned for its efficiency and accuracy, YOLO v8 adopts a unified approach, enabling simultaneous object 
localization and classification within a single pass through the network. This model excels in real-time 
applications, making it a paramount choice for scenarios where rapid and precise object detection is critical. By 
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employing YOLO v8, our research aims to capitalize on its state-of-the-art features to enhance the accuracy and 
efficiency of object detection in our specific domain, contributing to the forefront of contemporary computer 
vision research and applications. 

RELATED WORKS 
In the paper [1], the study focuses on detecting marine mines using images captured by cameras mounted on 
various platforms such as drones, submarines, ships, and boats. Due to a limited dataset, images were sourced 
from the Internet and augmented to create two datasets—one for floating mines and another for underwater mines. 
The detection models employed include YOLOv5 and SSD for floating mines and YOLOv5 and EfficientDet for 
underwater mines. Additionally, the performance of these models was evaluated on an IoT device, specifically the 
Raspberry Pi 4 with an attached camera. 

In paper [2], the research explores the application of YOLO, SSD, and EfficientDet utilizing deep learning models 
to identify sea mines, addressing safety concerns in navigation amid geopolitical tensions and armed conflicts. 
The study utilized augmented and synthetically generated datasets for both floating and underwater mines, 
achieving high accuracy in object recognition. The feasibility of real-time deployment on portable devices, such 
as Raspberry Pi, was also demonstrated, with a frame processing time of 2 seconds, potentially improved with 
high-performance cameras. 

In paper [3], implemented in the PYTHON platform, the proposed method demonstrates improved performance 
on the DOTA dataset, surpassing other deep learning networks with notable metrics such as Mean Average 
Precision (mAP = 85.5%), F1-score (83.78%), Detection rate (97%), and Precision-Recall curve. 

In the paper [4], The survey systematically reviews various object detection methods, categorizing them into one-
stage and two-stage detectors. Additionally, it outlines traditional and emerging applications of object detection. 
Representative branches within the field are also explored. The survey concludes by discussing the architectural 
aspects of integrating these detection methods for building effective and efficient systems. Furthermore, it 
highlights development trends to align with the latest algorithms and suggests areas for future research. 

In paper [5], The deeper network architecture of YOLO-v5 + R-FCN enhances feature extraction capabilities, 
leading to more accurate feature recognition and improved detection performance for densely arranged target 
images in remote sensing data. This study offers valuable perspectives for the application of remote sensing 
technology in China, promoting the use of satellites for target detection tasks in relevant fields and in paper [6] 
improved YOLOv3 was used for implementation. 

This research [7] aimed at enhancing facial recognition accuracy, authors suggested employing adaptation 
techniques to adjust the surrounding light intensity during image capture. In this study, authors utilized the 
Contrast Adaptive Limited Histogram (CLAHE) method as a means of adaptation. 

This paper [8] provides a comprehensive review of mine detection and classification techniques employed in 
various systems. The author examines both current and previous-generation methods, beginning with classical 
image processing, progressing to machine learning, and culminating in deep learning approaches.  

In this paper [9], Employing traffic signs as a case study, Authors developed image degradation models utilizing 
the YOLO network. These models incorporate traditional image processing techniques to replicate real-world 
shooting challenges. Following the establishment of diverse degradation models, They assessed their impact on 
object detection effectiveness. Leveraging the YOLO network. 

This paper [10] presents a comprehensive review of deep learning-based object detection frameworks. The 
authors commence with a succinct overview of the evolution of deep learning and its prominent tool, the 
convolutional neural network. Subsequently, we delve into various generic object detection architectures, 
highlighting modifications and effective strategies aimed at enhancing detection performance. 
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This paper [11] aims to streamline the process of learning a CNN architecture by exploring the correlation 
between Fully Connected (FC) layers and various characteristics of datasets. CNN architectures, as well as 
datasets, are often classified based on their depth, shallowness, width, etc. 

In this paper [12], Introducing a novel hierarchical image classification model, Condition-CNN, we aim to 
overcome certain limitations observed in the branching convolutional neural network, particularly in training time 
and fine-grained accuracy.  

This paper [13] compares the Depth Confidence Network algorithm with the Convolutional Neural Network 
algorithm in experiments related to image positioning and recognition. Through several iterative experiments, it 
was observed that in the context of large package images, the Convolutional Neural Network algorithm achieved 
an average image recognition accuracy of 96.09%, whereas the Depth Confidence Network algorithm achieved 
94.42%. 

The investigation detailed in this paper [14] focuses on employing automated classification techniques to discern 
the presence and identify the types of vessels operating within coastal areas through analysis of underwater 
acoustic signals. We assessed multiple configurations of deep convolutional neural network architectures along 
with preprocessing filter layers. This evaluation utilized a novel dataset derived from a portion of the vast open-
source Ocean Networks Canada hydrophone data.  

In this review paper [15] authors have concentrated on underwater crack detection system using various methods 
such as Manual Visual Inspection, Intelligent Monitoring Techniques, Digital Image Detection Methods and also 
discussed Dam Crack Detection Based on Underwater Robots. 

In this paper [16], authors implemented four models such as Random forest, SVM, feed-forward neural network, 
and CNN to differentiate surface and underwater vessels in the ocean using low-frequency acoustic presser data. 
In this CNN is giving better accuracy with least error rate. 

In this paper [17] authors have compared two algorithms namely SVM and CNN for machine learning and deep 
learning algorithms for image classification. For smaller datasets traditional machine learning algorithms are 
better than deep learning algorithms. For larger datasets deep learning algorithms are giving better accuracy. 

In this paper[18] author has explained and summarized all YOLO versions from V1 to V8 and also Scaled, PP, 
DAMO, NAS versions from years 2015 to 2023 and also major changes in each model and training tricks also 
discussed. 

In this proposed model [19] author has used the YOLOv5 model to identify vision loss in the initial stage and also 
to identify these diseases in the early stage. In this, they have used the Diabetic Retinopathy dataset to train and 
test the model and they got superior results with respect to mAP, F1-score, and IOU. 

PROPOSED METHODOLOGY 
In this proposed work shown in Figure 1, we are utilizing the YOLO v8 model for the detection of different mine 
classes within the RVUMR-14 dataset. The dataset comprises variations with and without an underwater 
background, and the underwater set undergoes preprocessing using the CLAHE algorithm. We aim to evaluate the 
efficiency of three datasets: one with no background alterations, one with an original underwater background, and 
one with a CLAHE-processed underwater background. Through comprehensive evaluation metrics such as F1 
score, Precision, Recall, and Mean Average Precision during training and validation, we aim to identify the 
dataset that, when combined with the YOLO v8 model, delivers optimal results for effective mine detection in 
diverse underwater conditions. 

 



ISSN: 2633-4828  Vol. 5 No.4, December, 2023  

 

International Journal of Applied Engineering & Technology 
 

 
Copyrights @ Roman Science Publications Ins.  Vol. 5 No.4, December, 2023 
 International Journal of Applied Engineering & Technology 
 

 2088 
 

 
Figure 1: Block Diagram of Proposed Work 

YOLO ARCHITECTURE 
YOLO, or "You Only Look Once," is a family of real-time object detection algorithms commonly employed in 
computer vision and deep learning. The YOLO algorithm divides an image into a grid and performs object 
detection on each grid cell simultaneously. The main advantage of YOLO is its ability to detect objects in real-
time with high accuracy. 

Below are several critical aspects about YOLO: 

1.  YOLOv1 (You Only Look Once version 1): The original YOLO algorithm was introduced by Joseph Redmon, 
Santosh Divvala, Ross Girshick, and Ali Farhadi in a paper published in 2016. YOLOv1 divided the input 
image into a grid and predicted both bounding boxes and class probabilities for every grid cell in a singular 
forward pass. 

2.  YOLOv2 (YOLO9000): YOLOv2, also known as YOLO9000, was introduced to address the limitation of 
detecting a limited set of object classes. YOLO9000 was capable of detecting over 9000 object categories by 
using a hierarchical approach. 

3.  YOLOv3: YOLOv3 [6], released in 2018, further improved the accuracy of object detection. It introduced 
several architectural changes, including the use of three different scales for detection, making it more robust in 
handling different object sizes. 

4.  YOLOv4: YOLOv4, introduced in 2020, focused on improving speed and accuracy. It incorporated features 
such as the CSPDarknet53 backbone, PANet, and other optimizations to achieve state-of-the-art performance. 

5.  YOLOv5 further improved the model's performance and added new features such as hyperparameter 
optimization, integrated experiment tracking and automatic export to popular export formats. 

6.  YOLOv6 was open-sourced by Meituan in 2022 and is in use in many of the company's autonomous delivery 
robots. 

7.  YOLOv7 added additional tasks such as pose estimation on the COCO key points dataset. 
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8.  YOLOv8 is the latest version of YOLO by Ultralytics. As a cutting-edge, state-of-the-art (SOTA) model, 
YOLOv8 builds on the success of previous versions, introducing new features and improvements for enhanced 
performance, flexibility, and efficiency. YOLOv8 supports a comprehensive array of vision AI assignments, 
encompassing detection, segmentation, and pose estimation, tracking, and classification. This versatility allows 
users to leverage YOLOv8's capabilities across diverse applications and domains. 

YOLO typically consists of a CNN architecture. The network predicts bounding boxes, objectness scores, and 
class probabilities directly from the raw pixels of the input image. 

 
Fig. 2: Architecture of YOLO v8 

The overall architecture of YOLOv8 is shown in Figure 2. It is divided into three main parts: 

1. Backbone: The backbone is the primary body of the network, responsible for extracting features from the 
input image. YOLOv8 uses a modified version of the Darknet53 architecture, known as CSPDarknet53, as its 
backbone. 

2. Neck: The neck is responsible for connecting the backbone to the head and for processing the features 
extracted by the backbone. YOLOv8 uses a novel C2f module instead of the traditional YOLO neck 
architecture. The C2f module is designed to improve the flow of information between different levels of the 
network. 

3. Head: The head is responsible for anticipating the bounding boxes and class probabilities for each object in 
the image. YOLOv8 uses a modified version of the YOLOv5 head architecture, which uses a spatial attention 
mechanism to improve detection accuracy. 
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The combination of these three components makes YOLOv8 a powerful and versatile object detector capable of 
being utilized for a wide variety of tasks, including real-time object detection, video surveillance, and autonomous 
vehicles. 

OVERVIEW OF OUR PROPOSED APPROACH 

5.1 Dataset 
Creating a custom dataset for underwater mine detection involves a meticulous and multifaceted process that aims 
to train a robust and accurate model. The initial step entails the careful collection of diverse images, 
encompassing different classes such as underwater scenes featuring mines and those devoid of any mine presence. 
The present study introduces RVUMR-14, a tailor-made dataset crafted specifically to tackle the classification 
challenges posed by underwater mines. Addressing the scarcity of publicly available underwater mine images, 
this dataset offers a comprehensive collection of annotated photographs for both training and evaluation purposes. 
Encompassing images of 14 distinct types of underwater mines commonly encountered in marine environments, 
RVUMR-14 aims to fill a critical gap in the available resources for mine classification research. To address the 
issue of dataset size, diverse augmentation techniques were implemented to expand the number of images per 
classification category. This diversity is paramount to ensuring that the model can adeptly discern between 
various underwater scenarios and effectively identify the presence or absence of mines. Following this, 
meticulous class labeling becomes imperative, as each image must be annotated with the corresponding class 
label, serving as a foundational element for supervised learning. The sample underwater image dataset is shown in 
Figure 3. 

 
Fig. 3 Sample images of RVUMR-14 Naval Mine dataset 

To further enhance the dataset's variability and resilience, a series of data augmentation methods have been 
systematically applied. These augmentation methods, including but not limited to inverting and flipping, play a 
central role in artificially expanding the dataset. By subjecting the images to transformations such as rotation, 
scaling, cropping, and adjustments in brightness and contrast, the model becomes adept at recognizing mines 
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under a myriad of conditions. The judicious use of data augmentation is instrumental in preventing overfitting and 
ensuring the model's ability to generalise effectively to novel, unseen data. and ensuring the model's ability to 
generalise effectively to novel, unseen data. 

Once the augmentation process is complete, the dataset is judiciously partitioned into distinct sets for training, 
validation, and testing. This segregation is essential for evaluating the model's performance on unseen data, fine-
tuning hyperparameters during the validation phase, and ultimately assessing the model's generalization 
capabilities. Additionally, the inclusion of underwater images without mines in the dataset serves to reinforce the 
model's capability to differentiate between favorable and unfavorable instances, contributing to its overall efficacy 
in real-world applications. Through this comprehensive approach to dataset creation, the resulting model is poised 
to exhibit a high level of accuracy, adaptability, and reliability in underwater mine detection scenarios. 

5.2 Training Model with No Background RVUMR-14 Dataset 
To assess the model's accuracy and compare its performance across different scenarios, we are training it 
specifically on images featuring isolated mines without background context. The sample image dataset is shown 
in Figure 4. This focused subset serves as a benchmark, allowing a direct comparison with the performance of the 
model regarding the complete dataset. By evaluating the models ability to discern mines without contextual 
information, we gain insights into its robustness and adaptability in diverse underwater environments. This 
approach provides a nuanced understanding of model’s sensitivity to background variations, ultimately 
contributing to the refinement of its capabilities for effective underwater mine detection.  

 
Fig. 4: RVUMR-14 Naval Mine dataset without background 

5.3 Removing Noise from RVUMR-14 
To boost the accuracy of our underwater mine detection model, we're focusing on noise reduction in the dataset. 
Employing the Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm, we effectively address 
unwanted variations in illumination and other distortions. CLAHE optimizes image quality by enhancing local 
contrast, emphasizing mine features, and suppressing irrelevant noise. This strategic preprocessing step aims to 
fortify the model against challenges in diverse underwater conditions, fostering improved precision and 
adaptability in mine detection scenarios. 
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Fig. 5 RVUMR-14 Naval Mine dataset without noise 

5.4 CLAHE Algorithm 
The Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm stands out as a sophisticated image 
processing technique renowned for its ability to dynamically enhance local contrast, making it a crucial tool in 
various applications, particularly in the realms of medical imaging and computer vision. In contrast to traditional 
histogram equalisation methods, CLAHE operates by dividing an image into smaller, non-overlapping tiles, 
effectively localizing the enhancement process. This adaptive approach proves invaluable in scenarios where 
lighting conditions are uneven or when there's a need to highlight specific details within distinct regions of an 
image. 

The brilliance of CLAHE rests upon its capability to independently apply histogram equalisation to each tile, 
catering to the unique characteristics of different areas within the image. By doing so, CLAHE avoids the 
common pitfall of over-amplifying contrast in brighter regions, a drawback associated with traditional histogram 
equalisation. Through the use of a specified threshold, CLAHE judiciously limits contrast amplification, ensuring 
that the enhancement process is controlled and tailored to the specific requirements of each local region. 

This algorithm finds widespread utility in medical imaging, where revealing subtle structures in X-rays or MRIs is 
paramount, and in computer vision applications, where nuanced image analysis demands optimal contrast. 
CLAHE's adaptability to local features not only enhances visual quality but also proves instrumental in 
minimizing the impact of noise, making it an indispensable tool for refining image quality and facilitating 
subsequent image-processing tasks. In essence, CLAHE's nuanced and adaptive contrast enhancement capabilities 
position it as a cornerstone in the arsenal of image processing techniques, contributing significantly to the 
advancement of accurate and robust visual analyses. The step-by-step procedure of the CLAHE algorithm is 
shown in figure 5. 
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Fig.5 Flowchart of CLAHE algorithm 

The comparison features the original image on the left and the output image after applying Contrast Limited 
Adaptive Histogram Equalization (CLAHE) on the right is shown in Figure 6. The original image provides an 
unprocessed view, capturing inherent details and lighting conditions. In contrast, the CLAHE-enhanced image on 
the right demonstrates the algorithm's impact, selectively amplifying contrast in different regions.  

 
Fig. 6 Comparison of CLAHE output with the original image 
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This process unveils finer details and improves overall visual clarity. The side-by-side display succinctly 
illustrates how CLAHE enhances local contrast, addressing uneven lighting issues and optimizing image quality 
for improved information extraction. 

EXPERIMENT 

6.1. Specifications 
In the execution of this task, our computational infrastructure was powered by the formidable Nvidia RTX 2060 
Super GPU in conjunction with the AMD Ryzen 7 3700x CPU. This hardware synergy was instrumental in 
providing the computational prowess necessary for the intricate processes involved in our model training. 
Leveraging the cutting-edge capabilities of the TensorFlow 2x version, our model benefited from a robust and 
efficient deep learning framework. The utilization of the specified hardware configuration, comprising the Nvidia 
RTX 2060 Super GPU and the AMD Ryzen 7 3700x CPU, ensured accelerated processing speeds and parallelized 
computations, thereby significantly expediting the model training process. The model was meticulously trained 
for 10 epochs, a strategic decision aimed at striking a balance between training time and achieving convergence 
for optimal performance. This hardware and software orchestration reflects an intentional choice customized for 
the specific requirements of the task, underscoring the importance of a well-matched computational environment 
in the pursuit of successful model training and development. 

6.2 Assessment of Indicators 
In evaluating the outcomes and conducting a thorough analysis of our dataset, we rely on a comprehensive set of 
performance indicators, namely F1 score, Precision, Recall, and Mean Average Precision (mAP). Each of these 
metrics plays a distinct yet complementary role in assessing the efficiency and resilience of our model. 

F1 Score: 
The F1 score, being a harmonic mean of Precision and Recall, offers a balanced assessment that accounts for both 
false positives and false negatives making it particularly useful when there is an imbalance between the classes. A 
higher F1 score indicates a better balance between precision and recall, signifying a more accurate model. The 
Formula for F1 score is shown in equation 1. 

F1 = 2 * (Precision*Recall)/(Precision+Recall)  Eq(1) 

Precision: 
Precision, also known as a positive predictive value, gauges the accuracy of the model concerning the instances it 
classifies as positive. It is determined by dividing the number of true positives by the sum of true positives and 
false positives. Precision is crucial when the cost of false positives is high, as it ensures that the positively 
identified instances are accurate. 

Recall: 
Recall, or sensitivity, assesses the model's ability to capture all the relevant instances of a particular class.It is 
computed by dividing the number of true positives by the sum of true positives and false negatives. Recall is 
essential in scenarios where missing positive instances is more critical than false positives. The Formula for recall 
is shown in equation 2. 

Recall = True Positives / (True Positives + False Negatives)       Eq(2) 

Here's a breakdown of the terms in the formula: 

● True Positives (TP): The count of instances that are positive and were correctly identified as positive by the 
model. 

● False Negatives (FN): The count of instances that are positive but were incorrectly identified as negative by 
the model. 
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Mean Average Precision (mAP): 
Mean Average Precision is commonly used in object detection tasks. It considers precision at different levels of 
recall and computes the average precision over a range of recall values. mAP provides a comprehensive 
evaluation of the model's performance across varying thresholds, offering insights into how well the model 
identifies objects at different levels of confidence. 

 

By incorporating these metrics into our evaluation process, we gain a nuanced understanding of the model's i 
Eq(3) strengths and weaknesses. This multifaceted assessment ensures a comprehensive and robust evaluation, 
guiding further refinement and optimization for superior performance in real-world applications. The Formula for 
mAP is shown in equation 3. 

RESULT AND ANALYSIS 
Our investigation involves a comprehensive comparison of outcomes generated by the YOLO (You Only Look 
Once) model across three distinct datasets. The initial set of results emanates from a meticulously curated dataset 
intentionally crafted to exclude extraneous background elements. This strategic curation isolates objects of 
interest, providing an optimal environment to evaluate the YOLO model's proficiency in accurately detecting and 
classifying objects under pristine, uncluttered conditions. 

In the second set of results, our focus shifts to a dataset deliberately imbued with noise. This deliberate 
introduction of visual disturbances emulates real-world scenarios where images may exhibit imperfections and 
distractions. By subjecting the YOLO model to these challenging conditions, we aim to assess its robustness and 
adaptability, critical attributes for ensuring reliable performance in diverse and less controlled environments. 

The third set of results stems from a dataset subjected to the Contrast Limited Adaptive Histogram Equalization 
(CLAHE) algorithm. This algorithm serves as a sophisticated preprocessing technique designed to remove noise 
and enhance image quality. By incorporating CLAHE, we seek to highlight the impact of noise reduction on the 
YOLO model's detection precision and overall effectiveness. This multifaceted analysis aims to offer detailed and 
subtle perspectives into the YOLO model's capabilities under varying conditions, informing strategies for 
optimization and deployment in practical applications. 

7.1 Results of RVUMR-14 without underwater background 

Table 1 – Precision, Loss. Recall and mAP of RVUMR-14 without underwater background Naval Mine Dataset 

epochs 
Train / 

box_loss 
train/cls_

loss 
train/dfl_

loss 
metrics/p
recision 

metrics/r
ecall 

metrics/mA
P50 

1 1.0548 4.0588 1.3125 0.00745 0.95175 0.20251 
2 1.0034 3.0267 1.2434 0.54248 0.4632 0.50712 
3 0.9881 2.5665 1.225 0.61731 0.68535 0.69385 
4 0.95657 2.1835 1.2003 0.66683 0.70328 0.75159 
5 0.95786 1.9228 1.1743 0.87838 0.78074 0.85906 
6 0.93904 1.7409 1.1538 0.90815 0.84213 0.92187 
7 0.911 1.6121 1.1294 0.91199 0.85302 0.91483 
8 0.87035 1.452 1.0984 0.9424 0.8814 0.94015 
9 0.85627 1.3901 1.1099 0.96662 0.88821 0.95185 

10 0.83002 1.3275 1.0898 0.9572 0.90671 0.95989 
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Table 1 presents the outcomes of a model trained without the inclusion of a background dataset. The training 
process spanned 10 epochs, yielding an accuracy rate of 95.7% and a recall rate of 90.6%. The graphical 
representation of these results is depicted in the accompanying figure 7, displayed as a line graph. 

 
Fig. 7: Line graph representation of Precision, Loss. Recall and mAP results of RVUMR-14 without underwater 

background Naval Mine Dataset 

 
Fig.8 F1-Confidence curve of RVUMR-14 without underwater background Naval Mine Dataset 
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Fig. 9 Precision-Confidence curve of RVUMR-14 without underwater background Naval Mine Dataset 

Figures 8 and 9 illustrate the F1-Confidence curve and the Precision-Confidence curve, respectively. In Figure 8, 
the F1 score is prominently depicted at 93%, representing the average across all classes of mines. Meanwhile, in 
Figure 9, the Precision-Confidence curve reaches a notable precision level of 97.1%. 

7.2 Results of the Original RVUMR-14 with an Underwater Background 

Table 2 - Precision, Loss. Recall and mAP of RVUMR-14 original Naval Mine Dataset with an underwater 
background 

epoch train/box_loss train/cls_loss train/dfl_loss metrics/precision metrics/recall 
metrics/
mAP50 

1 1.202 4.4936 1.2066 0.48494 0.15292 0.20467 
2 1.2231 3.4561 1.1801 0.75167 0.477 0.69747 
3 1.2044 2.7414 1.1741 0.75264 0.7411 0.82565 
4 1.1901 2.4294 1.1562 0.81502 0.79527 0.86902 
5 1.1702 2.2558 1.1133 0.86044 0.8777 0.94031 
6 1.1747 2.0492 1.1348 0.91453 0.91914 0.96294 
7 1.1395 1.985 1.1045 0.96257 0.92414 0.97811 
8 1.0971 1.7941 1.0703 0.97684 0.9664 0.98583 
9 1.0733 1.6923 1.074 0.96736 0.96801 0.98737 

10 1.0387 1.548 1.0498 0.97709 0.97702 0.99013 

Table 2 encapsulates the findings derived from the dataset infused with noise. Following a rigorous training 
regimen spanning 10 epochs, the discerning observations reveal a remarkable performance, with both accuracy 
and recall registering at an impressive 97.7%. This outcome underscores the model's resilience in handling data 
imbued with noise, demonstrating its robustness and proficiency in maintaining high accuracy even under 
challenging conditions. This is shown in figure 10. 
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Fig. 10 Line graph representation of Precision, Loss. Recall and mAP results of RVUMR-14 original Naval Mine 

Dataset with background 

 
Fig.11 F1-Confidence curve of RVUMR-14 original Naval Mine Dataset with background 
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Fig. 12 Precision-Confidence curve of Naval mine dataset RVUMR-14 original Naval Mine Dataset with 

background 

Figures 11 and 12 provide a visual depiction of the F1-Confidence curve and Precision-Confidence curve, 
respectively, for the dataset incorporating noise. Noteworthy insights emerge as the F1-Confidence curve attains 
an impressive 98%, underscoring the model's adeptness in achieving a robust balance between precision and 
recall even in the presence of noise. Similarly, Figure 12 reveals a Precision-Confidence curve standing firm at 
96.3%, affirming the model's capacity to maintain a high level of precision across varied confidence levels. 

7.3 Results of RVUMR-14 with CLAHE Underwater Background 

Table-3 Precision, Loss. Recall and mAP of RVUMR-14 Pre-processed Naval Mine Dataset with an underwater 
background 

epoc
h 

train/box_loss train/cls_loss train/dfl_loss metrics/precision metrics/recall 
metrics/
mAP50 

1 1.1992 4.4258 1.2067 1 0.03582 0.169 
2 1.2342 3.4768 1.1998 0.67414 0.46451 0.59526 
3 1.2157 2.815 1.1907 0.7554 0.71762 0.82842 
4 1.2027 2.4129 1.1867 0.81082 0.82476 0.87515 
5 1.2005 2.2973 1.154 0.80756 0.8586 0.90811 
6 1.1676 2.1068 1.1517 0.90781 0.91903 0.94734 
7 1.1523 2.0252 1.126 0.89452 0.86356 0.95388 
8 1.1614 1.8097 1.1129 0.96174 0.95818 0.98724 
9 1.1025 1.6908 1.106 0.96753 0.97158 0.99195 
10 1.0695 1.5662 1.0707 0.98558 0.97734 0.9916 

Table 3 showcases the outcomes derived from the model trained on a dataset devoid of noise, following a rigorous 
10-epoch training regimen. Notably, the model demonstrates exceptional performance with an accuracy rate of 
98.5% and a recall rate of 97.73%. These results surpass the corresponding metrics observed in the dataset with 
noise, highlighting the model's heightened accuracy and proficiency when operating in a noise-free environment. 
The superior precision and recall metrics underscore the model's precision in distinguishing between classes and 
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its ability to effectively retrieve relevant instances from the dataset. This robust performance on the clean dataset 
further accentuates the model's capability to excel under ideal conditions. Fig. 9 shows the results in line graphs 

 
Fig. 13 Line graph representation of Precision, Loss. Recall and mAP results of RVUMR-14 Pre-processed Naval 

Mine Dataset with an underwater background 

 
Fig. 14 F1-Confidence curve of RVUMR-14 Pre-processed Naval Mine Dataset with an underwater background 
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Fig. 15 Precision - Confidence curve of RVUMR-14 Pre-processed Naval Mine Dataset with an underwater 

background 

The F1-Confidence curve and Precision-Confidence curve illustrated in Fig. 14 and 15, respectively, provide an 
all-encompassing perspective of the dataset, showcasing its performance without noise. Notably, the F1 score, a 
key metric for balancing precision and recall, achieves an impressive 98%. This indicates a high level of accuracy 
and effectiveness in the model's ability to correctly recognize genuine instances while minimizing incorrect 
identifications. 

Furthermore, the Precision-Confidence curve highlights a precision score of 92.6%, underscoring the model's 
proficiency in accurately classifying positive predictions. This precision metric is particularly valuable in 
scenarios where minimizing false positives is crucial, emphasizing the reliability of the model in making positive 
predictions with a high level of confidence 

7.4 Comparison of the Results with: 

Table - 4 Comparison of results with three different combinations of underwater Naval Mine dataset 

Dataset 
Data 

Preprocessing 
Classification 

Model 
Metrics 

RVUMR-14 Naval Mine images 
without an underwater background Without CLAHE YOLO v8 

Precision 97.10% 
Accuracy 95.70% 

Recall 90.60% 
F1 93% 

RVUMR-14 original Nava Mine 
images with an underwater 
background 

Without CLAHE YOLO v8 

Precision 96.30% 
Accuracy 97.70% 

Recall 97.70% 
F1 98% 

RVUMR-14 pre-processed Naval 
Mine images with an underwater 
background 

With CLAHE YOLO v8 

Precision 92.60% 
Accuracy 98.50% 

Recall 97.73 
F1 98% 
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Analyzing Table 4 reveals compelling insights into the performance metrics of the YOLO model across different 
datasets. The accuracy metric, a pivotal indicator of overall model effectiveness, attains its zenith in the dataset 
devoid of noise. This observation suggests that the YOLO model performs optimally when confronted with a 
clean and noise-free dataset. The significance of this discovery is paramount for applications where high accuracy 
is paramount. 

Delving deeper into precision, the dataset devoid of background emerges as the frontrunner, showcasing the 
highest precision scores. Precision, which gauges the model's ability to correctly identify positive instances 
among its predictions, reaches its pinnacle when the dataset is stripped of background elements. This emphasizes 
the significance of dataset composition in achieving optimal precision, especially in scenarios where false 
positives are to be minimized. 

On the other hand, when considering recall—a metric that assesses the model's capacity to capture all positive 
instances within the dataset—the dataset without noise stands out as the leader. The highest recall values in this 
particular dataset imply that the YOLO model excels at comprehensively identifying relevant objects when noise 
is absent. This is particularly crucial in applications where the exhaustive detection of positive instances is of 
paramount importance. 

Combining these findings, it becomes clear that the dataset is devoid of noise and emerges as the most preferable 
option for achieving the highest accuracy and recall, whereas the dataset with no background proves optimal for 
precision-centric tasks. These nuanced distinctions in performance across different datasets emphasize the 
significance of tailoring dataset characteristics to the specific goals and priorities of the YOLO model application. 
As such, meticulous consideration of dataset composition is essential for harnessing the full potential of the 
YOLO model in diverse real-world scenarios. 

CONCLUSION 
In conclusion, the comprehensive evaluation of the YOLO model across various datasets has provided valuable 
insights into its performance characteristics. The meticulous analysis of Table IV demonstrates that the choice of 
dataset significantly influences the model's accuracy, precision, and recall metrics. 

The dataset without noise emerges as the optimal choice for maximizing overall accuracy and recall. This implies 
that in scenarios where a clean and noise-free environment is prioritized, the YOLO model excels in accurately 
detecting objects and minimizing false negatives. This finding is crucial for applications where completeness in 
identification is paramount. 

Conversely, for precision-centric tasks, particularly those where false positives must be minimized, the dataset 
with no background proves to be the most favorable. The YOLO model achieves its highest precision when 
background elements are absent, emphasizing the importance of dataset composition in mitigating false positive 
predictions. 

These nuanced observations underscore the need for a thoughtful and tailored approach to dataset selection when 
deploying the YOLO model in real-world applications. Varied objectives and priorities of a particular task will 
dictate, that practitioners should carefully consider whether accuracy, precision, or recall holds greater 
significance, and choose their dataset accordingly. 

The results of this research add to not only to a deeper understanding of the YOLO model's behavior but also 
offer practical guidance for optimizing its performance in diverse scenarios. As the field of object detection 
continues to evolve, these insights will be instrumental in refining and adapting YOLO-based applications to meet 
the unique demands of various domains and industries. 
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