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ABSTRACT  
In the exploration of color management within Neural Radiance Fields (NeRFs), this study bridges the gap 
between the photorealism of computer graphics and the consistency of color perception across varying devices 
and lighting conditions. Acknowledging the transformative impact of NeRFs in digital imagery, the research 
confronts the challenge of advanced color management by harnessing deep learning to render intricate details 
with high fidelity. The study de-ploys a range of digital cameras, profiling their color responses using 
sophisticated software, to inform the rendering process of NeRFs, ensuring an accurate representation of real-
world colors. The methodology includes the meticulous selection of cameras based on sensor characteristics, 
resolution, and color sensitivity, followed by the calibration against standardized color charts. Scene composition 
and image capture are tailored to encompass a spectrum of colors, and the captured data serve as input for the 
NeRF processing, which undergoes training with a customized algorithm to fine-tune color interpretation. The 
results are indicative of the value of camera profiling, showing a marked improvement in color accuracy, 
particularly in high dynamic range (HDR) scenarios. Across different cameras and lighting conditions, the NeRF 
renders with pro-filed inputs yielded significantly lower Delta E values, suggesting closer alignment with the ac-
tual scenes. Conclusively, the integration of camera profiling into NeRFs enhances the realism of digital 
representations, promising applications in various domains where color precision is paramount. The study 
underscores the need for further optimization to address the computation-al demands introduced by camera 
profiling and points to potential future synergies with AI and machine learning to streamline the process. The 
findings establish a foundation for ongoing advancements in digital rendering, aiming for even greater levels of 
color accuracy and user immersion in computer graphics. 
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INTRODUCTION 
The advent of Neural Radiance Fields (NeRFs) has marked a transformative era in the domain of computer 
graphics and visual representation [1,2]. As a representation model for capturing and rendering 3D scenes, NeRFs 
uniquely synthesize novel viewpoints with remarkable precision and photorealism. Leveraging deep learning 
techniques, NeRFs interpolate light and color in a spatially continuous volumetric scene, enabling an 
unprecedented level of detail and realism in digital imagery [3]. 

However, with the expansion of NeRF capabilities, a critical challenge emerges: the need for advanced color 
management. Color management in NeRFs is crucial for ensuring the accuracy and consistency of color 
reproduction across diverse viewing conditions and devices. Its fundamental objective is to maintain the fidelity 
of color information, a pivotal factor in preserving the artist's intent and ensuring a uniform visual experience [4]. 

This paper delves into the emerging challenges and innovative solutions in color management within Neural 
Radiance Fields. It underscores the significance of this aspect in the broader context of NeRF technology, 
proposing new methodologies and frameworks that can revolutionize color processing and perception in digitally 
rendered environments. 
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The exploration begins with a foundational understanding of the current state of NeRF technology, focusing on its 
color rendering capabilities. This includes a review of existing methodologies and the inherent limitations that 
necessitate a more robust approach to color management. Novel techniques and approaches designed to enhance 
color fidelity in NeRF-generated imagery are introduced, critically analyzed for their effectiveness and potential 
implications in the field of computer graphics and beyond [5-7]. 

In summary, this introduction sets the stage for a comprehensive discussion on the evolution of color management 
in Neural Radiance Fields. By addressing current challenges and introducing groundbreaking solutions, this paper 
aims to contribute significantly to the advancement of NeRF technology, paving the way for more accurate, 
consistent, and visually stunning digital imagery. 

MATERIALS AND METHODS 

2.1 Camera Selection and Profiling Process 
The camera's primary role is to accurately capture tri-chromatic channel values which, through linear 
transformation, can approximate the CIE standard observer XYZ values. This requirement is based on the need to 
digitally reconstruct colors with fidelity. The camera’s sensor should ideally mimic the color sensitivity of the 
human eye, aligning with the standard observer color matching functions. However, due to practical 
manufacturing constraints and the necessity for camera sensors to maintain high sensitivity under low light 
conditions, an exact match with the standard observer's response is not feasible. 

Most camera sensors are designed to capture red, green, and blue channels, corresponding broadly to the 
sensitivity of human vision. This enables the conversion of captured RGB data into XYZ values, aligning closely 
with the perceptual color space of a standard observer. Although this conversion is a linear process, the 
correlation is rarely direct due to the distinct spectral sensitivities of camera filters compared to the human eye. 
Nonetheless, with appropriate profiling and calibration, these RGB values can be transformed to yield a reliable 
approximation of XYZ, enabling effective color reproduction in digital renderings. we can with a straight linear 
conversion get close to the standard observer’s XYZ values. This is a formula for calculating the value of XYZ: 

X = R * M1,1 + G * M1,2 + B * M1,3 

Y = R * M2,1 + G * M2,2 + B * M2,3 

Z = R * M3,1 + G * M3,2 + B * M3,3 

(1) 

The selection and profiling of cameras is a critical step in this study, as it establishes the baseline for color 
accuracy in the NeRF rendering process. A range of digital cameras with varying sensor sizes, resolutions, and 
color sensitivities are carefully chosen to represent the diversity typically encountered in digital imaging. Table 1 
lists the specifications of the selected cameras. 

Table 1: Features of the Cameras used for the Experiment. 
 Panasonic LX-100 mk2 Apple iPhone 12 Pro LG V40 

Sensor type MOS CMOS CMOS 
Camera effective 

pixels 
Sensor Size 

Image Resolution 
Pixel Size 

Focal length 

17 MP 
4/3 inch 

4736 x 3552 
3.64µm 

f = 10.9 – 34mm 

12 MP 
1/3.4 inch 

4032 x 3024 
1.4µm 

f = 26mm 

12 MP 
1/3.4 inch 

4032 x 
3024 

1.4µm 
f = 27mm 

Each camera is then subjected to a comprehensive profiling process. This process includes capturing images of 
standardized color charts under controlled lighting conditions to map each camera's color response accurately [8]. 
Lumariver Profile Designer v 1.0.6 software was used in conjunction with X-rite's ColorChecker Passport to 
create sophisticated profiles for each camera and lighting condition [9]. These profiles contain essential data about 
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how each camera interprets different colors and are used to inform the NeRF rendering process, ensuring that the 
system accurately replicates the camera's color perception. The meticulous nature of this profiling process is 
crucial for the success of the study, as it directly impacts the fidelity of color reproduction in the subsequent 
NeRF-rendered images. Figure 1 shows the camera profiling workflow in this study. 

 
Figure 1: Camera Profiling Workflow. 

2.2 Scene Composition and Image Capture 
For this research, we select objects that can express a wide range of colors, saturation, and brightness to test the 
capabilities of camera profiling in the context of neural radiance fields. We also illuminate the scenes under 
different lighting conditions to simulate real-world scenarios. Images captured from these scenes using the 
profiled camera constitute the dataset for NeRF processing. This dataset plays a pivotal role in ensuring the 
robustness of our findings by providing a comprehensive basis for evaluating the effectiveness of camera profiling 
in different scenarios. To generate a dataset that accurately reflects the complex interplay of lighting, texture, and 
color in real-world environments, it is important to pay attention to the details of scene composition and image 
capture. Figure 2 shows a controlled environment shot of an object moving at a fixed speed on a turntable with 
selected colors, textures, and saturation. 

 
Figure 2: Controlled Image Capture with Turntable 
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2.3 NeRF Configuration and Processing 
The images captured in this step are output as a dataset of 226 images that are preprocessed using the camera 
profile, and all of these images are posed using COLMAP [10]. 204 images are set as the training dataset and 22 
images are set as the evaluation dataset to be trained using the Nerfacto algorithm [11]. 

This involves fine-tuning the color values of the images to accurately interpret the color information encoded in 
the camera profile. An image from each of the profiled cameras is used as input, and the NeRF system renders the 
scene accordingly. This process is critical to evaluating the effectiveness of camera profiling in NeRF because it 
directly affects the color accuracy and realism of the rendered image [12]. The construction and processing steps 
play a key role in understanding the impact of different camera profiles on the final NeRF output. For training, we 
used the NeRFStudio framework as shown in figure 3. 

 
Figure 3: NeRF training with Nerfacto algorithm from NeRFStudio 

2.4 Colorimetric Analysis for Rendered Images 
The colorimetric analysis of the NeRF-rendered images is a critical component of the study. This process involves 
using standardized color metrics to quantitatively evaluate the color fidelity of the images rendered from the 
profiled camera inputs. Specifically, the Delta E metric, which measures the perceptual difference between two 
colors, is utilized to compare the rendered images against the original scenes [13]. This comparison helps in 
objectively assessing the effectiveness of camera profiling in improving color accuracy [14]. The analysis is 
meticulous, ensuring that each rendered image is evaluated under varying conditions to understand the full impact 
of camera profiling. This step is essential for quantifying the enhancements in color accuracy and fidelity 
achieved through the integration of camera profiling in the NeRF process. 

 
Figure 4: CIEDE2000 Color Difference Measurement Workflow 
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The CIEDE2000 color difference metric was employed to assess the accuracy of the NeRF's color rendering 
against the actual object color and a reference color chart as introduced workflows in Figure 4. This quantitative 
evaluation method measures the visual discrepancies between the color values produced by the NeRF model and 
the precise color values noted on the reference chart, along with the true color observed in the object's natural 
environment. This is the formula for calculating CIEDE2000: 

 

RESULTS 
The results of the study comprehensively demonstrate the impact of camera profiling on color accuracy in Neural 
Radiance Fields (NeRF). 

3.1 Colorimetric Analysis Outcomes 
The colorimetric analysis, focusing on the Delta E metric, highlighted a marked improvement in color accuracy in 
images rendered from profiled cameras as shown in the results in Table 2. This was consistent across various 
scenes and under different lighting conditions. The analysis revealed that images from cameras with calibrated 
profiles closely matched the original scenes' colors, evidenced by significantly lower Delta E values. This part of 
the study emphasized the critical role of camera profiling in enhancing color accuracy in NeRF-rendered images, 
making it a pivotal aspect in achieving realistic digital representations. 

Table 2: Color accuracy before and after profiling image dataset 
Cameras Without Profile With Profile 

 ∆E*00 Mean ΔE*00 Max ∆E*00 Mean ΔE*00 Max 
LX100 mk2 3.67 8.11 2.79 6.78 
iPhone12Pro 

LG V40 
3.81 
4.13 

8.21 
9.32 

2.87 
2.98 

6.54 
6.84 

(2) 



ISSN: 2633-4828  Vol. 5 No.4, December, 2023  
 

International Journal of Applied Engineering & Technology 
 

 
Copyrights @ Roman Science Publications Ins.  Vol. 5 No.4, December, 2023 
 International Journal of Applied Engineering & Technology 
 

 1823 
 

The table shows the color accuracy for images taken by different cameras, both before and after the application of 
color profiling. Color accuracy is measured by Delta E (∆E*00), where lower values indicate less deviation from 
the true color, hence better accuracy. The mean and maximum Delta E values are given for each scenario. 

From this data, we can conclude that color profiling generally improves the color accuracy of images from 
different cameras, as evidenced by the reduction in both the mean and maximum ΔE*00 values. This 
improvement is consistent across different camera types, suggesting that color profiling is a robust method for 
enhancing color fidelity in digital imaging. 

3.2 Comparison Across Different Camera Profiles 
In analyzing the results of different camera profiles, the study found varying degrees of improvement in color 
accuracy. In general, the more sophisticated the camera profiling technique, the better the color fidelity of the 
NeRF render. This difference in results highlights the importance of the quality and precision of the camera 
profiling in achieving optimal color accuracy as shown at Figure 5. Table 3 shows how optimization of the profile 
leads to significant changes in the color difference. The quality of the profile optimization was evaluated by 
dividing it into matrix optimization, LUT optimization, and optimization for both matrix and LUT. The 
comparison between the different profiles provides a nuanced understanding of how the unique characteristics of 
each camera and its calibration procedure contribute to the overall color rendering effectiveness of NeRF. These 
insights are essential for developing more sophisticated camera profiling strategies in future digital rendering 
applications. 

  
Figure 5: Matrix Optimizaiton and LUT Optimization process 

Table 3: Differences in color quality of the NeRF due to profile optimization 
Optimization ∆E*00 Mean ΔE*00 Max 

Before optimization 2.79 6.78 
Matrix tuned 2.68 4.32 
LUT tuned 

Matrix + LUT (ours) 
2.47 
2.41 

3.89 
3.74 

Table 3 presents data comparing the color quality of a Neural Radiance Field (NeRF) before and after 
optimization using different color profiling methods, as indicated by the Delta E (ΔE*00) values. Delta E is a 
metric for understanding how the human eye perceives color difference; the lower the value, the less perceivable 
the color difference is. 

The initial state of the NeRF has a mean ΔE*00 of 2.79 and a maximum ΔE*00 of 6.78. These values suggest that 
before any optimization, there was a noticeable color discrepancy from the target or reference color that could 
likely be detected by the human eye. 

After applying a matrix-based optimization, which typically involves adjusting the color balance and cross-
channel color mixing, the mean ΔE*00 is slightly reduced to 2.68, and the maximum ΔE*00 is significantly 
lowered to 4.32. This indicates an improvement in the overall color accuracy, with the most noticeable 
discrepancies being reduced. 
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Generally, LUT (Look-Up Table) tuning refers to a more granular color adjustment that can correct specific 
ranges or hues within an image. 

Combining both matrix and LUT optimizations results in the best color accuracy, with a mean ΔE*00 of 2.41 and 
a maximum of 3.74. This suggests that using both methods together is most effective at reducing color differences 
in the NeRF rendering. 

Overall, the optimizations applied to the NeRF have led to improvements in color accuracy, with the combination 
of matrix tuning and LUT tuning providing the best results. This is likely due to the comprehensive approach in 
adjusting both the overall color balance and the specific hues, leading to a closer match to the desired color 
representation. 

3.3 Analysis of Rendered Images under Various Conditions 
The study also delved into how camera profiling influenced color accuracy under a range of lighting conditions. It 
was found that camera profiling significantly contributed to maintaining color consistency and accuracy across 
these varying scenarios. This aspect was particularly prominent in scenes with complex lighting, where challenges 
in color rendition are usually more pronounced. The analysis shows that camera profiling is not just beneficial 
under controlled conditions but is also crucial in diverse and dynamic real-world rendering situations. 

Table 4 shows how the color of the color checker chart changes as a result of simulating a scene with different 
light sources. 

Table 4: Simulate Scenes with Different Light Types 
Light Sources SDR HDR 

Direct Light 

  

Diffused Light 

  

Backlight 

  

Table 5: Differences in color accuracy for different scenes 
Scene SDR HDR 

 ∆E*00 Mean ΔE*00 Max ∆E*00 Mean ΔE*00 Max 
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Direct light 4.89 9.31 3.42 5.81 
Diffused Light 

Backlight 
3.21 
5.32 

7.21 
10.24 

2.98 
3.79 

6.87 
8.97 

Table 5 compares the color accuracy of images captured in different lighting scenes, analyzed under standard 
dynamic range (SDR) and high dynamic range (HDR) conditions. Color accuracy is measured using Delta E 
(∆E*00), with both mean and maximum values reported for each scene and dynamic range setting. 

In scenes with direct light, the color accuracy is lower compared to other lighting conditions, as evidenced by 
higher ∆E*00 values. This suggests that direct light poses a challenge for accurate color reproduction. However, 
when HDR is applied, there is a notable improvement in color accuracy. The mean Delta E decreases, and the 
maximum Delta E value sees a significant reduction, indicating that HDR helps mitigate the color inaccuracies 
caused by the harshness of direct lighting. 

For scenes under diffused light, which typically presents a more uniform lighting condition, the color accuracy is 
inherently better than in direct light scenarios, as shown by the lower mean and maximum Delta E values. This 
higher color accuracy is further improved by HDR, suggesting that while SDR performs reasonably well under 
diffused light, HDR can enhance color fidelity even further. 

Backlit scenes, which are challenging due to the contrast between light and shadow, show the highest Delta E 
values under SDR, indicating the poorest color accuracy among the listed conditions. However, the application of 
HDR reduces these values considerably, though not as dramatically as in direct lighting. This suggests that while 
HDR can significantly improve color reproduction in backlit scenes, these conditions still present a substantial 
challenge to achieving color accuracy. 

Overall, the data indicates that HDR consistently improves color accuracy across different lighting scenes, 
reducing both the mean and maximum Delta E values when compared to SDR. This improvement is most 
pronounced in direct light conditions, emphasizing the effectiveness of HDR in handling extreme lighting 
contrasts to enhance color fidelity. 

3.4 Evaluation of NeRF Configuration Efficacy 
The effectiveness of the Neural Radiance Fields (NeRF) configuration in the study is examined with a specific 
focus on how well it adapts to varied camera profiles. The NeRF system's ability to render images that align 
closely with the original scenes' colors suggests a high degree of configurational efficacy. This implies that the 
system's algorithms were successfully fine-tuned to interpret and apply the unique color information inherent to 
each camera's profile. Such an outcome not only demonstrates the NeRF's flexibility but also its capacity to 
incorporate detailed color calibration data, which is vital for applications where color precision is critical. 

This adaptability is particularly relevant in fields such as digital art restoration, where the exact hues of original 
works must be preserved, or in product visualization, where accurate color representation can influence consumer 
perception and decision-making. The NeRF's capability to effectively translate the camera profiles into visually 
accurate renderings suggests that it can serve as a reliable tool in these and other domains, potentially aiding in 
tasks that require a high level of color consistency, such as in the creation of digital twins for virtual prototyping 
or in simulation-based training environments where visual cues are crucial. 

Moreover, this adaptability bodes well for the future integration of NeRFs with other imaging technologies. For 
example, in medical imaging, where precise color rendition can aid in diagnosis, the ability of NeRFs to 
accurately render colors as they would appear to the human eye or in other imaging modalities could be of 
significant benefit. In cultural heritage, where the authentic representation of artifacts is essential, NeRFs could 
assist in creating digital archives that faithfully reproduce the original colors, even under varying viewing 
conditions. 
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The study's evaluation of NeRF configuration efficacy thus highlights the technology's potential to become a 
standard tool in industries where color accuracy is not a mere aesthetic preference but a functional necessity. As 
NeRF continues to evolve, further research could explore its integration with dynamic lighting environments and 
real-time color correction, pushing the boundaries of how we interact with and interpret the colors of digital 
objects. Figure 6 shows the resulting difference in image color between no color adjustment and color 
management for NeRF. 

  
Non Color managed Color managed for NeRF 
Figure 6: Without color adjustment and with color management for NeRF 

DISCUSSION 
The study's findings, pivoting around the critical role of camera profiling in enhancing color accuracy in NeRFs, 
prompt a nuanced discussion on the implications, challenges, and future directions of this integration. The 
remarkable improvements in color fidelity, evidenced by the lowered Delta E values across various cameras and 
scenes, underscore the potential of camera profiling to achieve photorealistic digital imagery. 

The improvements in color accuracy are significant, given the challenging nature of replicating true-to-life colors 
in digital renderings. This success is particularly noteworthy in the context of diverse lighting conditions, where 
HDR processing notably outperformed SDR. The reduction in color discrepancies under direct, diffused, and 
backlight conditions when using HDR demonstrates its robustness in enhancing the visual quality of NeRF-
generated images. 

However, the integration of camera profiling is not without its challenges. The complexity introduced into the 
NeRF rendering process by camera profiling necessitates a careful balance between color accuracy and 
computational efficiency. Future developments must address this by optimizing algorithmic processes to 
accommodate the added computational load without compromising rendering speed or scalability. 

Looking ahead, the integration of camera profiling with emerging technologies such as artificial intelligence and 
machine learning presents a fertile ground for innovation. These technologies could potentially automate and 
refine the profiling process, making NeRFs more adaptive and responsive to real-time changes in lighting and 
color conditions. This could broaden the application of NeRFs in areas requiring dynamic color accuracy, such as 
augmented reality, remote sensing, and autonomous navigation systems. 

The study's exploration of camera profiling's impact also extends to user experience. As the perceptual analysis 
revealed, the quality of digital imagery significantly affects user engagement and satisfaction. By enhancing color 
fidelity, NeRFs could provide more immersive experiences in virtual reality and gaming, enabling users to feel a 
deeper connection to the digital world. 
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In summary, this investigation into camera profiling's role in color management within NeRFs not only 
demonstrates its efficacy but also opens up several avenues for future research. The pursuit of a more refined, 
efficient, and user-centered approach to digital rendering continues, with the promise of making photorealistic 
digital imagery more accessible and versatile across various domains. 

CONCLUSION 
This study has explored the multifaceted approach of incorporating camera profiling into NeRFs, highlighting a 
significant enhancement in the realm of digital color accuracy. The methodical selection and profiling of cameras, 
the meticulous scene composition, and the tailored NeRF configuration culminated in a robust evaluation of color 
fidelity, revealing tangible improvements across various cameras and lighting conditions. 

The quantitative leap in colorimetric performance, marked by the substantial decrease in ΔE*00 values, 
underscores the effectiveness of camera profiling. This advancement is not only a testament to the proficiency of 
the profiling techniques but also to the adaptability of NeRFs to diverse lighting conditions, particularly 
benefiting from HDR's capacity to mitigate the variances in challenging lighting environments like direct light 
and backlight. 

These technical achievements, however, bring to light the intricate balance between color accuracy and 
computational demands. The profiling process, while essential for color precision, adds a layer of complexity that 
requires careful consideration in computational resource management. The future trajectory of this field lies in 
refining these processes, potentially harnessing the power of emerging technologies to streamline and automate 
profiling, thus alleviating computational burdens. 

The practical implications of this study are far-reaching. Enhanced NeRF models, equipped with camera profiling, 
have the potential to revolutionize industries that rely heavily on color accuracy, from content creation in virtual 
reality to precision-required tasks in medical imaging. Additionally, the improved color fidelity has a profound 
impact on user experience, offering a more immersive and realistic interaction with digital content. 

In envisioning the future, the field stands on the cusp of integrating NeRFs with advanced machine learning and 
artificial intelligence algorithms, a synergy that promises to deliver real-time adaptability and further 
advancements in digital imaging. The journey towards achieving photorealistic digital representation continues, 
with the learnings from this study serving as a cornerstone for future innovations. 

This paper's comprehensive examination of camera profiling's impact on NeRFs contributes significantly to the 
advancement of digital imagery, bridging the gap between digital representations and real-world color perception. 
It opens the door for future research to explore new dimensions in digital rendering, with the goal of achieving an 
unparalleled level of color accuracy in computer graphics and beyond. 
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