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ABSTRACT 
The nonlinear dynamics of RLC network circuits can be described by Brayton-Moser equations. It has been 
shown that the continuous-time Brayton-Moser equation can be discretized as a discrete-time nonlinear implicit 
system. Model predictive control (MPC) is a kind of optimal feedback control in which the control performance 
over a finite future is optimized and its performance index has a moving initial time and a moving terminal time. 
Implicit MPC method has been proposed for discretized Brayton-Moser equations that belong to a class of 
discrete-time nonlinear implicit systems. This study focuses on the stability of implicit MPC for discretized 
Brayton-Moser equations. The objective of this study is to show the stability criterion for the closed-loop system 
with the implicit MPC for discretized Brayton-Moser equations. 

Index Terms: Model Predictive Control, Brayton-Moser Equation, RLC Network, Nonlinear Dynamics 

INTRODUCTION 
In recent decades, the mathematical modeling of RLC network circuits has attracted much attention in the field of 
electrical networks. Recently, it has been shown in [1] that the dynamics of nonlinear RLC circuits including 
independent and controlled voltage or current sources can be described by the Brayton-Moser equations. In this 
study, the continuous-time Brayton-Moser equation is discretized as a discrete-time nonlinear implicit system. 
Thus, the discretized Brayton-Moser equation is introduced to consider the control problem of a class of discrete-
time nonlinear implicit systems. 

Model predictive control (MPC) is a well-established control method in which the current control input is 
obtained by solving a finite horizon open-loop optimal control problem using the current state of the system as the 
initial state. This procedure is repeated at each sampling instant. Thus, MPC is a kind of optimal feedback control 
in which the control performance over a finite future is optimized and its performance index has a moving initial 
time and a moving terminal time. MPC is known as one of the most successful control methodologies because it 
enables control performance to be optimized while taking into account constraints on state and control variables. 

For the MPC problem of nonlinear explicit systems, the stationary conditions that must be satisfied for a 
performance index to be optimized are well-known as the Euler-Lagrange equations. Several numerical 
algorithms for solving the MPC control problems have been proposed in [2]-[5]. For nonlinear implicit systems, 
H∞ optimal control problems have been investigated in [6]-[7]. On the other hand, the MPC problem of nonlinear 
implicit systems has been considered in [8]. The stationary conditions called the generalized Euler-Lagrange 
equations for the optimal control problem of nonlinear implicit systems have been derived in [8]. Furthermore, the 
implicit MPC method has been proposed in [9] for discretized Brayton-Moser equations that belong to a class of 
discrete-time nonlinear implicit systems. 

This paper examines the stability problem of the implicit MPC for discretized Brayton-Moser equations. The 
objective of this study is to establish the stability criterion for the closed-loop system with implicit MPC for 
discretized Brayton-Moser equations. 

In Section 2, we introduce some notation and the system model. In Section 3, we derive the generalized Euler- 
Lagrange equations for the optimal control problem of the discretized Brayton-Moser equation. In Section 4, we 
derive the stability condition for the closed-loop system with implicit MPC of discretized Brayton-Moser 
equations. Finally, concluding remarks are described in Section 5. 
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NOTATION AND SYSTEM MODEL 
Let  denote a set of real numbers. Let  and  denote the sets of nonnegative real numbers and integers, 
respectively. Let  denote the sets of positive integers. 

For a matrix , the transpose and the inverse of  are denoted by  and , respectively. The 
determinant and rank of a matrix  are denoted by  and , respectively. Let  denote the identity 
matrix. 

A function  is said to belong to class K if it is continuous, strictly increasing and . A 
function  is said to belong to class K∞ if  and . 

For a scalar function  the differentiation of  with respect to  is defined by 

. 

The Jacobian matrix of a vector-valued function  is defined by 

. 

We consider RLC network circuits that can be described by the Brayton-Moser equations [1]. Let  and 
 denote the dimensions of circuit systems. Let  and  denote the inductor currents and 

capacitor voltages, respectively. Let  and  denote the inductance and 
capacitance matrices, respectively, both assumed to be positive definite. Let  be a 
scalar function called the mixed potential function. A general form of the continuous Brayton-Moser equation has 
been proposed in [1]. 

 

 

In this study, we consider the discretized Brayton-Moser equation with controlled voltage inputs. Let the state 
 be defined by , where . Let  denote the controlled voltage inputs. The 

discretized Brayton-Moser equation can be written as the following system model: 

                 (1) 

where  and  are given by 

 

 

Therein,  and  denote the sampling time and input coefficient, respectively. 
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For sufficiently large , it is impossible to derive the Jacobian matrix of , even if we 
utilize a symbolic math software such as Mathematica and Maple. In this case, to derive the generalized Euler-
Lagrange equations is useful for solving this difficulty. 

Next, we introduce some preliminary results. 

Lemma 1 ([10]): Consider a system , where . Suppose that there exist a Lyapunov 
function , class K∞ functions ,  and a positive definite function  satisfying all the following 
conditions: 

 

 

 

Then, the origin  is asymptotically stable. 

Lemma 1 is well known as Lyapunov stability theory. The following lemma is well known as implicit function 
theorem. 

Lemma 2 ([11]): Let  be continuously differentiable function. For each point  of an 
open set , suppose that  and the Jacobian matrix  is nonsingular. Then, 
there exist neighborhoods  of  and of  such that for each  the equation  has 
a unique solution . Moreover, this solution can be given as a continuously differentiable function . 

MODEL PREDICTIVE CONTROL 
In this section, we consider the model predictive control problem of system (1). Using the variational principle, 
we analytically derive the stationary conditions that must be satisfied for a performance index to be optimized. 
The control input at each time  is determined so as to minimize the performance index given by 

       (2) 

Therein,  denotes the length of prediction horizon.  and $  are so-called 
terminal cost function and stage cost function, respectively, and assumed to be continuously differentiable 
functions with  and . 

The minimization problem of (2) subject to (1) can be reduced to the minimization of the following performance 
index introduced using the costate  associated with system equation (1): 

 

      (3) 

where  is defined by 

. 

Let  denote the Hamiltonian defined by 

.       (4) 
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In the above equation, note that the Hamiltonian considered here is different from the conventional Hamiltonian 
for standard optimal control problem which is defined using  instead of . 

On the basis of the variational principle, it has been shown in [9] that we obtain the necessary conditions for a 
stationary value of  over the horizon  as follows. 

      (5a) 

       (5b) 

              (5c) 

          (5d) 

A well-known difficulty in solving nonlinear optimal control problems is that the obtained stationary conditions 
cannot be solved analytically in general. A fast numerical algorithm for solving the above stationary conditions 
has been proposed in [9]. 

STABILITY ANALYSIS 
In this section, we consider the stability problem of the implicit MPC for discretized Brayton-Moser equations. It 
is known that the regularity of the solution is effected by the rank of . Thus, it is difficult to analyze the 
solution of system (1) for the case where  varies with . To avoid this difficulty, we impose the 
following assumption. 

Assumption 1: There exist nonsingular matrices  such that 

         (6) 

          (7) 

        (8) 

are satisfied for all , where , 

. 

Let  and  be defined by 

.          (9) 

Under Assumption 1, we can rewrite system (1) as the following form: 

 

 

Then, we obtain the following equation. 

 



ISSN: 2633-4828  Vol. 5 No.4, December, 2023  
 

International Journal of Applied Engineering & Technology 
 

 
Copyrights @ Roman Science Publications Ins.  Vol. 5 No.4, December, 2023 
 International Journal of Applied Engineering & Technology 
 

 1776 
 

 

Let  be defined by 

 

Consequently, it can be seen that we can rewrite system (1) as the following form: 

     (10) 

Remark 1: Assumption 1 implies that the system can be divided into the dynamical equation and the static 
constraint as shown in (10) and its structure doesn't vary with . Hence, there is a limitation on the variability 
of algebraic constraints imposed on the system. However, there many constrained systems that satisfy 
Assumption 1 in mechanical and electrical systems. 

Next, the following assumption is imposed to guarantee the regularity of the solution. 

Assumption 2: The Jacobian matrix  is nonsingular for all , . 

Here, we state the following theorem. 

Theorem 1: Suppose that Assumptions 1-2 are satisfied. Then, there exists the unique solution of system (1). 

Proof: Note that the regularity of solution of system (1) is equivalent to the one of system (10), because  in (9) is 
assumed to be nonsingular. Consider  and  of  in Lemma 2 as  and , respectively. For given 

, it is obvious from Lemma 2 that there exists the unique solution  satisfying 
. Consequently,  can be uniquely determined by . 

Likewise, for given , we can uniquely determine  using Lemma 2. Repeating this procedure, we 
can conclude that system (10) has a unique solution. This completes the proof. 

Assumption 3:  and  at , , i.e., the origin of  and  is the equilibrium 
point. 

Let  be defined by 

          (11) 

Let  denote the sequence of the optimal control input over the prediction horizon defined by 

 subject to (1).       (12) 

Likewise, let  denote the optimal state sequence of the closed-loop system over the prediction horizon using 
. 

Assumption 4: There exists the unique solution  and  that satisfy generalized Euler-Lagrange 
equations (5). 

Let a function  be defined by 

.         (13) 
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Let  be defined by 

.        (14) 

Therein, the final optimal control input  is replaced with any feasible control input . 
Accordingly, let  be the state sequence of the closed-loop system using . 

Here, we introduce the well-known standard assumption for the stability analysis of MPC systems. 

Assumption 5: There exists a function such that 

         (15) 

is satisfied for all . 

Note that if there exists a positive constant  such that 

 

is satisfied for all , then Assumption 5 is satisfied. Thereby, Assumption 5 is called the weak controllability 
assumption [10]. 

Here, we provide the stability criteria for the closed-loop system using the implicit MPC. 

Theorem 2: Under Assumptions 1-5, the closed-loop system using control input  is asymptotically stable at 
the origin if there exists  such that the following inequality is satisfied for all .  

      (16) 

Proof: Because of Assumption 2,  and  can be given by 

 

 

Here, we consider the explicit system in (10). 

        (17) 

where  is given by 

. 

For system (17), we can apply Lemma 1 as shown below. Let , ,  be given by 

 

 

 

respectively. Now, using the relation 

     (18) 

we have the following: 
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     (19) 

Let   be defined as above.  Using the above inequality, we have the following: 

 

 

                                                                           (20) 

From the assumption in Theorem 2, we can see that there exists  such that the following inequality 
holds. 

                                                  (21) 

Substituting (21) into (20) yields 

       (22) 

Here, note that there exists a positive constant  such that the following inequalities hold. 

 

 

                                                                                                   (23) 

Therefore, it follows that 

        (24) 

Consequently, under Assumption 5, we can see that there exist K∞ functions ,  such that the following 
inequalities are satisfied. 

 

 

Hence, using Lemma 1, we can conclude that  is asymptotically stable. Then,  is also 
asymptotically stable because of Assumption 3. Consequently  is asymptotically stable. This completes 
the proof. 

Remark 2: The stabilization problem of nonlinear systems usually can be reduced to finding the so-called control 
Lyapunov function. Note that the difficulty of finding  satisfying inequality (16) in Theorem 2 is almost same 
as the difficulty of finding the control Lyapunov function . 

CONCLUSION 
In this study, the continuous-time Brayton-Moser equation is discretized as a discrete-time nonlinear implicit 
system. Then, we examined the model predictive control problem of discretized Brayton-Moser equations that 
belongs to a class of discrete-time nonlinear implicit systems with a particular structure. Using the variational 
principle, the stationary conditions that must be satisfied for a performance index to be optimized have been 
derived. Also, a fast numerical algorithm for solving the model predictive control problem of discretized Brayton-
Moser equations has been established in [9] using C/GMRES algorithm. In this paper, we consider the stability 
problem of the implicit MPC for discretized Brayton-Moser equations. The stability criterion for the closed-loop 
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system with implicit MPC for discretized Brayton-Moser equations has been shown in this paper. To establish the 
MPC method for a class of implicit systems belonging to spatiotemporal dynamic systems [12]-[13], delay 
systems [14]-[15], uncertain systems [16]-[17], and probabilistic constrained systems [18]-[19] is a possible future 
work. 
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