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ABSTRACT 
The increasing adoption of Electric Vehicles (EVs) as an eco-friendly alternative to traditional internal 
combustion engine vehicles has led to a growing focus on improving their propulsion system efficiency. This study 
investigates the significance of converter losses and the role of transmission systems in the overall efficiency of 
EV propulsion. The research begins by analyzing the various components involved in the EV propulsion system, 
with a particular emphasis on the power electronics converters. These converters play a crucial role in 
transforming electrical power between the battery pack and the electric motor. The impact of converter losses on 
the overall efficiency of the EV propulsion system is examined in detail, considering both AC-DC and DC-AC 
conversion stages. Furthermore, the study delves into the different types of power electronics topologies, such as 
pulse-width modulation (PWM) and resonant converters, evaluating their efficiency and suitability for EV 
propulsion applications. Techniques for minimizing converter losses, such as advanced switching strategies and 
the use of wide-bandgap semiconductors, are explored to enhance the overall efficiency of the propulsion system. 
Another key aspect investigated in this research is the role of transmission systems in EVs. While most early EVs 
adopted single-speed transmissions for simplicity, emerging advancements in transmission technologies have 
introduced multi-speed transmissions. The study examines the impact of transmission systems on EV propulsion 
efficiency, considering factors such as torque delivery, speed range, and powertrain losses. To quantify the effects 
of converter losses and transmission systems on the overall efficiency of EV propulsion, mathematical models and 
simulations are developed and validated. Real-world driving scenarios are analyzed to assess the performance of 
different power electronics configurations and transmission setups, providing insights into their practical 
applicability. Moreover, the study explores the potential for regenerative braking systems to recover energy 
during deceleration and its influence on the overall propulsion system efficiency. The integration of regenerative 
braking with the power electronics converters and transmission systems is investigated to optimize energy 
recovery and improve overall vehicle range. The outcomes of this research contribute to the understanding of 
how converter losses and transmission systems impact the efficiency of EV propulsion. The findings provide 
valuable guidance for designers and manufacturers to optimize power electronics and transmission 
configurations, leading to more energy-efficient and environmentally sustainable EVs. 

IndexTerms–Electric Vehicles, converter losses, power electronics, transmission systems, propulsion efficiency, 
multi-speed transmission, regenerative braking, wide-bandgap semiconductors, efficiency optimization 
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INTRODUCTION 
The passage explores various aspects related to electric machine efficiency and losses in the context of electric 
and hybrid electric vehicles (EVs). It begins by discussing the efficiency criteria used to categorize motors in 
NEMA and IEC standards. Permanent magnet synchronous motors (PMSMs) are highlighted for their popularity 
in traction applications due to their high power density. However, research is ongoing to improve efficiency and 
reduce reliance on rare-earth magnet materials, with induction and synchronous reluctance motors being explored 
as alternatives. Efficiency maps (EMs) are introduced as contour plots used in machine design research to 
showcase the highest efficiency at different torque and speed levels. These maps are essential for calculating the 
overall energy consumption of the vehicle's propulsion system throughout a driving cycle. Accurate loss 
estimation in electric machines is identified as a critical factor in determining motor efficiency. The passage 
stresses the significance of understanding loss variation across a wide range of torque and speed for designing an 
optimal drivetrain system for EVs. It compares the efficiency maps of different motor types, highlighting internal 
permanent magnet synchronous motors (IPMSMs) for their superior efficiency compared to induction motors 
(IMs), particularly at lower speeds. Various types of losses, such as core losses and ohmic losses, are explained in 
relation to their impact on machine efficiency, which is influenced by voltage, current, speed, and torque. 
However, the passage acknowledges that some forms of losses have not been adequately investigated and 
modeled in existing literature, calling for more comprehensive research to understand their causes and 
fluctuations across different torque and speed levels. Overall, the passage provides valuable insights into the 
significance of efficiency maps and loss estimation in designing electric machine drivetrain systems for EVs. It 
encourages further research to address the existing gaps in knowledge and offers this content as a reference for 
those interested in optimizing electric machine efficiency for electric and hybrid vehicles. 

 
Figure 1. Two driving cycles' torque-speed profiles that were used in several academic publications for 
optimisation investigations. Data for this graphic were gathered from [23]. Highway Fuel Economy Test 

(HWFET), Urban Dynamometer Driving Schedule (UDDS), Induction Motor Efficiency Counter, and Operating 
Points of the UDDS Driving Cycle in the Torque-Speed Envelope. 

 
Figure 2. The efficiency and loss maps of a sample 50 kW IPMSM that was operated at its highest level of 

efficiency at each operating point. The IPMSM under study is intended for EV use. The information for this plot 
was gathered from [20,24]. (A) An IPMSM's total loss map. (a) An IPMSM's efficiency map. 
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Figure 3. The various loss components of an electric machine used in propulsion system of EVs. 

Section 2 of the paper presents a comprehensive calculation method for each type of loss occurring in different 
sections of the EV's drivetrain system. It elucidates how these losses vary under different torque and speed 
conditions and identifies the key factors influencing each loss component.In Section 3, the paper describes in 
detail the experimental extraction process for each loss component. The section outlines the procedures and 
methodologies used to measure and quantify the various types of losses across the drivetrain system. It highlights 
the importance of precise measurement devices and power analyzers in obtaining efficiency maps during 
experimental measurements, considering all categories of losses. Electric vehicle losses refer to the energy 
dissipation that occurs during the operation of an electric vehicle (EV). These losses occur in various components 
of the EV's propulsion system and can significantly impact the overall efficiency and range of the vehicle. The 
major types of losses in electric vehicles include: 

1. **Ohmic Losses:** Also known as Joule losses, ohmic losses occur in the conductors (wires) of the electric 
motor and power electronics due to the resistance of the materials. When current flows through the conductors, it 
encounters resistance, leading to heat dissipation. Ohmic losses are proportional to the square of the current and 
can vary with torque and speed. 

2. **Core Losses:** Core losses, also known as iron losses, occur in the magnetic core of the electric motor due 
to hysteresis and eddy currents. As the magnetic fields change during motor operation, energy is lost in the core 
material. Core losses are often dependent on the voltage and frequency of the power supply. 

3. **Permanent Magnet (PM) Losses:** PM losses occur in permanent magnet motors due to the interaction of 
the magnetic fields with the magnets. These losses can be related to eddy currents induced in the magnets, leading 
to heating and energy dissipation. 
4. **Converter Losses:** The power electronics converters used in EVs, such as inverters and DC-DC converters, 
have their own losses due to switching devices (like transistors), conduction losses, and other inefficiencies. 
These losses can vary with the type and design of the converter. 

5. **Mechanical Losses:** Mechanical losses in the drivetrain system of an EV include friction losses in 
bearings, gears, and other mechanical components. These losses occur when the mechanical parts move and rub 
against each other, leading to energy dissipation. 

6. **Windage and Stray Losses:** Windage losses occur due to air resistance faced by the rotating components of 
the electric motor. Stray losses refer to losses in other parts of the motor that are not directly related to the core or 
winding losses. 

7. **Transmission Losses:** Transmission losses refer to energy losses that occur when transferring power from 
the electric motor to the wheels through the transmission system. These losses are influenced by the type of 
transmission (e.g., gearbox) and its efficiency. 
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Reducing these losses is crucial for improving the overall efficiency and range of electric vehicles. Efficient 
design and material selection, advanced power electronics, improved cooling systems, and optimization of control 
algorithms are some of the ways to minimize these losses and enhance the performance of electric vehicles. 

 
Figure 4. The statistic of documented research focused on the impact of various types of losses on EM of 

electrical machines during the last three decades (1992 to 2021). 

EXPERIMENTAL SETUP FOR MEASUREMENT OF THE LOSSES 
The experimental calculation of losses is conducted following the efficiency extraction standards set by IEEE and 
IEC (i.e., IEEE 1812, IEC60034-2-1-2A, IEEE 112, and IEC 60034-2-1-1B [90]). The flowchart representing the 
process of calculating motor efficiency based on these methods is depicted in Figure 12. In these standardized 
procedures, the speed and load conditions are adjusted to ensure that the machine operates at its rated 
temperature.In summary, the efficiency of the motor is determined through experimental calculations using well-
established IEEE and IEC standards. These standardized methods ensure accurate and reliable measurement of 
losses, and the flowchart in Figure 5 outlines the step-by-step process for calculating motor efficiency based on 
these procedures. By carefully controlling the speed and load conditions to maintain the motor at its rated 
temperature, researchers can obtain precise efficiency values for the electric machine. 

IEEE1812PMSMLoadTest 

 

IEC60034-2-1 Method2-1-2APMSMandDC motorsInput/Output 

 

IEEE112MethodAandBIM 

 

IEC60034-2-1Method2-1-1BIM 

 
Figure 5. The conventional methods for the extraction of the motor’s efficiency experimentally based on IEEE 

and IEC standards.(a) the procedure of the calculation of the efficiency at a certain load and speed for PMS 
motors based on IEEE standard.(b) the procedure of the calculation of the efficiency at a certain load and speed 
for PMS and DC motors based on IEC standard.(c) the procedure of the calculation of the efficiency at a certain 
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load and speed for the induction motors based on IEEE standard.(d) the procedure of the calculation of the 
efficiency at a certain load and speed for the induction motors based on IEC standard. 

To accurately calculate the efficiency of an electric machine, standard methods involve setting up an experimental 
setup to measure both the input and output power of the machine. By subtracting the output power from the input 
power, the losses occurring within the machine can be determined, leading to an accurate assessment of its 
efficiency. Similarly, to assess the efficiency and losses of each component in an electric vehicle (EV) drive 
system, it is crucial to strategically place measuring devices within the system. 

Figure 6 illustrates the complete drivetrain system of an EV, along with the monitoring and measuring devices 
required for experimental loss separation in different parts of the system. These measuring devices play a vital 
role in accurately quantifying the losses in individual components, including the electric machine, power 
converter, transmission system, and other relevant parts. 

By analyzing the input and output power data obtained from these measuring devices, researchers can determine 
the efficiency of the electric machine and identify the losses associated with it. The same approach can be applied 
to the other components of the EV drive system, providing valuable insights into the overall performance and 
efficiency of the entire system. 

In summary, conducting experimental loss separation in an EV drive system necessitates the strategic placement 
of measuring devices and the collection of input and output power data. This method enables researchers to 
accurately evaluate the efficiency and losses of each component, contributing to the optimization and 
improvement of electric vehicle technology. 

 
Figure 6. The placement of power analyzers and dynamo meters to measure each loss component of the EV 

propul- sion system. 

PM Losses for Permanent Magnet Motors 

PM losses are a significant component of the overall losses in PM machines. An indirect technique can be used to 
measure these losses, involving the extraction of core loss, mechanical loss, and ohmic losses of the machine. By 
subtracting the total input power at loading conditions from the summation of total output power and measured 
losses, the PM losses can be determined.For a more accurate estimation of PM losses using the indirect 
measurement technique, it is crucial to collect the ohmic losses of the stator when the rotor is removed from the 
stator. This step ensures that the ohmic losses attributed to the stator are correctly accounted for in the 
calculation.However, it is important to note that the indirect method may not be entirely precise because it could 
potentially include some portion of stray losses in the PM loss estimation. Stray losses occur due to magnetic field 
leakage and other factors not accounted for in the direct measurements of core, mechanical, and ohmic 
losses.Moreover, the amplitude and frequency of the induced eddy currents on the PMs directly impact the PM 
temperature. In a study [166], researchers measured the temperature of the PM parts and used Equation (1) to 
estimate the PM losses.In summary, PM losses in PM machines can be indirectly measured by subtracting the 
total output power and measured losses from the total input power at loading conditions. While this method 
provides a reasonable estimation, it may not be entirely accurate due to the potential inclusion of stray losses. 
Nonetheless, efforts can be made to enhance accuracy, such as conducting measurements of stator ohmic losses 
with the rotor removed. Additionally, accounting for the impact of induced eddy currents on PM temperature can 
further improve the estimation of PM losses. 
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        (1) 

In this equation, the specific mass density (ρ) and heat capacity (c) of the PMs are vital parameters. Additionally, 
the number of PM elements (NPM) and the volume of a single PM part (VPM) are included in the equation. The 
rate of temperature variation (ΔT/Δt) is a crucial factor obtained directly from the measured temperature variation 
curve. Together, these parameters enable a comprehensive estimation of the PM losses in the system.In summary, 
the equation takes into account essential parameters such as mass density, heat capacity of the PMs, number of 
PM elements, and the volume of a single PM part. The rate of temperature change (ΔT/Δt), derived from the 
temperature variation curve, plays a key role in accurately estimating the PM losses in the system. 

Transmission System Losses 
The transmission system losses represent the final component of losses in the propulsion system of an electric 
vehicle (EV). These losses can be determined by subtracting the mechanical input power to the transmission 
system from its mechanical output power.Creating an efficiency map (EM) for electric machines requires a high 
level of accuracy, which is achieved by plotting between 300 to 1600 data points [167,168]. However, calculating 
the efficiency map involves sweeping through different pairs of d- and q-axes currents to find the minimum loss 
point for each set of torque and speed. As a result, conducting loss separation over a driving cycle can be a time-
consuming process, as obtaining an accurate loss map for each component requires considering the mentioned 
details for at least 300 operating points across the driving cycle.In summary, accurately determining efficiency 
maps for electric machines necessitates a substantial number of data points, and the efficiency map calculation for 
loss separation in a driving cycle can be time-consuming. Nonetheless, it is crucial to consider a sufficient number 
of operating points to ensure a comprehensive understanding of losses and overall efficiency in the EV drivetrain 
system. This comprehensive approach is vital for optimizing the performance and efficiency of the electric vehicle 
drivetrain. 

DC-DC converter losses refer to the energy dissipation that occurs in the DC-DC converter during its operation. A 
DC-DC converter is an electronic device used to convert one DC voltage level to another. It plays a crucial role in 
electric vehicles (EVs) as it allows for efficient power transfer between different voltage sources, such as the 
battery pack and various electrical systems in the vehicle. 

The major types of losses in a DC-DC converter include: 

1. **Switching Losses:** Switching losses occur when the semiconductor switches (e.g., MOSFETs or IGBTs) in 
the DC-DC converter turn on and off to regulate the output voltage. During switching, there is a brief period when 
both the voltage and current are non-zero, leading to energy dissipation. These losses are proportional to the 
switching frequency and can be reduced by using high-performance switching devices and optimized control 
strategies. 

2. **Conduction Losses:** Conduction losses occur due to the finite resistance of the semiconductor switches and 
the conducting elements (e.g., inductor and capacitor) in the converter circuit. When the switches are in their 
conducting state, there is a voltage drop across them, resulting in power dissipation. These losses can be 
minimized by selecting components with low resistance and optimizing the conduction path. 

3. **Diode Losses:** Some DC-DC converters use diodes as part of their circuitry. Diode losses occur due to 
voltage drop across the diodes when they are forward-biased during the conduction phase. Similar to conduction 
losses, diode losses can be minimized by using low-resistance diodes. 

4. **Inductor Losses:** Inductor losses, also known as core losses, occur in the inductor used in the converter 
circuit. These losses are caused by hysteresis and eddy currents in the inductor's magnetic core material as the 
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current changes. Choosing high-quality magnetic materials and minimizing core losses can help reduce this type 
of loss. 

5. **Capacitor Losses:** Capacitor losses occur in the output and input capacitors of the DC-DC converter. 
These losses are mainly due to dielectric losses and equivalent series resistance (ESR) of the capacitors. Using 
capacitors with low ESR and high-quality dielectric materials can help minimize these losses. 

6. **Control and Gate Drive Losses:** Control circuitry and gate drive circuits in the DC-DC converter consume 
some power to operate. These losses are generally small compared to other losses in the converter but can be 
reduced through efficient control algorithms and low-power gate drivers. 

Efficient design and operation of the DC-DC converter are essential to minimize these losses and improve overall 
system efficiency. Advanced semiconductor technologies, optimized component selection, and sophisticated 
control strategies are employed to achieve higher efficiency in modern DC-DC converters used in electric 
vehicles. 

RESEARCH GAPS AND FUTURE OPPORTUNITIES 
The transmission system losses constitute the final component of losses in the propulsion system of an electric 
vehicle (EV). As shown in Figure 13, these losses can be determined by subtracting the mechanical input power 
to the transmission system from its mechanical output power.Creating an efficiency map (EM) for electric 
machines demands a high level of accuracy, achieved by plotting between 300 to 1600 data points [167, 168]. 
However, calculating the efficiency map involves sweeping through different pairs of d- and q-axes currents to 
find the minimum loss point for each set of torque and speed. Consequently, conducting loss separation over a 
driving cycle can be a time-consuming process, as obtaining an accurate loss map for each component requires 
considering the mentioned details for at least 300 operating points across the driving cycle. 

In conclusion, accurately determining efficiency maps for electric machines requires a significant number of data 
points, and the efficiency map calculation for loss separation in a driving cycle can be time-consuming. However, 
it is crucial to consider a sufficient number of operating points to ensure a comprehensive understanding of losses 
and overall efficiency in the EV drivetrain system. This comprehensive approach is essential for optimizing the 
performance and efficiency of the electric vehicle drivetrain. 

CONCLUSION 
This paper underscores the utmost importance of accurately predicting losses to design electric machines that can 
achieve maximum efficiency. Designing machines for optimal operation over a driving cycle presents additional 
challenges due to the varying losses at different operating points and supply factors. The review delves into the 
dependency of each loss component on the efficiency of electric machines at different operating regions. It 
comprehensively explains methods for measuring and calculating machine losses, highlighting the variations in 
loss among different electric machines and showcasing their respective strengths and weaknesses for operation 
over a wide torque-speed range.Beyond electric machines, power converters also play a crucial role in the 
drivetrain system of electric vehicles. The paper discusses the significance of converter losses and their impact on 
the overall efficiency of EV propulsion systems, particularly at higher speeds. Furthermore, the review briefly 
covers transmission systems in EVs, discussing their specifications in terms of loss and efficiency. Proper 
selection of the transmission system is shown to be of utmost importance based on the findings from the literature 
review.Overall, the paper emphasizes that designing an optimal propulsion system for EVs necessitates careful 
consideration of various factors. While electric machines offer high efficiency at higher speeds, the efficiency of 
power converters and transmission systems tends to decrease as speed increases. Therefore, a comprehensive 
investigation of the performance of all sections of an EV propulsion system is essential during the design 
process.The research gaps identified through the literature review are highlighted, and potential future research 
subjects in loss analysis of electric machines are presented. The paper also explains how computational 
intelligence models can aid in loss prediction for electric machines.In conclusion, the paper underscores the 
critical role of accurately predicting losses in designing efficient electric machines for electric vehicles. It 
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provides valuable insights into the complexities of loss analysis and identifies areas for further research and 
development to optimize the performance of EV propulsion systems. 
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