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ABSTRACT  
Software fault prediction identify potential faults in software modules during the development process. In this 
paper, we present a novel approach for software fault prediction by combining a feedforward neural network with 
particle swarm optimization (PSO). The PSO algorithm is employed as a feature selection technique to identify 
the most relevant metrics as inputs to the neural network. Which enhances the quality of feature selection and 
subsequently improves the performance of the neural network model. Through comprehensive experiments on 
software fault prediction datasets, the proposed hybrid approach achieves better results, outperforming 
traditional classification methods. The integration of PSO-based feature selection with the neural network 
enables the identification of critical metrics that provide more accurate fault prediction. Results shows  the 
effectiveness of the proposed approach and its potential for reducing development costs and effort by detecting 
faults early in the software development lifecycle. Further research and validation on diverse datasets will help 
solidify the practical applicability of the new approach in real-world software engineering scenarios. 

Index Terms – feature selection, neural network, particle swarm optimization, software fault prediction. 

INTRODUCTION 
Software fault prediction (SFP) problem is considered one of the most interesting classification tasks that 
determine whether a software module is faulty by considering some characteristics or parameters collected from 
software projects. Software faults leads the system to work differently compared with its expected behavior, and 
testing process for each activity in software system will be need high cost and time; therefore, SFP help in 
reducing unnecessary fault by finding efforts during the development of the software system [1]. Fixing defects 
typically consumes about 80% of the total budget of a software project [2]. Such cost can be significantly reduced 
if defects are fixed in an early stage [3], [4]. 

Several studies of SFP compare the performance of various methods (e.g., Artificial Neural Network (ANN), 
Support Vector Machine (SVM), Decision Trees (DTs) and Adaptive Neuro Fuzzy Inference System (ANFIS)) to 
determine the most applicable classification method for SFP. In addition to classification methods, several metric 
groups, such as process-level metrics, class-level metrics or method-level metrics, are defined, and some 
preprocessing techniques are suggested to extract the most useful techniques. The experiments in these studies are 
typically conducted on public datasets; the most popular datasets are available in PROMISE [5], [6], therefore the 
experiments in this study are performed on versions of the Ant, Camel, jEdit, Xalan, Log4j and Lucene [7] 
datasets. 

In this paper, we have been compared between the results of fault prediction using Artificial Neural Network 
(ANN) with and without feature selection algorithm. 

This paper is organized as follows: the next section presents the literature review of the previous studies on 
software fault prediction problem. Section 3 presents the software fault prediction problem. A description of the 
datasets is presented in Section 4. The proposed algorithm is presented in Section 5. Section 5 presents the results 
of the proposed algorithm. Finally, a conclusion is presented in Section 6. 
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LITERATURE REVIEW 
The most difficult phase in SFP is to choose the best technique for classifying the datasets, since not all 
techniques lead to high accuracy in prediction. Challagulla et al. [8] performed an empirical study using various 
machine learning techniques for software fault prediction. The study was performed over four software projects 
taken from the NASA data repository. Results found that not a single machine learning technique is consistent in 
predicting faults with higher accuracy across different datasets. Furthermore, results suggested that the best choice 
of a fault prediction technique depends on the dataset available at a particular moment. 

Dejaeger et al. [9] investigated the performance of Bayesian Network Classifiers for software fault prediction. 
They have used 15 different Bayesian Network based classifiers and compared them with other popular machine 
learning techniques. Results found that Naive Bayes and Random Forest are the most accurate predictors of 
software faults among the techniques considered and the performance of best technique depends on the 
development context. Kanmani et al. [10] investigated the effectiveness of Probabilistic Neural Network (PNN), 
Back Propagation Neural Network (BPN) and Discrimination Analysis over a dataset collected from student 
projects. The experiment was carried out on a small system and found that overall PNN based prediction models 
performed well in comparison to other used techniques. Hall et al. [11] have presented a review study on fault 
prediction performance in software engineering. The objective of the study was to appraise the context of fault 
prediction model, used software metrics, dependent variables, and fault prediction techniques on the performance 
of software fault prediction. The review included 36 studies published between 2000 and 2010. According to the 
study, fault prediction techniques such as Naive Bayes and Logistic Regression have produced better fault 
prediction results, while techniques such as SVM and C4.5 did not perform well. Similarly, for independent 
variables, it was found that object-oriented (OO) metrics produced better fault prediction results compared to 
other metrics such as LOC and complexity metrics, this work also presented the quantitative and qualitative 
models to assess the software metrics, context of fault prediction, and fault prediction techniques [12]-[16]. 

Previous studies highlight the challenges in selecting the most suitable technique for software fault prediction and 
emphasize the importance of considering the specific dataset and development context. The results vary 
depending on the techniques evaluated and the metrics used, indicating the need for careful evaluation and 
experimentation when approaching software fault prediction. 

METHODOLOGY 
Software fault prediction aims to predict faults in software system by using some variables in these systems; 
because early prediction for faults will be useful to reduce the cost, effort and time in later phases in the system 
development life cycle (SDLC). Fig. 1 gives an overview of the software fault prediction process. It can be seen 
from the figure that three important components of the software fault prediction process are: Software fault 
dataset, software fault prediction techniques, and performance evaluation measures. 

 
Fig. 1. Software Fault Prediction Process. 
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The software fault dataset is an important part in the process. It includes various relevant parameters for 
predicting faults. These parameters could be process-level metrics, class-level metrics, method-level metrics, or 
any other relevant information that captures the behavior or quality of the software. 

The software fault predictions techniques is used to analyze the software fault dataset and make predictions about 
the presence or absence of faults in software modules. As mentioned earlier, these techniques can include 
Artificial Neural Network (ANN), Support Vector Machine (SVM), Decision Trees (DTs), Bayesian Network 
Classifiers, and others. The choice of the technique depends on the specific dataset and the context of the software 
development. 

Values of various software metrics (e.g., LOC, Cyclomatic Complexity etc.) are extracted, which works as 
independent variables and the required fault information with respect to the fault prediction (e.g., the number of 
faults, faulty and non-faulty) work as the dependent variable. Generally, statistical techniques and machine 
learning techniques are used to build fault prediction models. Finally, the performance of the built fault prediction 
model is evaluated using different performance evaluation measures such as accuracy, precision, recall, and AUC 
(Area Under the Curve) [17]. The following equation presents the AUC equation: 

 

Where i runs over all m data points with true label 1, and j runs over all n data points with true label 0; pi and pj 
denote the probability score assigned by the classifier to data point i and j, respectively. One is the indicator 
function: it outputs 1 if the condition (here pi>pj ) is satisfied. 

Overall, the software fault prediction process involves collecting and analyzing a software fault dataset, applying 
various prediction techniques, and evaluating their performance using appropriate measures. By predicting faults 
early in the software development life cycle (SDLC), organizations can potentially reduce costs, effort, and time 
associated with testing and fixing defects. 

A. Datasets 
In this paper, we select five different datasets from PROMISE repository: Ant, JEdit, Camel, Xalan, Log4j and 
Lucene projects. The datasets consist of 20 metrics that serve as input data for the software fault prediction task. 
Each metric provides information about a specific aspect of the software system. The table provides a brief 
summary of these metrics, and their descriptions. These metrics are used as the input variables, and the goal of the 
research is to predict the occurrence of faults based on these metrics. The output is a single binary value indicating 
whether a software module is faulty or not. By utilizing these datasets and their corresponding metrics, we aim to 
investigate the effectiveness of the proposed fault prediction algorithm in accurately predicting faults in software 
systems. 

Proposed Hybrid Algorithm 
The proposed methodology for solving the SFP problem in this paper is a hybrid approach that combines an ANN 
based on the feedforward algorithm PSO. The main objective is to utilize PSO as a feature selection technique to 
identify the most important metrics (features) for ANN. ANN is then employed as the classifier algorithm for 
fault prediction. Fig. 2 provides a visual representation of the proposed algorithm for software fault prediction. It 
illustrates the flow and integration of PSO and ANN in the hybrid methodology. 

Table I A Brief Description of SFP Metric 
Metric Brief description 

WMC The value of the WMC is equal to the number of methods in the class. 

DIT 
The DIT metric provides for each class a measure of the inheritance levels from the object 
hierarchy top. 
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NOC The NOC metric simply measures the number of immediate descendants of the class. 

CBO Metric represents the number of classes coupled to a given class. 

RFC 
Measures the number of different methods that can be executed when an object of that class 
receives a message 

LCOM 
Metric counts the sets of methods in a class that are not related through the sharing of some of 
the class fields. 

LCOM3 Lack of cohesion in methods. 

NPM Simply counts all the methods in a class that are declared as public. 

DAM 
This metric is the ratio of the number of private (protected) attributes to the total number of 
attributes declared in the class. 

MOA The metric measures the extent of the part-whole relationship, realized by using attributes. 

MFA 
This metric is the ratio of the number of methods inherited by a class to the total number of 
methods accessible by the member methods of the class. 

CAM 
This metric computes the relatedness among methods of a class based upon the parameter list 
of the methods. 

IC This metric provides the number of parent classes to which a given class is coupled. 

CBM 
The metric measures the total number of new/redefined methods to which all the inherited 
methods are coupled. 

AMC This metric measures the average method size for each class 
Ca The Ca metric represents the number of classes that depend upon the measured class. 
Ce The Ce metric represents the number of classes that the measured class is depended upon. 
CC CC is equal to the number of different paths in a method (function) plus one. 

Max(CC) The greatest value of CC among methods of the investigated class. 

Avg(CC) The arithmetic mean of the CC value in the investigated class. 

By combining PSO for feature selection and ANN as the classifier, the hybrid methodology aims to improve the 
accuracy and effectiveness of software fault prediction. The PSO component helps identify the most relevant 
metrics, reducing the dimensionality of the input data and enhancing the performance of the ANN classifier. 

 
Fig. 2. A pictorial diagram for proposed algorithm 
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A. Particle Swam Optimization (PSO) Algorithm 
PSO is population-based algorithm, which is developed by Kennedy and Eberhart [18], and widely accepted in 
different fields either in industrial and scientific research, based on the social behavior metaphor. The PSO 
algorithm includes some variables that greatly influence the algorithm performance, often stated as the 
exploration–exploitation tradeoff: Exploration is the ability to test various regions in the problem space in order to 
locate a good optimum, hopefully the global one. Exploitation is the ability to concentrate the search around a 
promising candidate solution in order to locate the optimum precisely [19]. A simple pseudo code for PSO is 
presented in Fig. 3. 

The algorithm starts by initialization of a set of particles (solutions) based on a predefined number. Each particle 
is evaluated based on a fitness function. Each particle is searching for the optimum, by moving in the search space 
and hence has a velocity. Each particle remembers the position it was in where it had its best result so far (its 
global best). 

 
Fig. 3. Particle Swarm Optimization (PSO) algorithm 

B. Artificial Neural Network (ANN) 
ANN is indeed a powerful classification algorithm that is inspired by the functioning of the human brain. It has 
been extensively used in various domains, including weather forecasting, stock market prediction, currency price 
forecasting, and many others. 

An ANN consists of a network of interconnected artificial neurons (nodes or units) that work together to process 
and analyze input data and produce the desired output. The structure of a neural network involves setting the 
strengths of the connections between neurons. There are different approaches to determining the connection 
strengths (weights) in a neural network. One common approach is to explicitly set the weights based on prior 
knowledge or domain expertise regarding the input data. This is often referred to as weight initialization. 

Another approach is to train the neural network by providing it with a set of training patterns, along with their 
corresponding desired outputs. During the training process, the network adjusts its weights based on a learning 
rule, which determines how the weights are updated to minimize the error between the predicted output and the 
desired output. Fig. 4 illustrates a basic feedforward ANN [10]. It typically consists of an input layer, one or more 
hidden layers, and an output layer. The arrows between the layers represent the weighted connections. In a 
feedforward network, the information flows from the input layer through the hidden layers to the output layer, 
without any cycles or feedback connections 
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Fig. 4. Feedforward Artificial Neural Network 

Experimental Results 
The proposed hybrid algorithm, combining PSO for feature selection and ANN as the classification algorithm, 
was implemented using MATLAB R2014a. The simulations were conducted on a computer with an Intel Core i5 
4.33 GHz processor. The algorithm was tested on standard datasets for software fault prediction, as described in 
Section 4. Table 2 provides the chosen parameters for the PSO algorithm and ANN, which were determined 
through preliminary experiments. These parameters play a crucial role in the performance of the algorithm. 

Table II. Parameters for the PSO Algorithm and ANN 
 Parameter Value 

PSO 
algorithm 

GenerationNumber 100 
Populationsize 50 

ANN 
GenerationNumber 200 

Numberofhiddenneuron 5 

To evaluate the performance of the proposed approach, 11 runs were performed on each dataset. The evaluation 
metric used is the Area Under the Curve (AUC) value [17]. AUC is a widely used metric in classification tasks 
and provides an overall measure of the model's discriminative power. Table 3 presents a brief description of the 
AUC values, which can be used to interpret the performance of the algorithm. A higher AUC value indicates 
better prediction performance. 

Table III. Auc Value Descriptions 
AUC Value Description 
AUC<0.5 Bad classification 

0.5<=AUC<0.6 Poor classification 
0.6<=AUC<0.7 Fair classification 

.7<=AUC<0.9 
Acceptable 

classification 

0.8<=AUC<0.9 
Excellent 

classification 

AUC>=0.9 
Outstanding 
classification 

Table 4 presents the results obtained without feature selection and with feature selection. It is evident that the 
proposed hybrid algorithm outperforms the standard classification approach. For example, the AUC value for the 
Ant dataset improved from 0.622 to 0.778 after applying feature selection. Similar improvements were observed 
for nine out of 19 datasets after feature selection. Overall, the average of the obtained results is significantly 
higher than that of the standard classifier. 
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Table IV. Results of the Proposed Approach 
Dataset Without FS With FS 
Ant 1.7 0.622 0.778 

Camel 1.0 0.71 0.985 
Camel 1.2 0.517 0.546 
Camel 1.4 0.828 0.773 
Camel 1.6 0.653 0.608 
Jedit 3.4 0.705 0.68 
Jedit 4.0 0.825 0.78 
Jedit 4.2 0.855 0.914 
Jedit 4.3 0.68 0.989 
log4j 1.0 0.782 0.913 
log4j 1.1 0.77 0.895 
log4j 1.2 0.858 0.641 

lucene 2.0 0.637 0.62 
lucene 2.2 0.621 0.702 
lucene 2.4 0.55 0.514 
xalan-2.4 0.796 0.855 
xalan-2.5 0.694 0.64 
xalan 2.6 0.694 0.64 
xalan 2.7 0.336 0.518 

Avg. 0.6912 0.7363 

These findings indicate that the proposed hybrid algorithm, combining PSO feature selection and ANN 
classification, is effective in improving the accuracy of software fault prediction. It demonstrates its ability to 
overcome the limitations of traditional classification approaches and achieve better performance in terms of AUC 
values. 

Table 5 provides comparisons between the results obtained from the proposed algorithm and the results reported 
in other relevant studies in the literature. The table allows for a comparison of the performance of different 
algorithms on various datasets. The proposed algorithm consistently outperforms several algorithms on specific 
datasets, indicating its effectiveness in software fault prediction. The hybrid approach of combining PSO feature 
selection with ANN classification brings improvements over the other methods in those particular cases. 
Furthermore, the average performance of the proposed algorithm is comparable to the results reported in other 
studies. This indicates that, on average, the proposed algorithm performs well compared to other algorithms used 
for software fault prediction 

Table V. Comparisons Between The Results Obtained From The Proposed Algorithm And Other Relevant 
Algorithms. 

Dataset Without 
FS 

With 
FS 

ANN 
[1] 

ANFIS 
[1] 

Ant 1.7 0.622 0.778 0.8468 0.8184 
Camel 1.0 0.71 0.985 0.9242 0.8939 
Camel 1.2 0.517 0.546 0.6008 0.6009 
Camel 1.4 0.828 0.773 0.7911 0.8132 
Camel 1.6 0.653 0.608 0.6807 0.7143 
Jedit 3.4 0.705 0.68 0.8796 0.8997 
Jedit 4.0 0.825 0.78 0.8246 0.7826 
Jedit 4.2 0.855 0.914 0.875 0.9755 
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Jedit 4.3 0.68 0.989 0.4613 0.9115 
log4j 1.0 0.782 0.913 0.8929 0.8857 
log4j 1.1 0.77 0.895 0.9018 0.9018 
log4j 1.2 0.858 0.641 0.7804 0.7719 
lucene-

2.0 
0.637 0.62 0.8492 0.8651 

lucene-
2.2 

0.621 0.702 0.7628 0.7457 

lucene-
2.4 

0.55 0.514 0.8248 0.8148 

xalan-2.4 0.796 0.855 0.8186 0.8197 
xalan-2.5 0.694 0.64 0.6747 0.6633 
xalan-2.6 0.694 0.64 0.6821 0.6782 
xalan-2.7 0.336 0.518 0.8167 0.8589 

Avg. 0.6912 0.7363 0.7835 0.8113 

CONCLUSION 
In conclusion, the paper presents a hybrid methodology for software fault prediction that combines Artificial 
Neural Network (ANN) with Particle Swarm Optimization (PSO) for feature selection. The proposed algorithm 
aims to improve the accuracy of fault prediction and reduce unnecessary costs, effort, and time in the software 
development life cycle. Through experiments conducted on standard datasets for software fault prediction, it is 
demonstrated that the proposed hybrid algorithm outperforms standard classification approaches. The results 
show significant improvements in the Area Under the Curve (AUC) values, indicating better prediction 
performance with the inclusion of feature selection. 

Comparisons with other algorithms reported in the literature also highlight the effectiveness of the proposed 
algorithm. It shows that the proposed approach can outperform several algorithms on specific datasets, and its 
average performance is comparable to other existing methods. Overall, the findings suggest that the hybrid 
algorithm combining PSO feature selection and ANN classification offers a promising approach for software fault 
prediction. It provides improved accuracy and has the potential to reduce costs associated with software 
development by identifying faults at an early stage. 

The proposed hybrid algorithm shows promise for software fault prediction, and its results warrant further 
investigation and potential application in practical software development scenarios. 
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