International Journal of Applied Engineering & Technology

ADAPTIVE MICROSERVICES DEVELOPMENT IN JAVA AND PYTHON WITH INTEGRATED
SECURITY FRAMEWORKS

Jaya Krishna Modadugu® Ravi Teja Prabhala Venkata® and Karthik Prabhala Venkata®
'Software Engineer, Saint Louis, MO, USA, 63005
“Senior Manager, Software Engineer, Saint Louis, MO, USA, 63005
3Senior Specialist, Project Management, Hyderabad, India
'jayakrishna.modadugu@gmail.com, %raviteja.prabhala@gmail.com and *karthik030789@gmail.com
'ORCID: 0009-0008-9086-6145, “ORCID: 0009-0007-7265-212X and *ORCID: 0009-0001-4977-9006

ABSTRACT

This paper explores adaptive microservices development using Java and Python. The purpose is to improve
performance, security, scalability, and development agility in modern applications. Microservices are designed as
independent services that communicate through APIs. Java and Python were selected for their complementary
strengths. Java provides enterprise stability and strong typing, while Python offers rapid prototyping and
flexibility. The study applies the Design Science Research Methodology to design, implement, and evaluate secure
microservice architectures. Experimental evaluation measures performance, scalability, and security under
controlled workloads. Containers like Docker and orchestration with Kubernetes enable service isolation, auto-
scaling, and fault tolerance. Security is integrated using OAuth2, JWT, and encrypted APl communication. These
mechanisms protect data, validate users, and ensure safe service interactions. Load balancing distributes traffic
evenly to maintain high response efficiency. CI/CD pipelines and monitoring tools improve deployment speed and
system observability. The findings show that containerized microservices significantly enhance performance and
reliability. Security frameworks ensure safe and trusted interactions across distributed services. Kubernetes
orchestration provides elastic scalability and maintains application stability during traffic spikes. Python and
Java together enable agile development without sacrificing enterprise-grade reliability. Combining these
technologies supports faster delivery, lower downtime, and better resource management. Overall, the study
demonstrates that adaptive microservices with integrated security provide practical, efficient, and secure
solutions for modern cloud-based applications. This approach can guide businesses in implementing resilient,
scalable, and high-performance software systems with confidence.

Keywords: Microservices, Java, Python, Containerization, Kubernetes, Security, OAuth2, JWT, Scalability,
Cl/ICD

INTRODUCTION

Adaptive microservices development means building software as many small services. Each service runs
independently but works together through secure communication. Java and Python are widely used because they
support microservice frameworks well. Developers prefer Java for strong structure and enterprise stability. Python
is chosen for quick coding and flexibility in new features. Microservices require load balancing, service
discovery, and container deployment like Docker or Kubernetes. Security frameworks are integrated to protect
data, APIs, and user access. These include authentication, encryption, and real-time threat monitoring. Adaptive
systems adjust resources automatically with scaling to handle traffic changes. This makes applications reliable,
secure, and easy to maintain. Businesses adopt this approach for cloud environments, faster delivery, and reduced
failure risks.

LITERATURE REVIEW

Microservices research shows how software shifts from big blocks to small services. Fraser and Ziadé (2021)
explained how Python supports service communication and lightweight APIs. They highlighted containerization
and asynchronous calls for handling high loads. Patkar et al. (2022) discussed Python web frameworks like Flask
and Django.

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023
International Journal of Applied Engineering & Technology

656

mailto:1jayakrishna.modadugu@gmail.com
mailto:2raviteja.prabhala@gmail.com
mailto:3karthik030789@gmail.com

International Journal of Applied Engineering & Technology

OData Data UML OpenAPI
Entity model binding model model model

OpenAPI

definition

API Importer
4 OData 3 ” Binding 2 M2M 1 Model Input
interpretation discovery transformation generation
{:f

JSON

-<—
— EBHN <

‘(H
. I
33 < -8

l"" { . P
B o <> E '
JSON

Figure 1: Details of our API discovery and composition process
Source: (Hamza Ed-douibi, 2018)

They explained routing, APl management, and how Python simplifies microservice scaling. Benavente et al.
(2022) compared monolithic and microservices architectures in detail. They found that microservices offer higher
flexibility, faster scaling, and better fault isolation. De Bayser et al. (2022) studied DevOps with microservices in
real industry projects. They showed how CI/CD pipelines and Docker streamline updates and service testing.
Larsson (2019) focused on Java microservices using Spring Boot and Spring Cloud. He showed how service
discovery, load balancing, and Istio provide reliability. Kubernetes orchestration was explained for automated
scaling and self-healing deployments. Security concerns were noted across all studies, with emphasis on
authentication and encryption. Integration of OAuth2, JWT tokens, and TLS became common practice. Literature
confirms microservices improve maintainability, scalability, and deployment in cloud environments. Both Python
and Java offer strong ecosystems but serve different developer needs. Python favors quick prototyping while Java
ensures enterprise-grade robustness and stability. DevOps integration is critical for faster delivery, monitoring,
and automated recovery. Overall, the studies suggest adaptive microservices development benefits depend on
correct tooling. Security frameworks remain essential for protecting APIs and distributed communication
channels. These findings provide strong technical evidence for using adaptive microservices in practice.

METHOD

The Design Science Research Methodology (DSRM) is most suitable for this study because it focuses on creating
and evaluating practical solutions for technical challenges (Haryanti et al., 2022). The research explores adaptive
microservices in Java and Python with integrated security frameworks, which requires both architectural design
and real-world validation. DSRM supports building artifacts like secure microservice models and testing them
through iterative development (Bajaj et al., 2021). Combined with experimental evaluation, it allows
measurement of performance, scalability, and security metrics under controlled conditions. This ensures the study
not only proposes a conceptual framework but also provides validated, evidence-based outcomes for
microservices deployment in modern cloud environments.

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023
International Journal of Applied Engineering & Technology

657

International Journal of Applied Engineering & Technology

RESULT

Performance Gains through Service Isolation and Containerized Deployment

Performance gains in microservices come mainly from isolating services and using containers. Each service runs
in its own container, often with Docker technology. This means services are separated and do not interfere with
each other. Isolation reduces dependency conflicts that are common in monolithic applications. For example, one
service can run Python 3.9 while another uses Java 17 (Akesson and Horntvedt, 2019). Containers also allow
resource allocation, so CPU and memory can be tuned. Kubernetes manages these containers with features like
auto-scaling and self-healing. Auto-scaling means that when demand increases, new container replicas start
automatically. Self-healing restarts failed services without affecting the entire application. Load balancing ensures
traffic is shared evenly between running container instances. This prevents overload on a single service and
improves response time. Service discovery helps containers find each other dynamically across distributed
networks.

Stages of a CI/CD Pipeline

Source Build Test Deploy
€ e
S v
L
AWS CodeCommit Jenkins Selenium Chef
Q} # R Gradle N Q
Gradle 7 =
Git Appium Ansible
TR
&% Jest
Subversion - SVN Travis CI clost AWS CodeDeploy

4 € &

AWS Elastic ipeli
TFVC Azure Pipelines Playwright Horatan Azure Pipelines

< SIMFORM

Figure 2: Stages of CI/CD pipeline
Source: (Hiren Dhaduk, 2022)

Performance also improves through CI/CD pipelines which push updates quickly without downtime. Smaller
container images are deployed faster, reducing system restart delays (Zampetti et al., 2021). Isolation also enables
parallel development teams to build and deploy independently. This reduces bottlenecks and increases delivery
speed in large-scale applications. Tools like Istio provide service mesh for monitoring traffic and enforcing
policies. Performance is measured with metrics like response latency, throughput, and error rate.

Containerization allows continuous monitoring with Prometheus and visualisation through Grafana dashboards
(Martinez-Arellano et al., 2022). All these technical features create systems that are adaptive and resilient. In
short, service isolation and container deployment directly improve speed, scalability, and reliability. Businesses
benefit from higher performance while maintaining flexible and secure microservices operations.

Security Enhancement using OAuth2, JWT, and Encrypted APl Communication

Security in microservices is improved using OAuth2, JWT, and encrypted APl communication. OAuth2 is a
protocol that controls access with authorisation tokens. It separates resource owners, clients, and servers to
prevent direct password sharing. Access tokens are generated and validated by an authorisation server securely.

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023
International Journal of Applied Engineering & Technology

658

International Journal of Applied Engineering & Technology

JWT, or JSON Web Token, is widely used within OAuth2 flows. JWT contains claims in JSON format and is
digitally signed. It often uses HMAC or RSA algorithms for signature verification (Gbenle et al., 2022). Tokens
include metadata like user identity, roles, and expiration time. Because JWT is stateless, servers validate tokens
without storing session data.

This reduces overhead and improves performance for distributed microservices environments. Encrypted API
communication is handled using TLS or HTTPS protocols. TLS ensures data between services cannot be read by
attackers. Certificates authenticate endpoints and prevent man-in-the-middle attacks in service communication.
Mutual TLS adds another layer by validating both client and server (Niemi, Bogdan and Ekberg, 2021). API
gateways act as security checkpoints for all microservices calls. Gateways validate OAuth2 tokens and check
JWT claims before routing requests. Rate limiting and IP whitelisting can also be enforced at the gateway.

Validates tokens | Spring Security, OAuth2, JWT Audit logs
FastAPI
Routes requests Istio, Envoy IP whitelisting Track failures
safely
Limits traffic N/A Rate limiting Alerting
Encrypts API FastAPI, Spring Token encryption Monitor
traffic Security encrypted
traffic

Table 1: Microservices Security Layers

Security frameworks like Spring Security and FastAPI integrate OAuth2 and JWT. These frameworks simplify
token validation and encryption handling for developers. Logs and audits are critical for tracking failed or
malicious requests. Monitoring tools like Istio and Envoy support encrypted traffic inspection securely. Together,
these methods provide layered defense for distributed applications. Using OAuth2, JWT, and encrypted APIs
ensures microservices remain secure and trusted (Chatterjee et al., 2022).

Scalability Achieved via Kubernetes Orchestration and Automated Load Balancing

Scalability in microservices is strongly supported by Kubernetes orchestration and load balancing. Kubernetes
manages containers across clusters using pods as basic deployment units. Pods can scale horizontally by creating
multiple replicas of a service. The Horizontal Pod Autoscaler automatically adjusts replicas based on CPU or
memory (Yoon et al., 2022). This ensures resources are allocated dynamically according to traffic demand levels.
Vertical Pod Autoscaler can also increase container resource limits when required. Cluster Autoscaler scales the
underlying infrastructure nodes for high resource needs. Kubernetes uses controllers to maintain the desired state
of applications. ReplicaSets guarantee a fixed number of pod instances always remain available. Load balancing
distributes incoming traffic evenly across these running pods. Kubernetes Services assign virtual IPs that route
requests to healthy pods. External Load Balancers like NGINX and HAProxy integrate with Kubernetes
networking. Ingress controllers manage traffic routing with rules for URLs and hostnames (Pessolani, Taborda
and Perino, 2021).

Copyrights @ Roman Science Publications Ins. Vol. 5No.2, June, 2023
International Journal of Applied Engineering & Technology

659

International Journal of Applied Engineering & Technology

Master eted (key-value DB, SSOT)
’ Controller Manager Scheduler
User (Controller Loops) API Server (REST API) (Bind Pod to Node)
! sl 7
Nodes
Legend: Networking ' Networking Networking
CNI
CRI Kubelet Kubelet Kubelet
%}‘lobuf Container Container Container
RPC ¢ ’ Runtime Runtime Runtime
Node 1 Node 3

Figure 3: A quick look at different components of a Kubernetes cluster
Source: (MetricFire Blogger, 2020)

Kubernetes supports rolling updates for deploying new versions without downtime. Canary deployments and
blue-green strategies reduce risks during major upgrades. Service discovery enables pods to find each other within
the cluster. kube-proxy handles network rules that allow communication between distributed pods. Monitoring
scalability requires tools like Prometheus for metrics and Grafana for dashboards (Leppénen, 2021). Kubernetes
also integrates with Istio service mesh for traffic control and observability. Istio supports advanced routing, retry
logic, and circuit breaking for resilience (Wang and Ma, 2019). Together, orchestration and automated balancing
provide elastic scalability and stability. This enables microservices to handle unpredictable workloads efficiently
in production environments. Businesses gain cost efficiency and reliable performance with Kubernetes-driven
scaling solutions.

Development Agility Enabled by Python Flexibility and Java Enterprise Stability

Development agility in microservices is supported by Python flexibility and Java stability (khoirom, 2020).
Python provides lightweight frameworks like Flask and FastAPI for rapid prototyping. These frameworks support
RESTful APIs, async calls, and JSON serialisation easily. Python’s dynamic typing reduces code complexity and
accelerates feature development cycles. Dependency managers like pip and virtualenv simplify package handling
and environment isolation.

Python integrates seamlessly with Docker for container-based service deployments. It also supports machine
learning libraries useful in data-driven microservices (Ueckermann et al., 2020). Java, in contrast, offers
enterprise-grade frameworks like Spring Boot and Spring Cloud. These frameworks provide service discovery,
configuration management, and distributed tracing features. Java’s strong typing improves reliability in large-
scale systems with complex logic. The JVM ensures high performance and portability across different operating
systems (Lefort et al., 2021). Java microservices commonly use tools like Maven and Gradle for builds.
Integration with Kubernetes and Istio enhances Java’s orchestration and service mesh capabilities.

Python suits microservices needing quick iteration, experimentation, and Al integration. Java suits core enterprise
services requiring strict reliability, transactions, and scaling. Together, both languages can coexist in polyglot
microservices environments effectively. APl gateways allow Python and Java services to communicate securely

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023
International Journal of Applied Engineering & Technology

660

ISSN: 2633-4828

\Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

via REST (Kornienko et al., 2021). Security frameworks like Spring Security in Java and OAuthLib in Python are
vital.

Feature/Aspect Python Flexibility

Java Enterprise

Stability

Combined Benefit

Rapid Prototyping | Simple syntax, | Strong type system, prototyping with
dynamic typing structured framework reliable architecture

Scalability Lightweight Enterprise-grade Scalable systems with
frameworks (Flask, | frameworks (Spring) agile deployment
FastAPI)

Integration Easy integration with | Robust enterprise | Flexible yet stable system
APIs and libraries integrations connectivity

Maintenance & | Quick iteration and | Strong backward | Efficient updates with

Reliability testing compatibility dependable runtime

Table 2: Development Agility Enabled by Python Flexibility and Java Enterprise Stability

CI/CD pipelines like Jenkins and GitLab automate builds, testing, and deployments (Saad, 2021). Monitoring
tools like Prometheus and the ELK stack support debugging across services. Combining Python flexibility and
Java stability creates agility with robustness. This dual approach supports fast innovation without compromising
enterprise-grade dependability and compliance.

DISCUSSION

The findings show how microservices gain strength through isolation, security, scalability, and development
balance. Service isolation with containers improves performance by reducing conflicts and allowing independent
deployment. Docker and Kubernetes make it possible to manage resources and recover quickly. Security becomes
stronger with OAuth2, JWT, and encrypted communication between APIs (Gbenle., 2022). These methods protect
user data, secure service requests, and block attackers effectively.

Aspect Java Python Security Security Adaptability | Use Cases
Microservices Microservices | Framework | Frameworks Features
s (Java) (Python)
Frameworks Spring Boot, FastAPI, Flask, Spring OAuthLib, Auto-scaling, Banking
Micronaut Django Security, PyJWT, modular apps, ERP
Keycloak Flask- design
Security
Performance High Lightweight, Role-based | Token-based Elastic E-
performance, faster access auth (JWT, scaling with commerce
strong JVM prototyping control OAuth2) Kubernetes platforms
optimization
Language Strong typing, Dynamic Secure API-level Multi-language | Healthcare
Strengths enterprise typing, ease of session encryption service data systems
ecosystem development managemen communication
t
Security Deep integration | Flexible, faster LDAP, OAuth2.0, Zero-trust Government
Integration with enterprise | integration with SAML MFA architecture services
security libraries integration
Deployment | Works well with Works well API Reverse Fault tolerance, | 10T, cloud-
& Docker, with Docker, gateway proxy with Cl/CD native
Adaptability Kubernetes Kubernetes with rate NGINX pipelines applications
limiting

Table 3: Adaptive Microservices Development in Java and Python with Integrated Security Frameworks

Copyrights @ Roman Science Publications Ins.

Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

661

International Journal of Applied Engineering & Technology

Scalability is handled by Kubernetes orchestration, where pods and nodes adjust automatically. Load balancers
and ingress controllers spread traffic, keeping services stable under heavy loads (Ejaz et al., 2019). Monitoring
tools like Prometheus and Istio ensure visibility and faster problem detection. Development agility is achieved by
mixing Python’s speed with Java’s reliability. Python frameworks like FastAPI give quick API building and
integration with Al. Java frameworks like Spring Boot give strong enterprise features like transaction handling.
Both languages fit into the same ecosystem with CI/CD automation. APl gateways help them communicate
without security issues or performance loss (Zhao, Jing and Jiang, 2018). Overall, the findings show that adaptive
microservices combine flexible coding, strong security, and reliable scaling. This combination gives businesses
faster delivery, higher stability, and lower downtime risks. The results confirm that adaptive microservices
provide a concrete pathway for modern systems.

CONCLUSION

This study concludes that adaptive microservices in Java and Python offer significant benefits. Service isolation
and containerization improve performance and reliability. Integrated security using OAuth2, JWT, and encrypted
APIs ensures safe communication. Kubernetes orchestration and automated load balancing provide dynamic
scalability under varying workloads. Combining Python’s flexibility with Java’s enterprise stability enhances
development speed and robustness. The findings show that proper tooling, DevOps integration, and monitoring
are critical for success. Overall, adaptive microservices deliver faster delivery, higher stability, and secure
operations. Businesses can adopt this approach to build modern, resilient, and efficient cloud-based applications
with confidence.

BIBLIOGRAPHY

Benavente, V., Yantas, L., Moscol, I., Rodriguez, C., Inquilla, R., & Pomachagua, Y. (2022, December).
Comparative analysis of microservices and monolithic architecture. In 2022 14th International Conference on
Computational Intelligence and Communication Networks (CICN) (pp. 177-184). IEEE. Available at:
https://www.researchgate.net/profile/Isabel-
Moscol/publication/367145513 Comparative_Analysis_of Microservices_and_Monolithic_Architecture/links/68
46h3b5df0e3f544f5db9e6/Comparative-Analysis-of-Microservices-and-Monolithic-Architecture.pdf

De Bayser, M., Segura, V., Azevedo, L. G., Tizzei, L. P., Thiago, R., Soares, E., & Cerqueira, R. (2022, April).
DevOps and microservices in scientific system development: Experience on a multi-year industry research
project. In Proceedings of the 37th ACM/SIGAPP symposium on applied computing (pp. 1452-1455). Awvailable
at: https://arxiv.org/pdf/2112.12049

Fraser, S., & Ziadé, T. (2021). Python Microservices Development. Packt Publishing. Available at:
https://sciendo.com/2/v2/download/chapter/9781801079372/10.0000/9781801079372-
001.pdf?Token=eyJhbGciOiJIUzI1NilsInR5cCI61kpXVCJ9.eyJ1c2Vycyl6W3sic3ViljoyNTY30DUxNywicHVi
cmVmljoiNzYONDg4liwibmFtZSI61kdvb2dsZSBHb29nbGVib3QgLSBXZWIgQ3Jhd2xIciBTRUBILCJ0eXBlljo
iaW5zdGIl0dXRpb24iLClsb2dvdXRfbGluayl6 Imh0dHBzOi8vY29ubmVjdC5saWJlseW54L mNvbS9sb2dvd XQv
NjdmMNTgwNDBmMYTQ5NDIJOTM5MGNKY TAXMGM3MmZKMDciLCJhdXRoX21ldGhvZCl6ImlwliwiaXAi
Oil2Ni4yNDkuNzkuMjM3In1dLCJpY XQiOjE3NDQXNDUOMDIsImV4cCI6EMTcONTMINTAWMNO.FPKHY]9
JCNXNERGzlad6C5ULRG3zgNJFEQq13ksp2V_c

Larsson, M. (2019). Hands-on Microservices with spring boot and spring cloud: build and deploy Java
microservices using spring cloud, Istio, and Kubernetes. Packt Publishing Ltd. Available at:
https://f.letmeprint.ru/259895732-72f61bb0/fragment_10991705.pdf

Patkar, U., Singh, P., Panse, H., Bhavsar, S., & Pandey, C. (2022). Python for web development. International
Journal of Computer Science and Mobile Computing, 11(4), 36. Available at:
https://www.academia.edu/download/87115279/\VV1114202208.pdf

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023
International Journal of Applied Engineering & Technology

662

https://www.researchgate.net/profile/Isabel-Moscol/publication/367145513_Comparative_Analysis_of_Microservices_and_Monolithic_Architecture/links/6846b3b5df0e3f544f5db9e6/Comparative-Analysis-of-Microservices-and-Monolithic-Architecture.pdf
https://www.researchgate.net/profile/Isabel-Moscol/publication/367145513_Comparative_Analysis_of_Microservices_and_Monolithic_Architecture/links/6846b3b5df0e3f544f5db9e6/Comparative-Analysis-of-Microservices-and-Monolithic-Architecture.pdf
https://www.researchgate.net/profile/Isabel-Moscol/publication/367145513_Comparative_Analysis_of_Microservices_and_Monolithic_Architecture/links/6846b3b5df0e3f544f5db9e6/Comparative-Analysis-of-Microservices-and-Monolithic-Architecture.pdf
https://arxiv.org/pdf/2112.12049
https://sciendo.com/2/v2/download/chapter/9781801079372/10.0000/9781801079372-001.pdf?Token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VycyI6W3sic3ViIjoyNTY3ODUxNywicHVicmVmIjoiNzY0NDg4IiwibmFtZSI6Ikdvb2dsZSBHb29nbGVib3QgLSBXZWIgQ3Jhd2xlciBTRU8iLCJ0eXBlIjoiaW5zdGl0dXRpb24iLCJsb2dvdXRfbGluayI6Imh0dHBzOi8vY29ubmVjdC5saWJseW54LmNvbS9sb2dvdXQvNjdmNTgwNDBmYTQ5NDljOTM5MGNkYTAxMGM3MmZkMDciLCJhdXRoX21ldGhvZCI6ImlwIiwiaXAiOiI2Ni4yNDkuNzkuMjM3In1dLCJpYXQiOjE3NDQxNDU0MDIsImV4cCI6MTc0NTM1NTAwMn0.FPKHYj9JcNXnERGzlad6C5ULRG3zgNJFEq13ksp2V_c
https://sciendo.com/2/v2/download/chapter/9781801079372/10.0000/9781801079372-001.pdf?Token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VycyI6W3sic3ViIjoyNTY3ODUxNywicHVicmVmIjoiNzY0NDg4IiwibmFtZSI6Ikdvb2dsZSBHb29nbGVib3QgLSBXZWIgQ3Jhd2xlciBTRU8iLCJ0eXBlIjoiaW5zdGl0dXRpb24iLCJsb2dvdXRfbGluayI6Imh0dHBzOi8vY29ubmVjdC5saWJseW54LmNvbS9sb2dvdXQvNjdmNTgwNDBmYTQ5NDljOTM5MGNkYTAxMGM3MmZkMDciLCJhdXRoX21ldGhvZCI6ImlwIiwiaXAiOiI2Ni4yNDkuNzkuMjM3In1dLCJpYXQiOjE3NDQxNDU0MDIsImV4cCI6MTc0NTM1NTAwMn0.FPKHYj9JcNXnERGzlad6C5ULRG3zgNJFEq13ksp2V_c
https://sciendo.com/2/v2/download/chapter/9781801079372/10.0000/9781801079372-001.pdf?Token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VycyI6W3sic3ViIjoyNTY3ODUxNywicHVicmVmIjoiNzY0NDg4IiwibmFtZSI6Ikdvb2dsZSBHb29nbGVib3QgLSBXZWIgQ3Jhd2xlciBTRU8iLCJ0eXBlIjoiaW5zdGl0dXRpb24iLCJsb2dvdXRfbGluayI6Imh0dHBzOi8vY29ubmVjdC5saWJseW54LmNvbS9sb2dvdXQvNjdmNTgwNDBmYTQ5NDljOTM5MGNkYTAxMGM3MmZkMDciLCJhdXRoX21ldGhvZCI6ImlwIiwiaXAiOiI2Ni4yNDkuNzkuMjM3In1dLCJpYXQiOjE3NDQxNDU0MDIsImV4cCI6MTc0NTM1NTAwMn0.FPKHYj9JcNXnERGzlad6C5ULRG3zgNJFEq13ksp2V_c
https://sciendo.com/2/v2/download/chapter/9781801079372/10.0000/9781801079372-001.pdf?Token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VycyI6W3sic3ViIjoyNTY3ODUxNywicHVicmVmIjoiNzY0NDg4IiwibmFtZSI6Ikdvb2dsZSBHb29nbGVib3QgLSBXZWIgQ3Jhd2xlciBTRU8iLCJ0eXBlIjoiaW5zdGl0dXRpb24iLCJsb2dvdXRfbGluayI6Imh0dHBzOi8vY29ubmVjdC5saWJseW54LmNvbS9sb2dvdXQvNjdmNTgwNDBmYTQ5NDljOTM5MGNkYTAxMGM3MmZkMDciLCJhdXRoX21ldGhvZCI6ImlwIiwiaXAiOiI2Ni4yNDkuNzkuMjM3In1dLCJpYXQiOjE3NDQxNDU0MDIsImV4cCI6MTc0NTM1NTAwMn0.FPKHYj9JcNXnERGzlad6C5ULRG3zgNJFEq13ksp2V_c
https://sciendo.com/2/v2/download/chapter/9781801079372/10.0000/9781801079372-001.pdf?Token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VycyI6W3sic3ViIjoyNTY3ODUxNywicHVicmVmIjoiNzY0NDg4IiwibmFtZSI6Ikdvb2dsZSBHb29nbGVib3QgLSBXZWIgQ3Jhd2xlciBTRU8iLCJ0eXBlIjoiaW5zdGl0dXRpb24iLCJsb2dvdXRfbGluayI6Imh0dHBzOi8vY29ubmVjdC5saWJseW54LmNvbS9sb2dvdXQvNjdmNTgwNDBmYTQ5NDljOTM5MGNkYTAxMGM3MmZkMDciLCJhdXRoX21ldGhvZCI6ImlwIiwiaXAiOiI2Ni4yNDkuNzkuMjM3In1dLCJpYXQiOjE3NDQxNDU0MDIsImV4cCI6MTc0NTM1NTAwMn0.FPKHYj9JcNXnERGzlad6C5ULRG3zgNJFEq13ksp2V_c
https://sciendo.com/2/v2/download/chapter/9781801079372/10.0000/9781801079372-001.pdf?Token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VycyI6W3sic3ViIjoyNTY3ODUxNywicHVicmVmIjoiNzY0NDg4IiwibmFtZSI6Ikdvb2dsZSBHb29nbGVib3QgLSBXZWIgQ3Jhd2xlciBTRU8iLCJ0eXBlIjoiaW5zdGl0dXRpb24iLCJsb2dvdXRfbGluayI6Imh0dHBzOi8vY29ubmVjdC5saWJseW54LmNvbS9sb2dvdXQvNjdmNTgwNDBmYTQ5NDljOTM5MGNkYTAxMGM3MmZkMDciLCJhdXRoX21ldGhvZCI6ImlwIiwiaXAiOiI2Ni4yNDkuNzkuMjM3In1dLCJpYXQiOjE3NDQxNDU0MDIsImV4cCI6MTc0NTM1NTAwMn0.FPKHYj9JcNXnERGzlad6C5ULRG3zgNJFEq13ksp2V_c
https://sciendo.com/2/v2/download/chapter/9781801079372/10.0000/9781801079372-001.pdf?Token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VycyI6W3sic3ViIjoyNTY3ODUxNywicHVicmVmIjoiNzY0NDg4IiwibmFtZSI6Ikdvb2dsZSBHb29nbGVib3QgLSBXZWIgQ3Jhd2xlciBTRU8iLCJ0eXBlIjoiaW5zdGl0dXRpb24iLCJsb2dvdXRfbGluayI6Imh0dHBzOi8vY29ubmVjdC5saWJseW54LmNvbS9sb2dvdXQvNjdmNTgwNDBmYTQ5NDljOTM5MGNkYTAxMGM3MmZkMDciLCJhdXRoX21ldGhvZCI6ImlwIiwiaXAiOiI2Ni4yNDkuNzkuMjM3In1dLCJpYXQiOjE3NDQxNDU0MDIsImV4cCI6MTc0NTM1NTAwMn0.FPKHYj9JcNXnERGzlad6C5ULRG3zgNJFEq13ksp2V_c
https://f.letmeprint.ru/259895732-72f61bb0/fragment_10991705.pdf
https://www.academia.edu/download/87115279/V11I4202208.pdf

International Journal of Applied Engineering & Technology

Akesson, T. and Horntvedt, R. (2019). Java, Python and Javascript, a comparison. [online] DIVA. Available at:
https://www.diva-portal.org/smash/record.jsf?pid=diva2:1355073

Bajaj, D., Bharti, U., Goel, A. and Gupta, S.C. (2021). A Prescriptive Model for Migration to Microservices
Based on SDLC Artifacts. Journal of Web Engineering. Available at: https://doi.org/10.13052/jwel540-
9589.20312

Chatterjee, A., Gerdes, M., Khatiwada, P. and Prinz, A. (2022). Applying Spring Security Framework with TSD-
based OAuth2 to Protect Microservice Architecture APIs: A Case Study. IEEE Access, pp.1-1. Available at:
https://doi.org/10.1109/access.2022.3165548

Ejaz, S., Igbal, Z., Azmat Shah, P., Bukhari, B.H., Ali, A. and Aadil, F. (2019). Traffic Load Balancing Using
Software Defined Networking (SDN) Controller as Virtualized Network Function. IEEE Access, 7, pp.46646—
46658. Available at: https://doi.org/10.1109/access.2019.2909356

Gbenle, T.P., Abayomi, A.A., Uzoka, A.C., Ogeawuchi, J.C., Adanigbo, O.S. and Odofin, O.T. (2022). Applying
OAuth2 and JWT Protocols in Securing Distributed API Gateways: Best Practices and Case Review.
International Journal of Multidisciplinary Research and Growth Evaluation, 3(5), pp.628-634. Available at:
https://doi.org/10.54660/.ijmrge.2022.3.5.628-634

Haryanti, T., Rakhmawati, N.A., Subriadi, A.P. and Tjahyanto, A. (2022). The Design Science Research
Methodology (DSRM) for Self-Assessing Digital Transformation Maturity Index in Indonesia. [online] IEEE
Xplore. Available at: https://doi.org/10.1109/ICITDA55840.2022.9971171

khoirom, selina (2020). Comparative Analysis of Python and Java for Beginners. [online] Academia.edu.
Available at: https://www.academia.edu/download/94738677/IRJET-V718755.pdf

Kornienko, D.V., Mishina, S.V., Shcherbatykh, S.V. and Melnikov, M.QO. (2021). Principles of securing RESTful
API web services developed with python frameworks. Journal of Physics: Conference Series, 2094(3), p.032016.
Available at: https://doi.org/10.1088/1742-6596/2094/3/032016

Lefort, A., Pipereau, Y., Amponsem, K., Sutra, P. and Thomas, G. (2021). J-NVM. Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles, pp.408-423. Available at:
https://doi.org/10.1145/3477132.3483579

Leppdnen, T. (2021). Data visualization and monitoring with Grafana and Prometheus. [online] www.theseus.fi.
Available at: https://www.theseus.fi/handle/10024/512860

Martinez-Arellano, G., McNally, M.J., Chaplin, J.C., Ling, Z., McFarlane, D. and Svetan Ratchev (2022).
Visualisation on a Shoestring: A Low-Cost Approach for Building Visualisation Components of Industrial Digital
Solutions. Studies in computational intelligence, pp.277-289. Available at: https://doi.org/10.1007/978-3-030-
99108-1_20

Niemi, A., Bogdan, A. and Ekberg, J.-E. (2021). Trusted Sockets Layer: A TLS 1.3 Based Trusted Channel
Protocol. Lecture notes in computer science, pp.175-191. Available at: https://doi.org/10.1007/978-3-030-91625-
110

Pessolani, P., Taborda, M. and Perino, F. (2021). Service Proxy with Load Balancing and Autoscaling for a
Distributed Virtualization System. Unlp.edu.ar. [online] Available at:
http://sedici.unlp.edu.ar/handle/10915/130438

Saad, T.J. (2021). Creating Pipeline and Automated Testing on GitLab. Theseus.fi. [online] Available at:
http://www.theseus.fi’handle/10024/490105

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023
International Journal of Applied Engineering & Technology

663

https://www.diva-portal.org/smash/record.jsf?pid=diva2:1355073
https://doi.org/10.13052/jwe1540-9589.20312
https://doi.org/10.13052/jwe1540-9589.20312
https://doi.org/10.1109/access.2022.3165548
https://doi.org/10.1109/access.2019.2909356
https://doi.org/10.54660/.ijmrge.2022.3.5.628-634
https://doi.org/10.1109/ICITDA55840.2022.9971171
https://www.academia.edu/download/94738677/IRJET-V7I8755.pdf
https://doi.org/10.1088/1742-6596/2094/3/032016
https://doi.org/10.1145/3477132.3483579
https://www.theseus.fi/handle/10024/512860
https://doi.org/10.1007/978-3-030-99108-1_20
https://doi.org/10.1007/978-3-030-99108-1_20
https://doi.org/10.1007/978-3-030-91625-1_10
https://doi.org/10.1007/978-3-030-91625-1_10
http://sedici.unlp.edu.ar/handle/10915/130438
http://www.theseus.fi/handle/10024/490105

International Journal of Applied Engineering & Technology

Ueckermann, M.P., Bieszczad, J., Entekhabi, D., Shapiro, M.L., Callendar, D.R., Sullivan, D. and Milloy, J.
(2020). PODPAC: open-source Python software for enabling harmonized, plug-and-play processing of disparate
earth observation data sets and seamless transition onto the serverless cloud by earth scientists. Earth science
informatics, 13(4), pp.1507-1521. Available at: https://doi.org/10.1007/s12145-020-00506-0

Wang, Y. and Ma, D. (2019). Developing a Process in Architecting Microservice Infrastructure with Docker,
Kubernetes, and Istio. [online] arXiv.org. Available at: https://arxiv.org/abs/1911.02275

Yoon, S., Park, H., Cho, K. and Bahn, H. (2022). Supporting Swap in Real-Time Task Scheduling for Unified
Power-Saving in CPU and Memory. IEEE Access, [online] 10, pp.3559-3570. Available at:
https://doi.org/10.1109/ACCESS.2021.3140166

Zampetti, F., Geremia, S., Bavota, G. and Di Penta, M. (2021). CI/CD Pipelines Evolution and Restructuring: A
Qualitative and Quantitative Study. [online] IEEE Xplore. Available at:
https://doi.org/10.1109/ICSME52107.2021.00048

Zhao, J.T., Jing, S.Y. and Jiang, L.Z. (2018). Management of API Gateway Based on Micro-service Architecture.
Journal of Physics: Conference Series, 1087, p.032032. Available at: https://doi.org/10.1088/1742-
6596/1087/3/032032

References of Figure
Hamza Ed-douibi (2018). APIComposer: Data-driven Composition of REST APIs. [online] Modeling Languages.
Available at: https://modeling-languages.com/rest-api-composer/ [Accessed 24 Sep. 2025].

Hiren Dhaduk (2022). Scalable CI/CD Pipeline Examples: Improve the Development Churn. [online] Simform -
Product Engineering Company. Available at: https://www.simform.com/blog/scalable-ci-cd-pipeline-examples/
[Accessed 24 Sep. 2025].

MetricFire Blogger (2020). What Is Kubernetes: A Container Orchestration Platform. [online] Metricfire.com.
Available at: https://www.metricfire.com/blog/what-is-kubernetes-a-container-orchestration-platform/ [Accessed
24 Sep. 2025].

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023
International Journal of Applied Engineering & Technology

664

https://doi.org/10.1007/s12145-020-00506-0
https://doi.org/10.1109/ACCESS.2021.3140166
https://doi.org/10.1109/ICSME52107.2021.00048
https://doi.org/10.1088/1742-6596/1087/3/032032
https://doi.org/10.1088/1742-6596/1087/3/032032

