
ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

 656

ADAPTIVE MICROSERVICES DEVELOPMENT IN JAVA AND PYTHON WITH INTEGRATED

SECURITY FRAMEWORKS

Jaya Krishna Modadugu
1
Ravi Teja Prabhala Venkata

2
 and Karthik Prabhala Venkata

3

1
Software Engineer, Saint Louis, MO, USA, 63005

2
Senior Manager, Software Engineer, Saint Louis, MO, USA, 63005

3
Senior Specialist, Project Management, Hyderabad, India

1
jayakrishna.modadugu@gmail.com,

2
raviteja.prabhala@gmail.com and

3
karthik030789@gmail.com

1
ORCID: 0009-0008-9086-6145,

2
ORCID: 0009-0007-7265-212X and

3
ORCID: 0009-0001-4977-9006

ABSTRACT

This paper explores adaptive microservices development using Java and Python. The purpose is to improve

performance, security, scalability, and development agility in modern applications. Microservices are designed as

independent services that communicate through APIs. Java and Python were selected for their complementary

strengths. Java provides enterprise stability and strong typing, while Python offers rapid prototyping and

flexibility. The study applies the Design Science Research Methodology to design, implement, and evaluate secure

microservice architectures. Experimental evaluation measures performance, scalability, and security under

controlled workloads. Containers like Docker and orchestration with Kubernetes enable service isolation, auto-

scaling, and fault tolerance. Security is integrated using OAuth2, JWT, and encrypted API communication. These

mechanisms protect data, validate users, and ensure safe service interactions. Load balancing distributes traffic

evenly to maintain high response efficiency. CI/CD pipelines and monitoring tools improve deployment speed and

system observability. The findings show that containerized microservices significantly enhance performance and

reliability. Security frameworks ensure safe and trusted interactions across distributed services. Kubernetes

orchestration provides elastic scalability and maintains application stability during traffic spikes. Python and

Java together enable agile development without sacrificing enterprise-grade reliability. Combining these

technologies supports faster delivery, lower downtime, and better resource management. Overall, the study

demonstrates that adaptive microservices with integrated security provide practical, efficient, and secure

solutions for modern cloud-based applications. This approach can guide businesses in implementing resilient,

scalable, and high-performance software systems with confidence.

Keywords: Microservices, Java, Python, Containerization, Kubernetes, Security, OAuth2, JWT, Scalability,

CI/CD

INTRODUCTION

Adaptive microservices development means building software as many small services. Each service runs

independently but works together through secure communication. Java and Python are widely used because they

support microservice frameworks well. Developers prefer Java for strong structure and enterprise stability. Python

is chosen for quick coding and flexibility in new features. Microservices require load balancing, service

discovery, and container deployment like Docker or Kubernetes. Security frameworks are integrated to protect

data, APIs, and user access. These include authentication, encryption, and real-time threat monitoring. Adaptive

systems adjust resources automatically with scaling to handle traffic changes. This makes applications reliable,

secure, and easy to maintain. Businesses adopt this approach for cloud environments, faster delivery, and reduced

failure risks.

LITERATURE REVIEW

Microservices research shows how software shifts from big blocks to small services. Fraser and Ziadé (2021)

explained how Python supports service communication and lightweight APIs. They highlighted containerization

and asynchronous calls for handling high loads. Patkar et al. (2022) discussed Python web frameworks like Flask

and Django.

mailto:1jayakrishna.modadugu@gmail.com
mailto:2raviteja.prabhala@gmail.com
mailto:3karthik030789@gmail.com

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

 657

Figure 1: Details of our API discovery and composition process

Source: (Hamza Ed-douibi, 2018)

They explained routing, API management, and how Python simplifies microservice scaling. Benavente et al.

(2022) compared monolithic and microservices architectures in detail. They found that microservices offer higher

flexibility, faster scaling, and better fault isolation. De Bayser et al. (2022) studied DevOps with microservices in

real industry projects. They showed how CI/CD pipelines and Docker streamline updates and service testing.

Larsson (2019) focused on Java microservices using Spring Boot and Spring Cloud. He showed how service

discovery, load balancing, and Istio provide reliability. Kubernetes orchestration was explained for automated

scaling and self-healing deployments. Security concerns were noted across all studies, with emphasis on

authentication and encryption. Integration of OAuth2, JWT tokens, and TLS became common practice. Literature

confirms microservices improve maintainability, scalability, and deployment in cloud environments. Both Python

and Java offer strong ecosystems but serve different developer needs. Python favors quick prototyping while Java

ensures enterprise-grade robustness and stability. DevOps integration is critical for faster delivery, monitoring,

and automated recovery. Overall, the studies suggest adaptive microservices development benefits depend on

correct tooling. Security frameworks remain essential for protecting APIs and distributed communication

channels. These findings provide strong technical evidence for using adaptive microservices in practice.

METHOD

The Design Science Research Methodology (DSRM) is most suitable for this study because it focuses on creating

and evaluating practical solutions for technical challenges (Haryanti et al., 2022). The research explores adaptive

microservices in Java and Python with integrated security frameworks, which requires both architectural design

and real-world validation. DSRM supports building artifacts like secure microservice models and testing them

through iterative development (Bajaj et al., 2021). Combined with experimental evaluation, it allows

measurement of performance, scalability, and security metrics under controlled conditions. This ensures the study

not only proposes a conceptual framework but also provides validated, evidence-based outcomes for

microservices deployment in modern cloud environments.

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

 658

RESULT

Performance Gains through Service Isolation and Containerized Deployment

Performance gains in microservices come mainly from isolating services and using containers. Each service runs

in its own container, often with Docker technology. This means services are separated and do not interfere with

each other. Isolation reduces dependency conflicts that are common in monolithic applications. For example, one

service can run Python 3.9 while another uses Java 17 (Åkesson and Horntvedt, 2019). Containers also allow

resource allocation, so CPU and memory can be tuned. Kubernetes manages these containers with features like

auto-scaling and self-healing. Auto-scaling means that when demand increases, new container replicas start

automatically. Self-healing restarts failed services without affecting the entire application. Load balancing ensures

traffic is shared evenly between running container instances. This prevents overload on a single service and

improves response time. Service discovery helps containers find each other dynamically across distributed

networks.

Figure 2: Stages of CI/CD pipeline

Source: (Hiren Dhaduk, 2022)

Performance also improves through CI/CD pipelines which push updates quickly without downtime. Smaller

container images are deployed faster, reducing system restart delays (Zampetti et al., 2021). Isolation also enables

parallel development teams to build and deploy independently. This reduces bottlenecks and increases delivery

speed in large-scale applications. Tools like Istio provide service mesh for monitoring traffic and enforcing

policies. Performance is measured with metrics like response latency, throughput, and error rate.

Containerization allows continuous monitoring with Prometheus and visualisation through Grafana dashboards

(Martínez-Arellano et al., 2022). All these technical features create systems that are adaptive and resilient. In

short, service isolation and container deployment directly improve speed, scalability, and reliability. Businesses

benefit from higher performance while maintaining flexible and secure microservices operations.

Security Enhancement using OAuth2, JWT, and Encrypted API Communication

Security in microservices is improved using OAuth2, JWT, and encrypted API communication. OAuth2 is a

protocol that controls access with authorisation tokens. It separates resource owners, clients, and servers to

prevent direct password sharing. Access tokens are generated and validated by an authorisation server securely.

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

 659

JWT, or JSON Web Token, is widely used within OAuth2 flows. JWT contains claims in JSON format and is

digitally signed. It often uses HMAC or RSA algorithms for signature verification (Gbenle et al., 2022). Tokens

include metadata like user identity, roles, and expiration time. Because JWT is stateless, servers validate tokens

without storing session data.

This reduces overhead and improves performance for distributed microservices environments. Encrypted API

communication is handled using TLS or HTTPS protocols. TLS ensures data between services cannot be read by

attackers. Certificates authenticate endpoints and prevent man-in-the-middle attacks in service communication.

Mutual TLS adds another layer by validating both client and server (Niemi, Bogdan and Ekberg, 2021). API

gateways act as security checkpoints for all microservices calls. Gateways validate OAuth2 tokens and check

JWT claims before routing requests. Rate limiting and IP whitelisting can also be enforced at the gateway.

Layer Function Tools/Frameworks Policies/Checks Logging &

Monitoring

API Gateway Validates tokens Spring Security,

FastAPI

OAuth2, JWT Audit logs

Request Routing Routes requests

safely

Istio, Envoy IP whitelisting Track failures

Rate & Access Control Limits traffic N/A Rate limiting Alerting

Encryption & Security Encrypts API

traffic

FastAPI, Spring

Security

Token encryption Monitor

encrypted

traffic

Table 1: Microservices Security Layers

Security frameworks like Spring Security and FastAPI integrate OAuth2 and JWT. These frameworks simplify

token validation and encryption handling for developers. Logs and audits are critical for tracking failed or

malicious requests. Monitoring tools like Istio and Envoy support encrypted traffic inspection securely. Together,

these methods provide layered defense for distributed applications. Using OAuth2, JWT, and encrypted APIs

ensures microservices remain secure and trusted (Chatterjee et al., 2022).

Scalability Achieved via Kubernetes Orchestration and Automated Load Balancing

Scalability in microservices is strongly supported by Kubernetes orchestration and load balancing. Kubernetes

manages containers across clusters using pods as basic deployment units. Pods can scale horizontally by creating

multiple replicas of a service. The Horizontal Pod Autoscaler automatically adjusts replicas based on CPU or

memory (Yoon et al., 2022). This ensures resources are allocated dynamically according to traffic demand levels.

Vertical Pod Autoscaler can also increase container resource limits when required. Cluster Autoscaler scales the

underlying infrastructure nodes for high resource needs. Kubernetes uses controllers to maintain the desired state

of applications. ReplicaSets guarantee a fixed number of pod instances always remain available. Load balancing

distributes incoming traffic evenly across these running pods. Kubernetes Services assign virtual IPs that route

requests to healthy pods. External Load Balancers like NGINX and HAProxy integrate with Kubernetes

networking. Ingress controllers manage traffic routing with rules for URLs and hostnames (Pessolani, Taborda

and Perino, 2021).

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

 660

Figure 3: A quick look at different components of a Kubernetes cluster

Source: (MetricFire Blogger, 2020)

Kubernetes supports rolling updates for deploying new versions without downtime. Canary deployments and

blue-green strategies reduce risks during major upgrades. Service discovery enables pods to find each other within

the cluster. kube-proxy handles network rules that allow communication between distributed pods. Monitoring

scalability requires tools like Prometheus for metrics and Grafana for dashboards (Leppänen, 2021). Kubernetes

also integrates with Istio service mesh for traffic control and observability. Istio supports advanced routing, retry

logic, and circuit breaking for resilience (Wang and Ma, 2019). Together, orchestration and automated balancing

provide elastic scalability and stability. This enables microservices to handle unpredictable workloads efficiently

in production environments. Businesses gain cost efficiency and reliable performance with Kubernetes-driven

scaling solutions.

Development Agility Enabled by Python Flexibility and Java Enterprise Stability

Development agility in microservices is supported by Python flexibility and Java stability (khoirom, 2020).

Python provides lightweight frameworks like Flask and FastAPI for rapid prototyping. These frameworks support

RESTful APIs, async calls, and JSON serialisation easily. Python’s dynamic typing reduces code complexity and

accelerates feature development cycles. Dependency managers like pip and virtualenv simplify package handling

and environment isolation.

Python integrates seamlessly with Docker for container-based service deployments. It also supports machine

learning libraries useful in data-driven microservices (Ueckermann et al., 2020). Java, in contrast, offers

enterprise-grade frameworks like Spring Boot and Spring Cloud. These frameworks provide service discovery,

configuration management, and distributed tracing features. Java’s strong typing improves reliability in large-

scale systems with complex logic. The JVM ensures high performance and portability across different operating

systems (Lefort et al., 2021). Java microservices commonly use tools like Maven and Gradle for builds.

Integration with Kubernetes and Istio enhances Java’s orchestration and service mesh capabilities.

Python suits microservices needing quick iteration, experimentation, and AI integration. Java suits core enterprise

services requiring strict reliability, transactions, and scaling. Together, both languages can coexist in polyglot

microservices environments effectively. API gateways allow Python and Java services to communicate securely

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

 661

via REST (Kornienko et al., 2021). Security frameworks like Spring Security in Java and OAuthLib in Python are

vital.

Feature/Aspect Python Flexibility Java Enterprise

Stability

Combined Benefit

Rapid Prototyping Simple syntax,

dynamic typing

Strong type system,

structured framework

Fast prototyping with

reliable architecture

Scalability Lightweight

frameworks (Flask,

FastAPI)

Enterprise-grade

frameworks (Spring)

Scalable systems with

agile deployment

Integration Easy integration with

APIs and libraries

Robust enterprise

integrations

Flexible yet stable system

connectivity

Maintenance &

Reliability

Quick iteration and

testing

Strong backward

compatibility

Efficient updates with

dependable runtime

Table 2: Development Agility Enabled by Python Flexibility and Java Enterprise Stability

CI/CD pipelines like Jenkins and GitLab automate builds, testing, and deployments (Saad, 2021). Monitoring

tools like Prometheus and the ELK stack support debugging across services. Combining Python flexibility and

Java stability creates agility with robustness. This dual approach supports fast innovation without compromising

enterprise-grade dependability and compliance.

DISCUSSION

The findings show how microservices gain strength through isolation, security, scalability, and development

balance. Service isolation with containers improves performance by reducing conflicts and allowing independent

deployment. Docker and Kubernetes make it possible to manage resources and recover quickly. Security becomes

stronger with OAuth2, JWT, and encrypted communication between APIs (Gbenle., 2022). These methods protect

user data, secure service requests, and block attackers effectively.

Aspect Java

Microservices

Python

Microservices

Security

Framework

s (Java)

Security

Frameworks

(Python)

Adaptability

Features

Use Cases

Frameworks Spring Boot,

Micronaut

FastAPI, Flask,

Django

Spring

Security,

Keycloak

OAuthLib,

PyJWT,

Flask-

Security

Auto-scaling,

modular

design

Banking

apps, ERP

Performance High

performance,

strong JVM

optimization

Lightweight,

faster

prototyping

Role-based

access

control

Token-based

auth (JWT,

OAuth2)

Elastic

scaling with

Kubernetes

E-

commerce

platforms

Language

Strengths

Strong typing,

enterprise

ecosystem

Dynamic

typing, ease of

development

Secure

session

managemen

t

API-level

encryption

Multi-language

service

communication

Healthcare

data systems

Security

Integration

Deep integration

with enterprise

security

Flexible, faster

integration with

libraries

LDAP,

SAML

integration

OAuth2.0,

MFA

Zero-trust

architecture

Government

services

Deployment

&

Adaptability

Works well with

Docker,

Kubernetes

Works well

with Docker,

Kubernetes

API

gateway

with rate

limiting

Reverse

proxy with

NGINX

Fault tolerance,

CI/CD

pipelines

IoT, cloud-

native

applications

Table 3: Adaptive Microservices Development in Java and Python with Integrated Security Frameworks

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

 662

Scalability is handled by Kubernetes orchestration, where pods and nodes adjust automatically. Load balancers

and ingress controllers spread traffic, keeping services stable under heavy loads (Ejaz et al., 2019). Monitoring

tools like Prometheus and Istio ensure visibility and faster problem detection. Development agility is achieved by

mixing Python’s speed with Java’s reliability. Python frameworks like FastAPI give quick API building and

integration with AI. Java frameworks like Spring Boot give strong enterprise features like transaction handling.

Both languages fit into the same ecosystem with CI/CD automation. API gateways help them communicate

without security issues or performance loss (Zhao, Jing and Jiang, 2018). Overall, the findings show that adaptive

microservices combine flexible coding, strong security, and reliable scaling. This combination gives businesses

faster delivery, higher stability, and lower downtime risks. The results confirm that adaptive microservices

provide a concrete pathway for modern systems.

CONCLUSION

This study concludes that adaptive microservices in Java and Python offer significant benefits. Service isolation

and containerization improve performance and reliability. Integrated security using OAuth2, JWT, and encrypted

APIs ensures safe communication. Kubernetes orchestration and automated load balancing provide dynamic

scalability under varying workloads. Combining Python’s flexibility with Java’s enterprise stability enhances

development speed and robustness. The findings show that proper tooling, DevOps integration, and monitoring

are critical for success. Overall, adaptive microservices deliver faster delivery, higher stability, and secure

operations. Businesses can adopt this approach to build modern, resilient, and efficient cloud-based applications

with confidence.

BIBLIOGRAPHY

Benavente, V., Yantas, L., Moscol, I., Rodriguez, C., Inquilla, R., & Pomachagua, Y. (2022, December).

Comparative analysis of microservices and monolithic architecture. In 2022 14th International Conference on

Computational Intelligence and Communication Networks (CICN) (pp. 177-184). IEEE. Available at:

https://www.researchgate.net/profile/Isabel-

Moscol/publication/367145513_Comparative_Analysis_of_Microservices_and_Monolithic_Architecture/links/68

46b3b5df0e3f544f5db9e6/Comparative-Analysis-of-Microservices-and-Monolithic-Architecture.pdf

De Bayser, M., Segura, V., Azevedo, L. G., Tizzei, L. P., Thiago, R., Soares, E., & Cerqueira, R. (2022, April).

DevOps and microservices in scientific system development: Experience on a multi-year industry research

project. In Proceedings of the 37th ACM/SIGAPP symposium on applied computing (pp. 1452-1455). Available

at: https://arxiv.org/pdf/2112.12049

Fraser, S., & Ziadé, T. (2021). Python Microservices Development. Packt Publishing. Available at:

https://sciendo.com/2/v2/download/chapter/9781801079372/10.0000/9781801079372-

001.pdf?Token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VycyI6W3sic3ViIjoyNTY3ODUxNywicHVi

cmVmIjoiNzY0NDg4IiwibmFtZSI6Ikdvb2dsZSBHb29nbGVib3QgLSBXZWIgQ3Jhd2xlciBTRU8iLCJ0eXBlIjo

iaW5zdGl0dXRpb24iLCJsb2dvdXRfbGluayI6Imh0dHBzOi8vY29ubmVjdC5saWJseW54LmNvbS9sb2dvdXQv

NjdmNTgwNDBmYTQ5NDljOTM5MGNkYTAxMGM3MmZkMDciLCJhdXRoX21ldGhvZCI6ImlwIiwiaXAi

OiI2Ni4yNDkuNzkuMjM3In1dLCJpYXQiOjE3NDQxNDU0MDIsImV4cCI6MTc0NTM1NTAwMn0.FPKHYj9

JcNXnERGzlad6C5ULRG3zgNJFEq13ksp2V_c

Larsson, M. (2019). Hands-on Microservices with spring boot and spring cloud: build and deploy Java

microservices using spring cloud, Istio, and Kubernetes. Packt Publishing Ltd. Available at:

https://f.letmeprint.ru/259895732-72f61bb0/fragment_10991705.pdf

Patkar, U., Singh, P., Panse, H., Bhavsar, S., & Pandey, C. (2022). Python for web development. International

Journal of Computer Science and Mobile Computing, 11(4), 36. Available at:

https://www.academia.edu/download/87115279/V11I4202208.pdf

https://www.researchgate.net/profile/Isabel-Moscol/publication/367145513_Comparative_Analysis_of_Microservices_and_Monolithic_Architecture/links/6846b3b5df0e3f544f5db9e6/Comparative-Analysis-of-Microservices-and-Monolithic-Architecture.pdf
https://www.researchgate.net/profile/Isabel-Moscol/publication/367145513_Comparative_Analysis_of_Microservices_and_Monolithic_Architecture/links/6846b3b5df0e3f544f5db9e6/Comparative-Analysis-of-Microservices-and-Monolithic-Architecture.pdf
https://www.researchgate.net/profile/Isabel-Moscol/publication/367145513_Comparative_Analysis_of_Microservices_and_Monolithic_Architecture/links/6846b3b5df0e3f544f5db9e6/Comparative-Analysis-of-Microservices-and-Monolithic-Architecture.pdf
https://arxiv.org/pdf/2112.12049
https://sciendo.com/2/v2/download/chapter/9781801079372/10.0000/9781801079372-001.pdf?Token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VycyI6W3sic3ViIjoyNTY3ODUxNywicHVicmVmIjoiNzY0NDg4IiwibmFtZSI6Ikdvb2dsZSBHb29nbGVib3QgLSBXZWIgQ3Jhd2xlciBTRU8iLCJ0eXBlIjoiaW5zdGl0dXRpb24iLCJsb2dvdXRfbGluayI6Imh0dHBzOi8vY29ubmVjdC5saWJseW54LmNvbS9sb2dvdXQvNjdmNTgwNDBmYTQ5NDljOTM5MGNkYTAxMGM3MmZkMDciLCJhdXRoX21ldGhvZCI6ImlwIiwiaXAiOiI2Ni4yNDkuNzkuMjM3In1dLCJpYXQiOjE3NDQxNDU0MDIsImV4cCI6MTc0NTM1NTAwMn0.FPKHYj9JcNXnERGzlad6C5ULRG3zgNJFEq13ksp2V_c
https://sciendo.com/2/v2/download/chapter/9781801079372/10.0000/9781801079372-001.pdf?Token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VycyI6W3sic3ViIjoyNTY3ODUxNywicHVicmVmIjoiNzY0NDg4IiwibmFtZSI6Ikdvb2dsZSBHb29nbGVib3QgLSBXZWIgQ3Jhd2xlciBTRU8iLCJ0eXBlIjoiaW5zdGl0dXRpb24iLCJsb2dvdXRfbGluayI6Imh0dHBzOi8vY29ubmVjdC5saWJseW54LmNvbS9sb2dvdXQvNjdmNTgwNDBmYTQ5NDljOTM5MGNkYTAxMGM3MmZkMDciLCJhdXRoX21ldGhvZCI6ImlwIiwiaXAiOiI2Ni4yNDkuNzkuMjM3In1dLCJpYXQiOjE3NDQxNDU0MDIsImV4cCI6MTc0NTM1NTAwMn0.FPKHYj9JcNXnERGzlad6C5ULRG3zgNJFEq13ksp2V_c
https://sciendo.com/2/v2/download/chapter/9781801079372/10.0000/9781801079372-001.pdf?Token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VycyI6W3sic3ViIjoyNTY3ODUxNywicHVicmVmIjoiNzY0NDg4IiwibmFtZSI6Ikdvb2dsZSBHb29nbGVib3QgLSBXZWIgQ3Jhd2xlciBTRU8iLCJ0eXBlIjoiaW5zdGl0dXRpb24iLCJsb2dvdXRfbGluayI6Imh0dHBzOi8vY29ubmVjdC5saWJseW54LmNvbS9sb2dvdXQvNjdmNTgwNDBmYTQ5NDljOTM5MGNkYTAxMGM3MmZkMDciLCJhdXRoX21ldGhvZCI6ImlwIiwiaXAiOiI2Ni4yNDkuNzkuMjM3In1dLCJpYXQiOjE3NDQxNDU0MDIsImV4cCI6MTc0NTM1NTAwMn0.FPKHYj9JcNXnERGzlad6C5ULRG3zgNJFEq13ksp2V_c
https://sciendo.com/2/v2/download/chapter/9781801079372/10.0000/9781801079372-001.pdf?Token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VycyI6W3sic3ViIjoyNTY3ODUxNywicHVicmVmIjoiNzY0NDg4IiwibmFtZSI6Ikdvb2dsZSBHb29nbGVib3QgLSBXZWIgQ3Jhd2xlciBTRU8iLCJ0eXBlIjoiaW5zdGl0dXRpb24iLCJsb2dvdXRfbGluayI6Imh0dHBzOi8vY29ubmVjdC5saWJseW54LmNvbS9sb2dvdXQvNjdmNTgwNDBmYTQ5NDljOTM5MGNkYTAxMGM3MmZkMDciLCJhdXRoX21ldGhvZCI6ImlwIiwiaXAiOiI2Ni4yNDkuNzkuMjM3In1dLCJpYXQiOjE3NDQxNDU0MDIsImV4cCI6MTc0NTM1NTAwMn0.FPKHYj9JcNXnERGzlad6C5ULRG3zgNJFEq13ksp2V_c
https://sciendo.com/2/v2/download/chapter/9781801079372/10.0000/9781801079372-001.pdf?Token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VycyI6W3sic3ViIjoyNTY3ODUxNywicHVicmVmIjoiNzY0NDg4IiwibmFtZSI6Ikdvb2dsZSBHb29nbGVib3QgLSBXZWIgQ3Jhd2xlciBTRU8iLCJ0eXBlIjoiaW5zdGl0dXRpb24iLCJsb2dvdXRfbGluayI6Imh0dHBzOi8vY29ubmVjdC5saWJseW54LmNvbS9sb2dvdXQvNjdmNTgwNDBmYTQ5NDljOTM5MGNkYTAxMGM3MmZkMDciLCJhdXRoX21ldGhvZCI6ImlwIiwiaXAiOiI2Ni4yNDkuNzkuMjM3In1dLCJpYXQiOjE3NDQxNDU0MDIsImV4cCI6MTc0NTM1NTAwMn0.FPKHYj9JcNXnERGzlad6C5ULRG3zgNJFEq13ksp2V_c
https://sciendo.com/2/v2/download/chapter/9781801079372/10.0000/9781801079372-001.pdf?Token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VycyI6W3sic3ViIjoyNTY3ODUxNywicHVicmVmIjoiNzY0NDg4IiwibmFtZSI6Ikdvb2dsZSBHb29nbGVib3QgLSBXZWIgQ3Jhd2xlciBTRU8iLCJ0eXBlIjoiaW5zdGl0dXRpb24iLCJsb2dvdXRfbGluayI6Imh0dHBzOi8vY29ubmVjdC5saWJseW54LmNvbS9sb2dvdXQvNjdmNTgwNDBmYTQ5NDljOTM5MGNkYTAxMGM3MmZkMDciLCJhdXRoX21ldGhvZCI6ImlwIiwiaXAiOiI2Ni4yNDkuNzkuMjM3In1dLCJpYXQiOjE3NDQxNDU0MDIsImV4cCI6MTc0NTM1NTAwMn0.FPKHYj9JcNXnERGzlad6C5ULRG3zgNJFEq13ksp2V_c
https://sciendo.com/2/v2/download/chapter/9781801079372/10.0000/9781801079372-001.pdf?Token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VycyI6W3sic3ViIjoyNTY3ODUxNywicHVicmVmIjoiNzY0NDg4IiwibmFtZSI6Ikdvb2dsZSBHb29nbGVib3QgLSBXZWIgQ3Jhd2xlciBTRU8iLCJ0eXBlIjoiaW5zdGl0dXRpb24iLCJsb2dvdXRfbGluayI6Imh0dHBzOi8vY29ubmVjdC5saWJseW54LmNvbS9sb2dvdXQvNjdmNTgwNDBmYTQ5NDljOTM5MGNkYTAxMGM3MmZkMDciLCJhdXRoX21ldGhvZCI6ImlwIiwiaXAiOiI2Ni4yNDkuNzkuMjM3In1dLCJpYXQiOjE3NDQxNDU0MDIsImV4cCI6MTc0NTM1NTAwMn0.FPKHYj9JcNXnERGzlad6C5ULRG3zgNJFEq13ksp2V_c
https://f.letmeprint.ru/259895732-72f61bb0/fragment_10991705.pdf
https://www.academia.edu/download/87115279/V11I4202208.pdf

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

 663

Åkesson, T. and Horntvedt, R. (2019). Java, Python and Javascript, a comparison. [online] DIVA. Available at:

https://www.diva-portal.org/smash/record.jsf?pid=diva2:1355073

Bajaj, D., Bharti, U., Goel, A. and Gupta, S.C. (2021). A Prescriptive Model for Migration to Microservices

Based on SDLC Artifacts. Journal of Web Engineering. Available at: https://doi.org/10.13052/jwe1540-

9589.20312

Chatterjee, A., Gerdes, M., Khatiwada, P. and Prinz, A. (2022). Applying Spring Security Framework with TSD-

based OAuth2 to Protect Microservice Architecture APIs: A Case Study. IEEE Access, pp.1–1. Available at:

https://doi.org/10.1109/access.2022.3165548

Ejaz, S., Iqbal, Z., Azmat Shah, P., Bukhari, B.H., Ali, A. and Aadil, F. (2019). Traffic Load Balancing Using

Software Defined Networking (SDN) Controller as Virtualized Network Function. IEEE Access, 7, pp.46646–

46658. Available at: https://doi.org/10.1109/access.2019.2909356

Gbenle, T.P., Abayomi, A.A., Uzoka, A.C., Ogeawuchi, J.C., Adanigbo, O.S. and Odofin, O.T. (2022). Applying

OAuth2 and JWT Protocols in Securing Distributed API Gateways: Best Practices and Case Review.

International Journal of Multidisciplinary Research and Growth Evaluation, 3(5), pp.628–634. Available at:

https://doi.org/10.54660/.ijmrge.2022.3.5.628-634

Haryanti, T., Rakhmawati, N.A., Subriadi, A.P. and Tjahyanto, A. (2022). The Design Science Research

Methodology (DSRM) for Self-Assessing Digital Transformation Maturity Index in Indonesia. [online] IEEE

Xplore. Available at: https://doi.org/10.1109/ICITDA55840.2022.9971171

khoirom, selina (2020). Comparative Analysis of Python and Java for Beginners. [online] Academia.edu.

Available at: https://www.academia.edu/download/94738677/IRJET-V7I8755.pdf

Kornienko, D.V., Mishina, S.V., Shcherbatykh, S.V. and Melnikov, M.O. (2021). Principles of securing RESTful

API web services developed with python frameworks. Journal of Physics: Conference Series, 2094(3), p.032016.

Available at: https://doi.org/10.1088/1742-6596/2094/3/032016

Lefort, A., Pipereau, Y., Amponsem, K., Sutra, P. and Thomas, G. (2021). J-NVM. Proceedings of the ACM

SIGOPS 28th Symposium on Operating Systems Principles, pp.408–423. Available at:

https://doi.org/10.1145/3477132.3483579

Leppänen, T. (2021). Data visualization and monitoring with Grafana and Prometheus. [online] www.theseus.fi.

Available at: https://www.theseus.fi/handle/10024/512860

Martínez-Arellano, G., McNally, M.J., Chaplin, J.C., Ling, Z., McFarlane, D. and Svetan Ratchev (2022).

Visualisation on a Shoestring: A Low-Cost Approach for Building Visualisation Components of Industrial Digital

Solutions. Studies in computational intelligence, pp.277–289. Available at: https://doi.org/10.1007/978-3-030-

99108-1_20

Niemi, A., Bogdan, A. and Ekberg, J.-E. (2021). Trusted Sockets Layer: A TLS 1.3 Based Trusted Channel

Protocol. Lecture notes in computer science, pp.175–191. Available at: https://doi.org/10.1007/978-3-030-91625-

1_10

Pessolani, P., Taborda, M. and Perino, F. (2021). Service Proxy with Load Balancing and Autoscaling for a

Distributed Virtualization System. Unlp.edu.ar. [online] Available at:

http://sedici.unlp.edu.ar/handle/10915/130438

Saad, T.J. (2021). Creating Pipeline and Automated Testing on GitLab. Theseus.fi. [online] Available at:

http://www.theseus.fi/handle/10024/490105

https://www.diva-portal.org/smash/record.jsf?pid=diva2:1355073
https://doi.org/10.13052/jwe1540-9589.20312
https://doi.org/10.13052/jwe1540-9589.20312
https://doi.org/10.1109/access.2022.3165548
https://doi.org/10.1109/access.2019.2909356
https://doi.org/10.54660/.ijmrge.2022.3.5.628-634
https://doi.org/10.1109/ICITDA55840.2022.9971171
https://www.academia.edu/download/94738677/IRJET-V7I8755.pdf
https://doi.org/10.1088/1742-6596/2094/3/032016
https://doi.org/10.1145/3477132.3483579
https://www.theseus.fi/handle/10024/512860
https://doi.org/10.1007/978-3-030-99108-1_20
https://doi.org/10.1007/978-3-030-99108-1_20
https://doi.org/10.1007/978-3-030-91625-1_10
https://doi.org/10.1007/978-3-030-91625-1_10
http://sedici.unlp.edu.ar/handle/10915/130438
http://www.theseus.fi/handle/10024/490105

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

 664

Ueckermann, M.P., Bieszczad, J., Entekhabi, D., Shapiro, M.L., Callendar, D.R., Sullivan, D. and Milloy, J.

(2020). PODPAC: open-source Python software for enabling harmonized, plug-and-play processing of disparate

earth observation data sets and seamless transition onto the serverless cloud by earth scientists. Earth science

informatics, 13(4), pp.1507–1521. Available at: https://doi.org/10.1007/s12145-020-00506-0

Wang, Y. and Ma, D. (2019). Developing a Process in Architecting Microservice Infrastructure with Docker,

Kubernetes, and Istio. [online] arXiv.org. Available at: https://arxiv.org/abs/1911.02275

Yoon, S., Park, H., Cho, K. and Bahn, H. (2022). Supporting Swap in Real-Time Task Scheduling for Unified

Power-Saving in CPU and Memory. IEEE Access, [online] 10, pp.3559–3570. Available at:

https://doi.org/10.1109/ACCESS.2021.3140166

Zampetti, F., Geremia, S., Bavota, G. and Di Penta, M. (2021). CI/CD Pipelines Evolution and Restructuring: A

Qualitative and Quantitative Study. [online] IEEE Xplore. Available at:

https://doi.org/10.1109/ICSME52107.2021.00048

Zhao, J.T., Jing, S.Y. and Jiang, L.Z. (2018). Management of API Gateway Based on Micro-service Architecture.

Journal of Physics: Conference Series, 1087, p.032032. Available at: https://doi.org/10.1088/1742-

6596/1087/3/032032

References of Figure

Hamza Ed-douibi (2018). APIComposer: Data-driven Composition of REST APIs. [online] Modeling Languages.

Available at: https://modeling-languages.com/rest-api-composer/ [Accessed 24 Sep. 2025].

Hiren Dhaduk (2022). Scalable CI/CD Pipeline Examples: Improve the Development Churn. [online] Simform -

Product Engineering Company. Available at: https://www.simform.com/blog/scalable-ci-cd-pipeline-examples/

[Accessed 24 Sep. 2025].

MetricFire Blogger (2020). What Is Kubernetes: A Container Orchestration Platform. [online] Metricfire.com.

Available at: https://www.metricfire.com/blog/what-is-kubernetes-a-container-orchestration-platform/ [Accessed

24 Sep. 2025].

https://doi.org/10.1007/s12145-020-00506-0
https://doi.org/10.1109/ACCESS.2021.3140166
https://doi.org/10.1109/ICSME52107.2021.00048
https://doi.org/10.1088/1742-6596/1087/3/032032
https://doi.org/10.1088/1742-6596/1087/3/032032

