
ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

 114

BUGPOLISH: A COMPREHENSIVE BUGS DATASET PREPROCESSING APPROACH FOR

ENHANCED ANOMALY REMOVAL AND IMPUTATION

Sayyed Jasmin Isahak
1
 and Dr. Manoj Eknath Patil

2

1,2
Department of Computer Science and Engineering, Dr.A.P.J. Abdul Kalam University, Indore (M.P.)-452010

1
shaikh.jasmin.n@gmail.com and

2
mepatil@gmail.com

ABSTRACT

Software bugs play a critical role in determining the reliability and stability of software systems. Accurate

prediction of bug counts is pivotal for proactive bug management and software quality assurance. However, the

challenges of missing data and anomalies within bug datasets necessitate a robust preprocessing approach. This

paper introduces BUGs dataset Preprocessing with novel Outlier removaL, and Imputation techniques for

Scalable Handling (BUGPOLISH), an innovative Bugs dataset preprocessing algorithm designed to enhance bug

count prediction accuracy. The need for BUGPOLISH arises from the limitations of existing bug dataset

preprocessing techniques, which often fail to address the complexities of missing data and anomalies

comprehensively. The Bugs dataset, consisting of 18 attributes, is processed through steps, including outlier

removal, imputation, and normalization, to yield a high-quality, preprocessed dataset ready for predictive

modelling. To address the challenges associated with missing data and anomalies in the Bugs dataset,

BUGPOLISH employs a multi-step approach. The algorithm begins by eliminating duplicate records, ensuring

data integrity. Optimized Target Encoding is then applied for categorical to numerical conversion, followed by

the introduction of SMART-FILL, a Supervised Missing-value Augmented Regression Technique with Feature

Imputation and Learning. This step imputes missing values by selecting the most suitable regression model using

Mean Absolute Error (MAE), enhancing the imputation accuracy. The BUGPOLISH algorithm incorporates the

Adaptive Threshold Anomaly Purge (ATAP) algorithm, which dynamically determines anomaly thresholds based

on dataset characteristics to refine the dataset further. ATAP effectively identifies and removes anomalies,

contributing to a cleaner and more reliable dataset for subsequent analysis. The processed dataset undergoes

MIN-MAX normalization, ensuring consistent scaling across attributes. Experimental results illustrate that the

BUGPOLISH algorithm surpasses existing methods by seamlessly integrating outlier removal, imputation, and

normalization.

Keywords: Bug count prediction, Dataset preprocessing, Anomaly removal, Imputation techniques, Software

reliability

1 INTRODUCTION
Software bugs, often called defects or errors, represent inherent challenges in developing and maintaining

software systems [1]. Predicting the count of bugs is a critical aspect of proactive bug management and ensuring

the overall quality and reliability of software [2]. As software projects become increasingly complex, the

corresponding bug datasets grow in size and intricacy, presenting challenges related to missing data and

anomalies. These challenges necessitate a robust preprocessing approach to ensure the accuracy of bug count

predictions [3].

Predicting bug counts is integral to software development, enabling teams to identify potential issues early in the

development lifecycle. This proactive approach allows for timely bug resolution, reducing the likelihood of bugs

affecting end-users and ensuring a more stable software release. However, the effectiveness of bug count

prediction relies heavily on the quality of the underlying bug dataset.

While several techniques exist for preprocessing bug datasets, they often fail to comprehensively address the

multifaceted nature of bug-related data [4], [5]. Common issues include the inadequate handling of missing data

and a tendency to overlook anomalies, resulting in suboptimal bug count predictions. These limitations

underscore the need for a more sophisticated and integrated approach to bug dataset preprocessing.

mailto:shaikh.jasmin.n@gmail.com
mailto:mepatil@gmail.com

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

 115

The limitations of existing bug dataset preprocessing techniques are evident in their inability to handle missing

data effectively. Inaccurate imputations can lead to skewed bug count predictions, undermining the reliability of

predictive models. Moreover, the oversight of anomalies in these techniques introduces bias and compromises the

overall performance of bug prediction models.

This paper proposed BUGs dataset Preprocessing with novel Outlier removaL, and Imputation techniques for

Scalable Handling (BUGPOLISH) algorithm for overcoming the shortcomings of existing preprocessing

methods. The need for BUGPOLISH arises from the increasing complexities of bug datasets and the demand for a

holistic preprocessing solution that seamlessly integrates outlier removal, imputation, and normalization

processes.

BUGPOLISH introduces a multi-step approach to bug dataset preprocessing. It begins by addressing data

integrity through the elimination of duplicate records. Optimized Target Encoding facilitates the conversion of

categorical attributes to numerical forms, laying the groundwork for subsequent processing. The SMART-FILL

algorithm, a Supervised Missing-value Augmented Regression Technique with Feature Imputation and Learning,

is then employed for accurate missing value prediction. The Adaptive Threshold Anomaly Purge (ATAP)

algorithm dynamically identifies and removes anomalies, contributing to a more reliable dataset. Finally, MIN-

MAX normalization ensures consistent scaling across attributes.

This paper introduces several significant contributions in the realm of bug dataset preprocessing, aiming to

elevate the accuracy and reliability of bug count predictions:

 Introduction of BUGPOLISH Algorithm: The primary contribution lies in introducing BUGPOLISH, an

innovative and comprehensive bug dataset preprocessing algorithm. BUGPOLISH is designed to holistically

address the challenges associated with bug datasets, providing a unified solution for outlier removal,

imputation, and normalization. This algorithm establishes an advanced and integrated approach to handling

bug-related data.

 Seamless Integration of Preprocessing Components: A noteworthy contribution is the seamless integration

of outlier removal, imputation, and normalization within the BUGPOLISH workflow. This holistic approach

ensures bug datasets undergo a thorough and interconnected processing cycle. By unifying these essential

preprocessing steps, BUGPOLISH enhances the overall quality of bug datasets, contributing to more accurate

bug count predictions.

 Addressing Limitations of Existing Techniques: This paper critically evaluates the existing bug dataset

preprocessing techniques and identifies their limitations. BUGPOLISH addresses these shortcomings by

providing a more comprehensive and adaptive solution. Specifically, it offers improved handling of missing

data, a refined anomaly detection mechanism, and an enhanced imputation technique, collectively overcoming

the drawbacks of traditional preprocessing methods.

These contributions collectively advance the field of bug dataset preprocessing, offering a novel algorithm that

addresses existing limitations and sets a new standard for comprehensive and effective bug count prediction

methodologies. Integrating outlier removal, imputation, and normalization in BUGPOLISH presents a holistic and

adaptable preprocessing algorithm.

This research aims to improve the accuracy of bug count predictions by implementing a comprehensive bug

dataset preprocessing approach. The primary objectives include the development of the BUGPOLISH algorithm,

designed to preprocess bug datasets effectively by integrating outlier removal, imputation, and normalization

processes. Another critical objective involves evaluating the algorithm's performance against existing bug dataset

preprocessing techniques. Beyond the scope of academia, the area of utilization for BUGPOLISH extends to

software engineering and quality assurance, offering researchers and practitioners a potent tool to enhance the

reliability of bug count predictions in software development and maintenance.

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

 116

The paper is organized into five key sections to explore the BUGPOLISH algorithm comprehensively. Section 2,

Related Work, reviews existing techniques, emphasizing gaps BUGPOLISH addresses. The heart of the paper lies

in Section 3, the Proposed BUGPOLISH Algorithm, detailing its novel approach to preprocessing. Following this,

Section 4, Experimental Results and Discussion, showcases the algorithm's performance compared to existing

methods. Finally, Section 5, Conclusion and Future Work concludes the paper with a concise wrap-up and

outlines avenues for future research.

2. RELATED WORK
A comprehensive review of existing literature reveals notable efforts in software bug prediction, each contributing

valuable insights into the challenges and methodologies associated with this critical aspect of software

engineering.

Pandey et al. [6] have presented the Bug Prediction using Deep Ensemble Techniques (BPDET), an innovative

software bug prediction model that harnesses the power of deep representation and ensemble learning techniques.

In a complementary vein, Li et al. [7] have comprehensively reviewed unsupervised learning techniques for

software defect prediction, shedding light on the imperative need for advanced preprocessing methods in this

domain.

Meanwhile, the work of Meng et al. [8] introduces a semi-supervised paradigm for software defect prediction by

implementing a model based on tri-training. Shifting the focus to hyper-parameter optimization, Khan et al. [9]

employ an artificial immune network to fine-tune their software bug prediction model, emphasizing the

significance of parameter tuning in enhancing predictive accuracy.

Delving deeper into the application of machine learning in bug prediction, Aquil and Ishak [10] explore a

spectrum of machine learning techniques tailored for predicting software defects. In a parallel effort, Khleel and

Nehéz [11] conducted an extensive and meticulous study encompassing various machine-learning methodologies

dedicated to software bug prediction.

Uqaili and Ahsan [12] contribute to this endeavour by delving into the intricacies of machine learning-based

prediction models tailored for identifying and addressing these intricate coding issues. Similarly, Gupta et al. [13]

present a pioneering approach with their proposal of a novel XGBoost-tuned machine learning model designed

explicitly for software bug prediction, adding a valuable dimension to the ongoing discourse in the field.

Pecorelli and Di Nucci [14] undertake a comprehensive investigation into the adaptive selection of classifiers to

enhance bug prediction methodologies. Through a large-scale empirical analysis, they seek to optimize bug

prediction by strategically choosing classifiers, shedding light on the nuanced interplay between different

classification algorithms and bug prediction accuracy.

Meanwhile, Kumar [15] directs attention towards the critical aspect of multiclass software bug severity

classification. His work uses decision trees, Naive Bayes, and bagging techniques to address the challenges of

diverse bug severities. By combining these techniques, Kumar aims to provide a robust framework for accurately

classifying and prioritizing software bugs based on their severity levels.

Furthermore, Saharudin et al.'s systematic review [16] offers a panoramic overview of the landscape,

consolidating the collective knowledge of machine learning techniques for software bug prediction.

Despite the advancements in the field, a research gap emerges in the form of limitations and challenges inherent

in existing techniques. Many of these methodologies lack a holistic approach, often failing to address the

complexities associated with missing data and anomalies in bug datasets. Moreover, the need for seamless

integration of outlier removal, imputation, and normalization in a unified preprocessing workflow remains unmet.

The literature highlights the necessity for a more sophisticated and comprehensive bug dataset preprocessing

algorithm to enhance the accuracy and reliability of bug count predictions. This gap underscores the significance

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

 117

of introducing BUGPOLISH, which aims to overcome the limitations identified in the existing body of work by

seamlessly integrating preprocessing components and setting a new standard in bug dataset preprocessing.

3. METHODOLOGY
This section presents the methodology for comprehensive preprocessing bug datasets encapsulated within the

BUGPOLISH algorithm. The algorithm, articulated in Algorithm 1, encompasses novel strategies for categorical

to numerical conversion, imputation, and anomaly removal, ensuring a rigorous and scalable handling of bug-

related data. BUGPOLISH is an advanced algorithm tailored for the preprocessing of Bugs datasets. Figure 1

shows the system architecture of the BUGPOLISH algorithm.

Figure 1: Architecture of BUGPOLISH algorithm

The BUGPOLISH algorithm begins by loading the dataset and systematically enhancing its quality through steps.

Duplicate records are eliminated to ensure data cleanliness. Optimized target encoding is then applied to

efficiently convert categorical variables to numerical format. The SMART-FILL algorithm, a Supervised

Missing-value Augmented Regression Technique, imputes missing data, leveraging regression methods for

accurate predictions. Next, the ATAP algorithm, an Adaptive Threshold Anomaly Purge, effectively identifies

and removes anomalies from the imputed dataset. Following anomaly removal, MIN-MAX normalization is

implemented to scale the dataset uniformly. The key advantages of BUGPOLISH include its ability to handle

outliers, impute missing values, and normalize data, contributing to a cleaner, more standardized Bugs dataset

suitable for analysis and machine learning. Additionally, the algorithm is designed with scalability, ensuring

efficient processing even with large datasets, making it a robust solution for bug data preprocessing.

Algorithm 1: BUGPOLISH: Bugs dataset Preprocessing with novel outlier

removal and imputation algorithm for Scalable Handling

Input : Bugs dataset comprising 18 Attributes (Bug_ID, Description,

Software_Process_Model, Project_Phase, Developer(s)_involved,

Date_reported, Severity, Priority, Resolution_status, Module,

Operating_System, Test_Environment, Code_Repository,

Test_Framework, Team_Lead, Code_Reviewer, Unit_Test_Coverage,

Bug_count)

Output : Processed Bugs dataset

Step 1 : Load the Bugs dataset.

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

 118

Step 2 : Eliminate duplicate records from the Bugs dataset.

Step 3 : Utilize Optimized Target Encoding for categorical to numerical

conversion on the dataset with duplicates removed.

Step 4 : Apply the SMART-FILL algorithm (Supervised Missing-value

Augmented Regression Technique with Feature Imputation and Learning)

for imputing missing data on the dataset converted from categorical to

numerical. // Algorithm 2

Step 5 : Employ the ATAP algorithm (Adaptive Threshold Anomaly Purge) to

remove anomalies from the imputed dataset. // Algorithm 3

Step 6 : Implement MIN-MAX normalization to scale the dataset post-anomaly

removal.

Step 7 : Return the 'normalized dataset' as the preprocessed dataset.

3.1 Eliminate duplicate records

The first critical step in the BUGPOLISH algorithm is eliminating duplicate records from the Bugs dataset.

Duplicate entries can introduce biases, compromise the integrity of the dataset, and adversely affect the accuracy

of bug count predictions. This process ensures that each bug instance is uniquely represented, providing a solid

foundation for subsequent preprocessing steps.

Procedure

1. Identification of Duplicates: The algorithm initiates by identifying and flagging duplicate records within the

Bugs dataset. This identification is typically based on a combination of attributes, ensuring a comprehensive

data integrity assessment.

2. Prioritization Criteria: In scenarios where duplicates exist, a set of criteria, such as the timestamp of bug

reporting or unique Bug_ID, is established to prioritize and retain the most relevant record. This prioritization

ensures that the maintained record accurately reflects the bug's status, severity, and other pertinent attributes.

3. Record Removal: Once identified and prioritized, duplicate records are systematically removed, leaving a

refined dataset containing unique bug instances.

Significance
Eliminating duplicate records is paramount for maintaining the accuracy and reliability of bug datasets. It

prevents over-representation of specific bugs and streamlines subsequent preprocessing steps, ensuring that

downstream analyses and predictions are based on a dataset free from redundancy. This meticulous curation sets

the stage for robust bug count predictions by providing a clean, unambiguous dataset with distinct bug instances.

In essence, this step contributes to the overall data quality and integrity, which is vital for the success of the

BUGPOLISH algorithm in enhancing bug count prediction accuracy.

3.2 Optimized Target Encoding
The second pivotal stage in the BUGPOLISH algorithm is implementing Optimized Target Encoding, a technique

employed for categorically and numerically converting attributes within the Bugs dataset. Notably, the

optimization in this encoding process involves a departure from the conventional use of mean values to a more

robust application of the median. This adjustment is introduced to enhance the encoding method's resilience to

potential outliers and variations in the data distribution.

Procedure

1. Identification of Categorical Attributes: The algorithm begins by identifying categorical attributes within

the Bugs dataset that require conversion to numerical values for further analysis.

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

 119

2. Target Encoding: Unlike traditional methods employing mean values for target encoding, Optimized Target

Encoding utilizes the median as a more robust statistical measure. This modification is particularly

advantageous in scenarios where the dataset may contain outliers or exhibit a skewed distribution, ensuring a

more representative encoding of categorical attributes.

3. Mediation of Outliers: By adopting the median, this encoding method mitigates the impact of outliers,

providing a more stable numerical representation for categorical variables. The median, being less sensitive to

extreme values, contributes to the overall resilience of the preprocessing pipeline.

4. Application to Duplicate-Free Dataset: Optimized Target Encoding is explicitly applied to the Bugs dataset

after eliminating duplicate records (as detailed in Section 3.1), ensuring a refined dataset is subjected to this

encoding methodology.

5. Attribute Transformation: Categorical attributes are transformed into numerical counterparts, facilitating

subsequent processing steps requiring a numerical analysis format.

Optimized Target Encoding is a technique used to encode categorical variables based on the median of the target

variable for each category. Eq. (1) shows the formula for Optimized Target Encoding can be expressed as follows:

Optimized Target Encoding(X) = median(Target[X]) (1)

Where:

 X represents a categorical variable in the dataset.

 Target[X] denotes the target variable (e.g., Bug_count) corresponding to each category of variable X.

 The result is the category X's encoded value based on the target variable's median.

Example
Consider a simplified dataset with a categorical variable "Module" and a target variable "Bug_count." The dataset

looks like this:

Table 1: Simplified dataset with a categorical variable "Module" and a target variable "Bug_count"

Module Bug_count

Module_A 5

Module_B 8

Module_A 3

Module_C 6

Module_B 9

Step 1: Calculate the Median Bug_count for Each Module:

 For Module_A: Median Bug_count = median([5,3]) = 4

 For Module_B: Median Bug_count = median([8,9]) = 8.5

 For Module_C: Median Bug_count = median([6]) = 6

Step 2: Replace Categorical Values with Optimized Target Encoded Values:

Table 2: Optimized Target Encoding

Module Optimized Target Encoding

Module_A 4

Module_B 8.5

Module_A 4

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

 120

Module_C 6

Module_B 8.5

In this example, the categorical variable "Module" has been replaced with Optimized Target Encoded values

based on the median Bug_count for each category. This encoding method is advantageous when dealing with

categorical variables in predictive modelling, as it provides a robust representation less sensitive to outliers in the

target variable.

Significance:
Optimized Target Encoding using the median is a crucial enhancement in the BUGPOLISH algorithm. By

prioritizing the median over the mean, the encoding process becomes more robust, especially when faced with

datasets that exhibit variations and potential outliers. This refinement contributes to the accuracy and stability of

subsequent preprocessing steps, setting the stage for more reliable bug count predictions. As a cornerstone in the

preprocessing workflow, Optimized Target Encoding ensures that categorical attributes are appropriately

translated into numerical representations, fostering a seamless transition for further analytical endeavours.

3.3 SMART-FILL algorithm for missing data imputation
The SMART-FILL algorithm, standing for Supervised Missing-value Augmented Regression Technique with

Feature Imputation and Learning, is a critical component of the BUGPOLISH algorithm. Its primary purpose is to

address missing values within the Bugs dataset in a comprehensive and data-driven manner. The algorithm

operates through steps (see Algorithm 2), leveraging regression models to impute missing values for various

attributes.

Algorithm 2: SMART-FILL (Supervised Missing-value Augmented Regression Technique with

Feature Imputation and Learning)

Input : Dataset with missing values (data)

Output : Imputed dataset (imputedData)

Step 1 : Separate the dataset into complete (trainData) and incomplete (testData) data.

Step 2 : Identify attributes with missing values (missingAttributes).

Step 3 : For each missing attribute in missingAttributes:

a. Train regression models (AdditiveRegression, RandomForest, IBk) on trainData.

b. Select the best regression model based on Mean Absolute Error (MAE).

c. Predict missing values in testData using the selected best regression model.

Step 4 : Replace missing values in testData with the predicted values from the best regression

model.

Step 5 : Combine trainData and imputed testData to create the imputed dataset (imputedData).

Step 6 : Return imputedData.

The algorithm begins with separating the dataset into two subsets, namely complete data (trainData) and

incomplete data (testData), where the former serves as the training set for regression models. The algorithm

systematically identifies attributes with missing values and, for each such attribute, employs various regression

models (such as Additive Regression, RandomForest, IBk) on the training set. Through rigorous evaluation based

on Mean Absolute Error (MAE), the algorithm selects the regression model with the highest accuracy for

predicting missing values in the incomplete dataset. The imputed values replace the lost entries, and the datasets

are merged to create the final imputed dataset (imputedData). This meticulous workflow ensures a tailored and

precise imputation for each attribute with missing values, enhancing the overall completeness and quality of the

Bugs dataset for subsequent analyses and bug count predictions within the BUGPOLISH framework.

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

 121

3.3.1 Additive Regression

Additive regression is a statistical modelling technique focusing on predicting the target variable by combining

the predictions of multiple base models. It involves fitting a series of weak learners, such as decision trees, and

aggregating their predictions to form a more robust and accurate model.

In the SMART-FILL algorithm, Additive Regression is one of the regression models used to predict missing

values for attributes in the Bugs dataset during the imputation process.

3.3.2 RandomForest
RandomForest is an ensemble learning method that constructs many decision trees during training and outputs the

individual trees' mode (classification) or mean prediction (regression). It improves predictive accuracy and

controls overfitting by combining the strengths of multiple decision trees.

RandomForest is employed as one of the regression models in SMART-FILL to predict missing values in the

Bugs dataset, contributing to the overall accuracy of imputation.

3.3.3 IBk (Instance-Based k-Nearest Neighbors)
IBk is a type of k-nearest Neighbors (k-NN) algorithm that makes predictions based on the majority class (for

classification) or the average value (for regression) of the k-nearest instances in the training dataset. It relies on

the similarity between instances to make predictions.

IBk is utilized as a regression model in SMART-FILL, leveraging the k-NN approach to predict missing values

by considering the attributes of similar instances in the Bugs dataset.

3.3.4 Mean Absolute Error (MAE)

Mean Absolute Error is a metric used to evaluate the accuracy of a regression model by measuring the average

absolute differences between the predicted and actual values. It provides a straightforward assessment of how well

a model's predictions align with the true values, with lower MAE values indicating better performance.

MAE is employed in the SMART-FILL algorithm to assess the performance of different regression models and

select the one with the lowest MAE as the most accurate predictor for imputing missing values in the Bugs

dataset.

Significance:

The SMART-FILL algorithm contributes significantly to the overall data preprocessing workflow in

BUGPOLISH. Using a supervised approach with multiple regression models and selecting the best-performing

model based on MAE, SMART-FILL ensures accurate and tailored imputation for each attribute with missing

values. This meticulous imputation enhances the dataset's completeness, providing that subsequent analyses,

including bug count predictions, are based on a high-quality dataset. The algorithm's adaptability and reliance on

machine learning techniques make it a robust solution for addressing missing data challenges in bug datasets.

3.4 ATAP algorithm for anomaly removal

The Adaptive Threshold Anomaly Purge (ATAP) algorithm is a crucial element of the BUGPOLISH algorithm,

designed to identify and eliminate anomalies from the imputed dataset. Anomalies, or outliers, in the data, can

significantly impact the accuracy of predictive modelling, including bug count predictions. Algorithm 3 is an

overview of the ATAP algorithm within the BUGPOLISH algorithm.

Algorithm 3: ATAP (Adaptive Threshold Anomaly Purge)

Input : Imputed dataset (inputData)

Output : Dataset with anomalies removed (cleanedData)

Step 1 : Import the imputed dataset as instances (dataInstances).

Step 2 : Determine a dynamic threshold factor (thresholdFactor) based on the dataset size.

Step 3 : Initialize an array for anomaly counts (anomalyCounts) with the same size as

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

 122

dataInstances.

Step 4 : For each numeric attribute in dataInstances:

a. Extract and sort attribute values (attrValues).

b. Compute lower (lowerPercentile) and upper (upperPercentile) percentiles (e.g.,

15th and 85th).

c. Compute attribute range (attrRange = upperPercentile - lowerPercentile).

d. Compute lower and upper limits:

 lowerLimit = lowerPercentile - thresholdFactor * attrRange

 upperLimit = upperPercentile + thresholdFactor * attrRange

e. Identify instances with values outside lowerLimit and upperLimit as anomalies;

update anomaly counts.

Step 5 : Establish an anomaly threshold (anomalyThreshold) to recognize anomalies (e.g.,

two or more).

Step 6 : Form a new dataset without anomalies (cleanedData) by selecting instances below

the anomalyThreshold.

Step 7 : Return the cleanedData.

Beginning with the imported imputed dataset, the algorithm dynamically determines a threshold factor based on

dataset size (threshold factor = 1 / Math.sqrt(datasetSize)), ensuring adaptability to different data characteristics.

An array for anomaly counts is initialized for each instance in the dataset. ATAP extracts and sorts attribute

values for each numeric attribute, computes percentiles and attribute range, and establishes lower and upper

limits. Instances with values outside these limits are identified as anomalies, and the anomaly counts are updated

accordingly. An anomaly threshold is then established to define the minimum anomaly count for an instance to be

considered anomalous. Finally, a new dataset without anomalies (cleanedData) is formed by selecting instances

with anomaly counts below the established threshold. This results in a refined dataset ready for further analyses

and bug count predictions. The algorithm's adaptability and systematic approach make it a valuable tool in

ensuring the reliability of bug dataset preprocessing within the BUGPOLISH algorithm.

Significance:
ATAP enhances the overall data quality within BUGPOLISH by dynamically adapting to dataset characteristics

and effectively purging instances with anomalies. It ensures that the imputed dataset is robust and free from the

influence of outliers, contributing to the accuracy and reliability of bug count predictions.

3.5 MIN-MAX normalization

MIN-MAX normalization is a pivotal step in the BUGPOLISH algorithm, ensuring uniform scaling of the dataset

post-anomaly removal contributes to subsequent analyses' stability and effectiveness, particularly in bug count

predictions. This normalization technique transforms the numerical attributes in the dataset, bringing them within

a standardized range of values. The process is detailed as follows:

1. Definition of MIN-MAX Normalization: MIN-MAX normalization, also known as feature scaling, rescales

each numeric attribute in the dataset to a predefined range, typically [0, 1]. This transformation ensures that all

attributes have a consistent scale, preventing certain features from dominating others during modelling.

2. Application to Bug Dataset Attributes: The BUGPOLISH algorithm considers the bug dataset, comprising

18 attributes, each potentially exhibiting different scales. MIN-MAX normalization is applied individually to

each numeric attribute, guaranteeing that no single attribute disproportionately influences subsequent analyses.

3. Calculation of Normalized Values: For each numeric attribute, the normalized value (newValue) is

computed using the MIN-MAX normalization formula shown in Eq. (2):

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

 123

newValue = (2)

Where minValue and maxValue represent the minimum and maximum values of the attribute, respectively.

4. Ensuring [0, 1] Range: The normalization process guarantees that the transformed values fall within the range

[0, 1]. This range is particularly advantageous for machine learning algorithms, contributing to improved

convergence and performance.

5. Uniform Treatment across Attributes: MIN-MAX normalization ensures that all attributes undergo a

consistent transformation regardless of their original scales. This constant treatment facilitates fair

comparisons and accurate analyses in subsequent stages of the BUGPOLISH workflow.

6. Preservation of Relationships: MIN-MAX normalization maintains the proportional relationships between

data points while scaling the dataset. This preservation is crucial for retaining the integrity of the bug dataset

and ensuring that the normalized data accurately represents the original information.

7. Final Preprocessed Dataset: MIN-MAX normalization results in a preprocessed dataset with standardized

numerical attributes, free from anomalies, and ready for deployment in predictive modelling and bug count

predictions.

Significance:
MIN-MAX normalization is a vital component in the BUGPOLISH algorithm, contributing to the overall data

preprocessing strategy by ensuring a consistent and standardized scale for numerical attributes. This step enhances

the stability and performance of subsequent analyses, ultimately leading to more accurate bug count predictions

and reliable insights in software quality assurance.

The culmination of the BUGPOLISH algorithm is the generation of a final preprocessed dataset. This dataset, free

from duplicates, anomalies, and missing values, is ready for deployment in bug count predictions and other

analyses within the software quality assurance domain. The methodology outlined in BUGPOLISH introduces

innovative techniques to address challenges in bug dataset preprocessing. Integrating outlier removal, imputation,

and normalization within a unified framework sets BUGPOLISH apart from existing methods. Experimental

validation demonstrates its superiority, emphasizing the algorithm's effectiveness in enhancing bug count

prediction accuracy and overall dataset quality. The structured methodology presented in this study contributes to

advancing the field of software quality assurance and predictive modelling in bug management.

4. Experimental Results and Discussions
This section presents the experimental results and discussions of the BUGPOLISH algorithm's performance in

preprocessing a bug dataset for enhanced bug count prediction accuracy. The bug dataset used for this study

includes the following 18 attributes:

1. Bug_ID: A unique identifier assigned to each bug in the dataset, facilitating individual bug tracking and

reference.

2. Description: A textual description of the bug, providing details about the nature and specifics of the reported

issue.

3. Software_Process_Model: Indicates the software development process model associated with the project,

such as Agile or Waterfall, providing insight into the project's methodology.

4. Project_Phase: Represents the phase of the software development lifecycle during which the bug was

identified, such as Requirements, Design, Implementation, or Testing.

5. Developer(s)_involved: Specifies the developer or developers involved in addressing the reported bug, aiding

in assigning responsibility for bug resolution.

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

 124

6. Date_reported: Records the date when the bug was reported, which is essential for tracking the bug's lifecycle

and resolution timeline.

7. Severity: Indicates the severity or impact level of the bug, categorizing it as High, Medium, or Critical,

reflecting its potential consequences.

8. Priority: Represents the priority assigned to the bug, guiding developers in determining the order in which

bugs should be addressed based on their significance.

9. Resolution_status: Describes the current status of the bug, whether it is Open, In Progress, Resolved, or

Closed, indicating its progress in the resolution process.

10. Module: Specifies the software module or component affected by the bug, aiding in targeted bug resolution

and system understanding.

11. Operating_System: Identifies the operating system under which the bug was observed, providing information

about the platform on which the software issue occurs.

12. Test_Environment: Describes the testing environment or conditions where the bug was identified, helping to

replicate and validate the issue during testing.

13. Code_Repository: Indicates the code repository associated with the project, such as GitHub or Bitbucket,

providing insight into version control and collaboration platforms.

14. Test_Framework: Specifies the testing framework utilized for testing activities related to the bug, aiding in

understanding the testing methodology.

15. Team_Lead: Names the team lead overseeing the bug resolution process, facilitating communication and

coordination within the development team.

16. Code_Reviewer: Identifies the individual responsible for reviewing the code changes associated with the bug

fix, ensuring code quality and adherence to coding standards.

17. Unit_Test_Coverage: Represents the percentage of unit test coverage for the code changes addressing the

bug, providing a metric for code testing comprehensiveness.

18. Bug_count: Indicates the count or frequency of the bug, reflecting the number of occurrences of the reported

issue in the dataset.

This dataset encompasses diverse bug scenarios, providing a realistic foundation for evaluating the effectiveness

of the BUGPOLISH algorithm in preprocessing. In the experimentation phase, the BUGPOLISH algorithm was

implemented using Java, leveraging its versatility for efficient algorithm development. The robustness and

flexibility of Java made it an ideal choice for crafting a comprehensive bug dataset preprocessing tool. The

implementation was further facilitated by utilizing the Weka tool, a prominent data mining and machine learning

software widely employed for experimental research. The performance evaluation of the BUGPOLISH algorithm

involves using the Linear Regression and Random Forest algorithms. This evaluation compares bug count

prediction accuracy before and after preprocessing, gauged through the Mean Absolute Error (MAE) and Root

Mean Squared Error (RMSE) metrics.

Mean Absolute Error (MAE):

MAE measures a dataset's average absolute difference between predicted and actual values. It provides a

straightforward representation of the magnitude of errors without considering their direction. The formula for

MAE is given by:

MAE = (3)

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

 125

Where:

 n is the number of observations in the dataset.

 is the actual value.

 is the predicted value.

Root Mean Squared Error (RMSE):

RMSE is a more comprehensive metric that penalizes larger errors more significantly. It calculates the square root

of the average squared differences between predicted and actual values. The formula for RMSE is given by:

RMSE = (4)

Where:

 n is the number of observations in the dataset.

 is the actual value.

 is the predicted value.

Lower values of MAE and RMSE indicate superior accuracy. Table 3 shows the comparative analysis of before

and after BUGPOLISH preprocessing.

Table 3: Comparative Analysis of Before and After BUGPOLISH Preprocessing

Algorithm

Before BUGPOLISH

Preprocessing

After BUGPOLISH

Preprocessing

MAE RMSE MAE RMSE

Linear

Regression
2.4532 3.1085 0.2668 0.3251

Random Forest 0.6630 1.0738 0.1626 0.2363

The BUGPOLISH algorithm demonstrated substantial enhancements in bug count prediction accuracy when

applied to the bug dataset, shown in Figure 2.

Figure 2: Comparative Analysis of Before and After BUGPOLISH Preprocessing

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

 126

Before preprocessing, the Linear Regression model exhibited an MAE of 2.4532 and RMSE of 3.1085, while the

Random Forest model showed an MAE of 0.6630 and RMSE of 1.0738. After BUGPOLISH preprocessing, these

metrics witnessed significant improvements. The Linear Regression model achieved an MAE of 0.2668 and

RMSE of 0.3251, showcasing a remarkable error reduction. Similarly, the Random Forest model displayed

enhanced precision, with an MAE of 0.1626 and RMSE of 0.2363. The noteworthy decrease in MAE and RMSE

values post-BUGPOLISH preprocessing underscores its efficacy in refining the bug dataset, ultimately leading to

more accurate bug count predictions.

5. CONCLUSION AND FUTURE WORK
In conclusion, the BUGPOLISH algorithm emerges as a robust and comprehensive solution for enhancing bug

dataset preprocessing and improving bug count prediction accuracy. The experimental results reveal its efficacy in

seamlessly integrating outlier removal, imputation, and normalization processes, addressing the intricacies

associated with missing data and anomalies. By employing Linear Regression and Random Forest classifiers,

BUGPOLISH significantly refines the bug dataset, reflected in the substantial reduction of Mean Absolute Error

(MAE) and Root Mean Squared Error (RMSE) metrics. The algorithm's success lies in providing a cleaner, more

reliable dataset for bug count prediction, ultimately contributing to the advancement of software quality assurance

and bug management.

Looking forward, BUGPOLISH's versatility transcends bug prediction, offering a potent preprocessing tool

adaptable to diverse domains. Further exploration in finance, healthcare, and climate science promises to unveil

its broader applicability beyond software engineering. The algorithm's adaptability positions it as a candidate for

enhancing predictive modelling across varied datasets, addressing challenges associated with missing values and

anomalies. Future efforts may also focus on tailoring BUGPOLISH to specific domain characteristics, ensuring

optimal application performance. This exploration aligns with advanced data preprocessing methodologies to

elevate predictive modelling accuracy in diverse fields.

REFERENCES

[1] Kharkar, A., Moghaddam, R. Z., Jin, M., Liu, X., Shi, X., Clement, C., & Sundaresan, N. (2022, May).

Learning to reduce false positives in analytic bug detectors. In Proceedings of the 44th International

Conference on Software Engineering (pp. 1307-1316).

[2] Nevendra, M., & Singh, P. (2019, December). Software bug count prediction via AdaBoost. R-ET. In 2019

IEEE 9th International Conference on Advanced Computing (IACC) (pp. 7-12). IEEE.

[3] Pandey, S. K., & Tripathi, A. K. (2020). BCV-Predictor: A bug count vector predictor of a successive

version of the software system. Knowledge-Based Systems, 197, 105924.

[4] Chmielowski, L., & Kucharzak, M. (2022). Impact of software bug report preprocessing and vectorization

on bug assignment accuracy. In Progress in Image Processing, Pattern Recognition and Communication

Systems: Proceedings of the Conference (CORES, IP&C, ACS)-June 28-30 2021 12 (pp. 153-162).

Springer International Publishing.

[5] Shakhovska, N., Yakovyna, V., & Kryvinska, N. (2020, September). An improved software defect

prediction algorithm using self-organizing maps combined with hierarchical clustering and data

preprocessing. In International Conference on Database and Expert Systems Applications (pp. 414-424).

Cham: Springer International Publishing.

[6] Pandey, S. K., Mishra, R. B., & Tripathi, A. K. (2020). BPDET: An effective software bug prediction

model using deep representation and ensemble learning techniques—Expert Systems with Applications,

144, 113085.

[7] Li, N., Shepperd, M., & Guo, Y. (2020). A systematic review of unsupervised learning techniques for

software defect prediction. Information and Software Technology, 122, 106287.

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

 127

[8] Meng, F., Cheng, W., & Wang, J. (2021). Semi-supervised software defect prediction model based on tri-

training. KSII Transactions on Internet & Information Systems, 15(11).

[9] Khan, F., Kanwal, S., Alamri, S., & Mumtaz, B. (2020). Hyper-parameter optimization of classifiers, using

an artificial immune network and its application to software bug prediction. Ieee Access, 8, 20954-20964.

[10] Aquil, M. A. I., & Ishak, W. H. W. (2020). Predicting software defects using machine learning techniques.

International Journal, 9(4), 6609-6616.

[11] Khleel, N. A. A., & Nehéz, K. (2021). Comprehensive study on machine learning techniques for software

bug prediction. International Journal of Advanced Computer Science and Applications, 12(8).

[12] Uqaili, I. U. N., & Ahsan, S. N. (2020). Machine learning-based prediction of complex bugs in source code.

INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 17(1), 26-37.

[13] Gupta, A., Sharma, S., Goyal, S., & Rashid, M. (2020, June). Novel xgboost tuned machine learning model

for software bug prediction. In 2020 International Conference on Intelligent Engineering and Management

(ICIEM) (pp. 376-380). IEEE.

[14] Pecorelli, F., & Di Nucci, D. (2021). Adaptive selection of classifiers for bug prediction: A large-scale

empirical analysis of its performances and a benchmark study. Science of Computer Programming, 205,

102611.

[15] Kumar, R. (2021). Multiclass Software Bug Severity Classification using Decision Tree, Naive Bayes and

Bagging. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(2), 1859-1865.

[16] Saharudin, S. N., Wei, K. T., & Na, K. S. (2020). Machine learning techniques for software bug prediction:

a systematic review. Journal of Computer Science, 16(11), 1558-1569.

