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ABSTRACT 
To investigate how a non-homogeneous trapezoidal plate, whose density differs linearly in one direction and 

whose thickness differs linearly in both the directions, is affected by a 2D linearly variable temperature. S-S-S-S 

is the boundary condition, and 2-term deflection is considered. The problem's solution is found using the 

Rayleigh-Ritz approach. Studies have also been conducted on the impact of additional plate factors, such as 

aspect ratios, taper constants, and no n-homogeneity constant. Accurate calculations are made, and graphical 

results are displayed. 
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1. INTRODUCTION 
Since the 19th century, when German physicist Chladni conducted experiments to find different modes of free 

vibration, plate theory was used to lessen vibration as well as noise in the complex. Since then, it has grown into a 

vast and expanding subject that deals with progressively complex problems and offers a wide range of theoretical 

and academic approaches.In the fields of maritime and aviation engineering, where lightweight structural parts 

made of orthotropic materials are fundamentally important, the orthotropic trapezoidal plate is often used. In real, 

they are thin plate constructions with improved stability and stiffness properties. They are frequently subjected to 

both static as well as time-varying loads in their numerous applications in the various disciplines of contemporary 

civil, mechanical, and structural engineering. As a result, scholars have long been quite interested in the study of 

orthotropic trapezoidal plates under various circumstances.The dynamic properties of orthotropic trapezoidal 

plates have been the subject of extensive investigation since many researchers have used various techniques to 

analyze these designs dynamically. Electromechanical transducers for mirrors & lenses in optical systems, 

electronic telephones, naval constructions, nuclear reactor structures, as well as aeronautical fields all require 

plates of varying thickness. Vibration analysis is crucial for preventing resonance caused by internal or external 

forces because of the practical significance of these plates. The requirement for solutions to a variety of 

difficulties involving plates as well as other structures supported on the elastic medium has also increased in the 

last few years due to the advancement of solid propellant rocket motors, the growing usage of soft filaments in 

structures of aerospace, and the construction of higher-speed runways. Examples of these practical solid structure 

interaction difficulties include multistory buildings’floor slabs and building activities in cold climates. 

Numerous researchers have been encouraged to pursue vibration analysis as a field of study, according to existing 

literature. Few of them are classified as beneath. Kumar and Lal [1] investigated the non-homogeneous 

orthotropic rectangular plates’vibrations having bilinear thickness variation laying on the Winkler foundation. The 

monoclinic rectangular plates’free transverse vibrations having continuously variable thicknesses and densities 

were investigated by Kumar and Tomar [2]. The exponential thermal impact on the non-homogeneous orthotropic 

rectangular plate’ vibration with bi-directional linear thickness change has been studied by Johri and Johri [3]. 

Non-homogeneous circular plates’vibration analysis with non-linear thickness change was performed by Gupta et 

al. [4] utilizing the differential quadrature technique. The shooting technique for non-linear vibration as well asthe 

sizzling buckling of heated orthotropic circular plates was covered by Li and Zhou [5]. The non-homogeneity 

effect on the natural frequencies of elliptic plates’vibration was investigated by Chakraverty et al. [6].The thermal 
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gradient on the trapezoidal plates’vibration having different thicknesses was investigated by Gupta et al. [7]. The 

Rayleigh-Ritz approach is repurposed for determining the fundamental frequencies. For a trapezoidal plate, the 

frequencies of the first two vibration modes are derived for a range of values of the aspect ratio, temperature 

gradient, as well as taper constant. Gupta and Sharma [8] conducted a recent study on the impact of heat on “the 

free vibration of an orthotropic thin trapezoidal plate with a variation of thickness that is linear. 

2. METHOD OF ANALYSIS 

To research transverse vibration, a thin, symmetric, non-homogeneous trapezoidal plate having a changeable 

thickness as well as density was taken.Fig. 1.1 displays” the plate's geometry. 

 
Fig. 1.1 Trapezoidal plate geometry 

3. THICKNESS AND DENSITY 

Thickness q of trapezoidal plate is taken into account to be bilinear namely,linear in  and  direction, 

respectively, as: 
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The linear variation in density along  a direction that causes non-homogeneity of the plate is as follows: 
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The plate's temperature should be viewed as two dimensions, and it is represented as 
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When the is temperature extra greater than the “reference at some point stage at the boundary of the plate, it is 

signified by o  

The modulus of elasticity for flexible substance isexplained as: 

R = OR (1- )                                                                                                                (4) 

Where OR is the representative of Young’s modulus at  = 0 and  is studied as the distinction of” slope R. 
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When the value of  is changed from Eq. (3) to (4): 
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Where  = O  (0 ≤   ≤ 1). 

4. Equation of motion 

The following is the guiding differential equation for strain energy K and kinetic energy P: 

P = ,)(
2

22
dAwcw

ab
 

                                                                                               (6)
 

K =     dA
w

ab

ww

ba

w

b

w

a
G

ab



























































2

2

2

2

2

2

22

2

2

2

22

2

2

11
12

11

2 





(7) 

where G,    sometimes referred to as flexural rigidity, is determined by 

G   = OG    
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Also 

OG =  2
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                                                                                                            (9) 

is the plate’s flexural rigidity at the oblique  = −
2

1
, and A represents the plate area. 

On utilizing Eq. (9) and (5), Eq. (8) provides the flexural rigidity value as mentioned below 
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Later, kinetic energy as well as strain energy become, assuming eqs. (1), (2) into eq. (6) and (10) into eq. (7). 
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The deflection function with two terms is regarded  

“as
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Where 
1A  and 2A are constants. 
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The Rayleigh-Ritz approach, that is on the basis of the idea of energy conservation—that is, the maximum kinetic 

energy and the maximum strain” energy should be balanced—is used to compute the frequency in extensions. 

Consequently, the following equation can be explained by 

  0KP .                                                                                                                    (15) 

Boundary condition (14) is applied to Equations (11) and (12) to obtain 
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Now Equations (15) becomes: 
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Where; 
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is known asthe frequency parameter. 

Eq. (18) includes2 unknowns 1A as well as 2A as a result of the substitution of equation (13). It is necessary to 

evaluate these two unknowns using Eq. (18), in the form shown “below: 
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On simplifying Eq. (21), we get: 

,02211  AfAf ss  s=1,2.                                                                                                   (23) 

Where )2,1(, 21 sff ss involves parametric constant as well as the frequency parameter. 

The determinant of the coefficient of Eq. (22) should vanish for a non-0 solution. We obtain the frequency 

equation” as 

=0                                                                                                                   

(24)

 

Equation (24) shows the 2 values of 
2 the 1

st
and 2

nd
modes of vibration, correspondingly, and can be used to 

generate the quadratic equation
2 . 

Result and discussion 

With the aid of the MAPLE software, frequency modes for a non-homogeneous S-S-S-S trapezoidal plate must be 

determined for various combinations of the “thermal gradient  , non-homogeneity constant 1 , tapering 

parameters 21, , aspect ratios (a/b, c/b), and a fixed” Poisson ratio of 0.33. Figures are used to illustrate each 

result. 
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Fig. 1, it is clear that frequency falls for both scenarios when 
1 = 0.4 and 

1 = 1 as the thermal gradient rises   

 from 0 to 1. Additionally, it is noted that as the taper constant rises from 0 to 0.4, the frequency of both 

vibration modes rises in both scenarios. 

Fig. 2 clearly shows that when the “tapering parameters
21,  rise from 0 to 1 for both cases

1  = 0.4 and 
1 = 1, 

the vibrational frequency for both modes” increases. Additionally, the data indicated that in the two 

aforementioned examples, the frequency of both vibration modes reduces as the temperature gradient value rises 

from 0 to 0.4. 

Fig. 3 emphasizes that when the aspect ratio c/b rises from 0.25 to 1, frequency declines; yet, as one traverses the 

table from left to right for the ensuing examples, frequency increases for both modes. 

Case1: 021   and 4.0,0 21    

Case2: = 0.4, 021   and  = 0.4, 4.021    

Fig. 4. As “we examined the table from left to right for the situations mentioned here, it is evident that growth in 

non-homogeneity 1 from 0 to 1 suggests that the vibrational frequency for both modes falls whereas, on the 

other hand, the frequency” grows. 

Case1: 021   and 4.0,0 21    

Case2:  = 0.4, 021   and  = 0.4, 4.021      

Fig.1 Thermal Gradient α  v/s Frequency λ 
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Fig. 2: Taper Constant β1= β2  v/s Frequency λ 

 

Fig. 3: Aspect Ratio (c/b) v/s Frequency λ 
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Fig. 4Non-Homogeneity Constant α1 v/s Frequency λ 

 

CONCLUSION 
Because plate vibration has a huge variety of engineering applications, including those in civil, mechanical, and 

aeronautical engineering, it is an important field of study. An excellent as well as computationally effective 

approach for determining the vibration properties of a trapezoidal plate's transverse vibration is provided by the 

Rayleigh-Ritz method. In this way, various“values of the taper constants, thermal gradient, aspect ratio, as well as 

non-homogeneity constant” have been able to capture the natural frequencies for a symmetric, non-homogeneous 

trapezoidal plate. 
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