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ABSTRACT 

This paper explores the algebraic approach to design graphs, focusing on their structural and combinatorial 

properties. Design graphs are regular bipartite graphs where any two distinct vertices of the same color share the 

same number of common neighbors. These graphs are characterized by parameters such as half-size (mmm), 

degree (ddd), and shared neighbors (ccc), which satisfy the relation c(m−1)=d(d−1)c(m-1) = d(d-

1)c(m−1)=d(d−1). Extremal design graphs, particularly those with diameter 3 and girth 6, minimize vertex count 

while maximizing structural efficiency. Examples like the cycle C6C_6C6, Heawood graph, and Tutte-Coxeter 

graph illustrate these concepts. Additionally, finite fields (FFF) are employed to construct graph families and 

analyze their symmetries through field extensions, Frobenius automorphism, trace, and norm functions. The 

incidence graphs derived from finite-dimensional vector spaces over finite fields also exhibit design graph 

properties. These graphs demonstrate regularity, symmetry, and algebraic richness, making them valuable in 

combinatorics and network theory. The paper also investigates quadratic signatures and their algebraic 

properties, providing a robust framework for understanding graph-theoretical problems through algebraic 

methods. By leveraging algebraic tools, the study enhances the characterization of design graphs and contributes 

to applications in coding theory, cryptography, and combinatorial optimization. 

INTRODUCTION 

Design graphs, a fascinating class of regular bipartite graphs, play a crucial role in algebraic graph theory due to 

their symmetry, regularity, and combinatorial richness. A design graph is defined as a regular bipartite graph 

where any two distinct vertices of the same color share an equal number of common neighbors. While the 

complete bipartite graph Kn, nK_ {n,n}Kn,n satisfies this definition, it is generally excluded from consideration 

by convention. These graphs are characterized by three key parameters: the half-size (mmm), degree (ddd), and 

the number of common neighbors (ccc) shared by monochromatic vertex pairs, satisfying the algebraic relation 

c(m−1)=d(d−1)c(m-1) = d(d-1)c(m−1)=d(d−1). 

Design graphs exhibit unique extremal properties, especially in cases where the graph has a diameter of 3 and a 

girth of either 4 or 6. When the parameter ccc equals 1, these graphs minimize the vertex count for regular graphs 

of girth 6, earning the designation of extremal design graphs. Examples of extremal design graphs include the 

cycle C6C_6C6 and the Heawood graph, both of which demonstrate exceptional structural balance and symmetry. 

Partial design graphs extend the concept by allowing two distinct values (c1c_1c1 and c2c_2c2) for shared 

neighbor counts. Notable examples include the cube graph (QnQ_nQn) and the Tutte-Coxeter graph. The latter 

showcases intriguing algebraic properties with parameters c1=0c_1 = 0c1=0 and c2=1c_2 = 1c2=1, as well as 

structural characteristics such as a diameter of 4 and specific adjacency patterns between vertices. 

Finite fields provide an essential algebraic tool for constructing and analyzing design graphs. Finite fields, defined 

by q=pdq = p^dq=pd (where ppp is a prime number and ddd is a positive integer), exhibit cyclic multiplicative 

groups and automorphisms, such as the Frobenius automorphism, which facilitate symmetry analysis in graph 

structures. These algebraic properties enable the construction of incidence graphs, where vertices represent 

subspaces of finite-dimensional vector spaces, and edges represent inclusion relationships. 
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The study of design graphs through algebraic tools not only advances our understanding of their structural 

intricacies but also contributes to practical applications in combinatorial optimization, network design, and 

cryptographic systems. This paper aims to bridge the gap between algebraic theory and combinatorial graph 

properties, offering a comprehensive framework for analyzing and constructing design graphs using algebraic 

methods. 

METHODS 

Design Graphs. 

Next, we consider bipartite analogues of strongly regular graphs. A design graph is a regular bipartite graph with 

the property that any two distinct vertices of the same colour have the same number of common neighbours. The 

complete bipartite graph Kn,n fits the definition, but we exclude it by convention. For a design graph, we let m 

denote the half-size, d the degree, and c the number of neighbours shared by any monochromatic pair of vertices. 

Note that the parameter c is, in fact, determined by the following relation: 

c(m−1) = d(d−1) 

This is obtained by counting in two ways the paths of length 2 joining a fixed vertex with the remaining m−1 

vertices of the same colour. As an immediate consequence of the definition, we have following fact. 

Proposition 1: The next exercise focusses on another extremal property. A design graph with diameter 3 and 

girth 4 or 6 depends on whether c > 1 or c = 1. On the other hand, a regular bipartite graph with diameter 3 and 

girth 6 is a design graph with parameter c = 1. These design graphs are especially intriguing because the previous 

proposition identifies them as being extremal for the girth among regular bipartite graphs of diameter 3. 

Exercise 1. Design graphs with parameter c = 1 and degree d are the ones that minimize the number of vertices 

among all d-regular graphs of girth 6. It seems appropriate to refer to design graphs with parameter c = 1 as 

extremal design graphs. There are some examples of extremal design graphs among the graphs that we already 

know. One is the cycle C6. The other, more interesting, is the Heawood graph. In the next section, we will 

construct more design graphs, some of them extremal, by using finite fields. A partial design graph is a regular 

bipartite graph with the property that there are only two possible values for the number of neighbours shared by 

any two distinct vertices of the same colour. 

The parameters of a partial design graph are denoted m, d, respectively c1 and c2. Note that c1 6= c2, and that the 

roles of c1 and c2 are interchangeable. 

Example 2. The bipartite double of a (non-bipartite) strongly regular graph is a design graph or a partial design 

graph. 

Example 3. Since the cube graph Qn is a partial design graph, its parameters are c1 = 0 and c2 = 2. To illustrate 

this, consider the bipartition provided by weight parity: Fix two different strings with the same weight parity. If 

they differ in two slots, they have two common neighbours; if not, they have no common neighbours. 

Example 4. Consider the complete graph K6. It has 15 edges. A matching is a choice of three edges with distinct 

endpoints, i.e., a partition of the six vertices into two-element subsets. There are 15 matchings, as well. Define a 

bipartite graph by using the edges and the matchings as vertices, and connecting matchings to the edges they 

contain. This is the Tutte - Coxeter graph, drawn in Figure 1 below. 

320



ISSN: 2633-4828  Vol. 4 No.3, December, 2022 

 

International Journal of Applied Engineering & Technology 
 

 

Copyrights @ Roman Science Publications Ins.  Vol. 4 No.3, December, 2022 

 International Journal of Applied Engineering & Technology 

 

  

 

 
Figure 1: The Tutte - Coxeter graph. 

In fact, a matching is adjacent to three edges, and an edge is adjacent to three matchings. The joint parameters are 

c1 = 0, c2 = 1. Two distinct edges are adjacent to a unique matching if they have disjoint endpoints, and to no 

matching otherwise. The Tutte-Coxeter graph is a partial design graph with a half-size of m = 15 and a degree of 

d = 3. Two distinct matchings share no more than one edge. 

A further property of the Tutte - Coxeter graph is that it has diameter 4 and girth. The verification is left to the 

reader. 

Finite Fields 

In this section, and in the next one, the focus is on finite fields. Among other things, we construct some interesting 

families of graphs, and we acquire some of the tools that later on will prove useful for studying these graphs. Let 

us start by recalling some fundamental facts about finite fields. A finite field has q = pd elements for some prime 

p, the characteristic of the field, and some positive integer d, the dimension of the field over its prime subfield. 

For each prime power q there exists a field with q elements, which is furthermore unique up to isomorphism. We 

think of Zp = Z/pZ as ‘the’ field with p elements. 

In general, ‘the‘field with q = pd elements can be realized as a quotient Zp[X]/( f (X)), 

where the irreducible polynomial of degree d is f (X) = Zp[X]. There is a polynomial f for every given d, but there 

is no known general formula for generating one. 

The multiplicative group of a finite field is cyclic. Once more, this is a non-constructive existence: there is no 

known formula for creating a multiplicative generator given a field. We now discuss finite field extensions. In this 

regard, the outcome that follows is crucial. 

Theorem. Let K be a field with qn elements. Then the map φ: K→K, given by 

φ(a) = aq, has the following properties: 

(i) φ is an automorphism of K of order n; 

(ii) F = {a ∈ K: φ (a) = a} is a field with q elements, and φ is an F-linear isomorphism when K is viewed as a 

linear space over F. 

Proof. (i) Clearly, φ is injective, multiplicative, and φ(1)= 1. To see that φ is additive, we iterate the basic identity 

(a+b)p = ap +bp, where p is the characteristic of K, up to (a+b)q = aq +bq. Thus φ is automorphism of K. Each a 

∈K∗ satisfies the relation aqn−1 = 1, so aqn = a for all a K. Thus φn is the identity map on K. Assuming that φt is 

the identity map on K for some 0 < t < n, we would get that Xqt = X has qn solutions in K, a contradiction. 
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(ii) F is a subfield since φ is an automorphism. As K is cyclic of order qn −1, and q −1 divides qn −1, there are 

precisely q −1 elements a K satisfying aq−1 = 1. 

Therefore F has q elements. Finally, note that φ (ab) = φ (a) φ (b) = aφ (b) whenever a = F and b = K. 

Turning the above theorem on its head, we can start with a field F with q elements, and then consider a field K 

with qn elements as an overfield of F. Then K is an n-dimensional linear space over F, and we say that K is an 

extension of F of degree n. The map φ is called the Frobenius automorphism of K over F. 

Exercise 2. Let F consist of q items. Prove that an element in the generic linear group GLn(F) has a maximal 

order of qn −1. 

Let F be a field with q elements, and let K be an extension of F of degree n. The trace and the norm of an element 

a =K are defined as follows: 

 

One might think of the trace and the norm as the additive, respectively the multiplicative content of a Frobenius 

orbit. The importance of the trace and the norm stems from the following properties. 

Theorem. The trace is additive, in fact F-linear, while the norm is multiplicative. The trace and the norm map K 

onto F. 

Proof. Let's move on to the second statement, which is self-evident: the trace and the norm are Frobenius-

invariant, φ(Tr(a)) = Tr(a) and φ(N(a)) =N(a), so they are F-valued. Tr:K→F is an additive homomorphism; its 

kernel size is at most qn−1, meaning that the size of its image is at least qn/qn−1 = q. As a result, Tr is onto. 

Similarly, N: K∗ →F∗ is a multiplicative homomorphism; its kernel size is at most (qn −1)/(q−1), meaning that 

the size of its image is at least q−1. 

Projective combinatorics. 

Let F be a field with q elements, and consider a linear space V of dimension n over F. We think of V as an 

ambient space, and we investigate the geometry and combinatorics of its subspaces. A k-dimensional subspace of 

V is called a k-space in what follows. 

Proposition. The number of k-spaces is given by the q-binomial coefficients: 

 

Proof. There exist (qn −1) . . . (qn − qk−1) ordered ways of choosing k linearly independent vectors. Some of 

these selections span one and the same k-space. In particular, the bases of a k-space are (qk−1)... (qk − qk−1) 

ordered. This is equivalent to the previous count's scenario where n = k. 

We obtain the following practical result when we apply the previous proposition to a quotient space of V. 

Incidence graphs 

Let V be an ambient linear space of dimension n ≥ 3 over a finite field F with q elements. The incidence graph In 

(q) is the bipartite graph whose vertices are the 1-spaces respectively the (n−1)-spaces, and whose edges connect 

1-spaces to (n−1)- spaces containing them. Note that the construction only depends on the dimension of V, and 

not on V itself; hence the notation. 
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Theorem. The incidence graph In (q) is a design graph, with parameters 

 

Proof.  By definition, the incidence graph In(q) is bipartite. The half-size m, as well as the degree d for each 

vertex, are given by Proposition 5.6, Corollary 5.7 and the symmetry property of the q-binomial coefficients. To 

check the design property, we use the dimensional formula: 

Dim (W+W′) + dim (W∩W′) = dim W + dim W′ 

where W and W′ are subspaces of V. 

Let W and W′ be distinct (n−1)-spaces. The common neighbours of W and W′ are the 1 spaces contained in 

W∩W′. Now W+W′ has dimension n, so W∩W′ is a (n−2)-space. The number of 1-spaces contained in a (n−2)-

space is (1n-2)q. 

Similiarly, let W and W′ be distinct 1-spaces. The common neighbours of W and W′ are the (n−1)-spaces 

containing W +W′. This is a 2-space, since W ∩W′is 0- dimensional. The number of (n−1)-spaces containing a 

given 2-space is (1n-2)q. 

Example 1. The incidence graph I3(q) is an extremal design graph. Its half-size is m= q2 + q+1, and it is regular 

of degree d = q+1. For q = 2, this is the Heawood graph. Assume now that V is endowed with a scalar product. 

Proposition 5.8 provides a bijection between the (n−1)-spaces and the 1-spaces. Using this bijection, we can give 

an alternate, and somewhat simpler, description of In(q). Take two copies of the set of 1-spaces, that is, lines 

through the origin, and join a ‘black’ line to a ‘white’ line whenever they are orthogonal. Note that the orthogonal 

picture is independent of the choice of scalar product, for it agrees with the original incidence picture. 

If you consider Fn as the subspace of Fn+1 with a vanishing final coordinate, then the lines of Fn are also lines in 

Fn+1, and they are orthogonal in Fn if and only if they are orthogonal in Fn+1. This orthogonal picture makes it 

clear right away that In(q) is an induced subgraph of In+1(q). 

The incidence graph In(q) enjoys a regularity property that is not obvious at first sight. Here, the orthogonal 

picture turns out to be very useful. 

Around Squares 

Given by x 7→ x2, the squaring homomorphism F∗ →F∗ is two-to-one: x2 = y2 if and only if x = ±y. Therefore, 

half of F∗'s elements are squares, whereas the other half are not. The following provides the quadratic signature σ: 

F∗→{±1}: 

σ(a) = {1 if a is a square in F∗, { −1 if a is not a square in F∗. 

Theorem. The quadratic signature σ is multiplicative on F∗, and it is explicitly given by the ‘Euler formula’ σ(a) 

= a(q−1)/2. 

Proof. For a ∈ F∗, let τ(a) = a(q−1)/2. Because τ(a)2 = a(q−1) = 1, take note of τ(a) = ±1. Additionally, take note 

that τ does accept −1; otherwise, there would be an excessive number of solutions to the equation X(q−1)/2 = 1 in 

F. τ: F∗ → {±1} is an onto homomorphism, hence. The size of its kernel is 1/2 (q −1), and the number of non-zero 

squares in it is likewise 1/2 (q −1). 

As a result, the non-zero squares make up the exact kernel of τ. This means that τ = σ, where τ(a) = 1 if an is a 

square in F∗ and τ(a) = −1 if an is not a square in F∗. 
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CONCLUSION 

This study delves into the algebraic structure and properties of design graphs, highlighting their combinatorial 

significance and structural efficiency. Design graphs, characterized by parameters such as half-size (mmm), 

degree (ddd), and shared neighbors (ccc), exhibit a unique regularity that satisfies the fundamental relation 

c(m−1)=d(d−1)c(m-1) = d(d-1)c(m−1)=d(d−1). This algebraic relationship serves as the backbone for analyzing 

their symmetry and extremal properties. 

Extremal design graphs, particularly those with diameter 3 and girth 6, minimize vertex count while maintaining 

high symmetry and structural balance. Classic examples such as the cycle graph (C6C_6C6) and the Heawood 

graph demonstrate these optimal properties. The study also introduces partial design graphs, which allow two 

distinct shared neighbor parameters (c1c_1c1and c2c_2c2), exemplified by structures like the cube graph 

(QnQ_nQn) and the Tutte-Coxeter graph. These graphs exhibit fascinating adjacency properties and serve as 

benchmarks for studying algebraic graph regularity. 

Finite fields (FFF) play a critical role in constructing and analyzing families of design graphs. Finite fields, 

defined by q=pdq = p^dq=pd, possess cyclic multiplicative groups and automorphisms, such as the Frobenius 

automorphism, which simplify symmetry analysis. The trace and norm functions further contribute to 

understanding graph regularity and combinatorial structures within these algebraic systems. 

Incidence graphs, derived from finite-dimensional vector spaces over finite fields, provide a rich combinatorial 

framework. These graphs connect 1-spaces and (n-1)-spaces through well-defined adjacency rules and exhibit 

design graph properties. For instance, the incidence graph I3(q)I_3(q)I3(q) serves as an extremal design graph 

with parameters optimized for specific algebraic and combinatorial conditions. 

Additionally, the quadratic signature and Euler formula offer powerful tools for analyzing algebraic properties of 

finite fields and their influence on graph structures. These tools reveal intricate symmetries and optimize 

adjacency relationships, contributing to a deeper understanding of graph-theoretical problems. 

In conclusion, this study demonstrates that algebraic tools, particularly finite fields and their extensions, provide a 

robust framework for constructing, analyzing, and understanding design graphs. These graphs exhibit remarkable 

structural regularity, extremal properties, and combinatorial efficiency, making them valuable in fields such as 

coding theory, cryptography, network optimization, and mathematical combinatorics. Future research may further 

explore algebraic graph constructions, aiming to uncover new families of design graphs with enhanced properties 

and practical applications in advanced mathematical and engineering domains. 
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