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ABSTRACT 
Engineering applications such as computer-aided design, robotics, and electrical network requires an efficient 

computational technique of finding all roots of a system of nonlinear polynomial equations in s variables which 

lie within an s dimensional box. We are proposing an algorithm to obtain the roots of the polynomial system, it is 

based on the following technique: 

1) Transformation of the original nonlinear algebraic equations into polynomial B-spline form;  

2) Includes a pruning step using B-spline Hansen-Sengupta operator. 

We compare the performance of the proposed B-spline Hansen-Sengupta operator with that of Interval Hansen-

Sengupta operator using numerical examples, providing the superiority of the proposed approach. 

Keywords:  Polynomial B-spline form, Polynomial systems, Hansen-Sengupta operator. 

I. INTRODUCTION 
In [1][2]the authors proposed several root-finding algorithms for Finding solutions to the system of polynomial 
equations. In [3][4][5][6][7] the authors use interval methods to solve algebraic nonlinear equations. Methods 
addressing intervals approach provides interval enclosures with all roots of the polynomial systems using interval 
branch and bound strategy. Unfortunately, these methods also involves regular evaluation of polynomial functions 
and time-consuming [7]. 

To reduce the number of iterations operators like Newton, Krawczyk and Hansen-Sengupta are used for pruning 
the search space. Whereas to obtain interval enclosures for these pruning operators involves computation of 
derivatives [7]. Finding polynomial system derivatives using interval methods is similarly a time-consuming 
process. Again, to solve polynomial systems in [7][8] the authors combine Krawczyk operator and subdivision in 
B-spline and Bernstein basis respectively. 

An algorithm was proposed based on B-spline expansion approach in combination with B-spline Hansen-
Sengupta contractor to obtain the zeros of a polynomial systems i.e. roots of polynomials. The B-spline 
coefficient computation algorithm was suggested in [9] for global optimization. We are considering a new 
algorithm to solve a system of nonlinear polynomial equations by combining the B-spline Hansen-Sengupta 
algorithm, and the B-spline coefficient computation algorithm given in [9]. The idea behind B-spline expansion is 
to obtain polynomial B-spline form representation of given power form polynomial to obtain the bound on its 
range [9][10][11]. 

This paper is organized as follows: In the next section we give a brief introduction about the B-spline expansion 
of multivariate power form polynomial along range enclosure property and subdivision procedure. The interval 
Hansen-Sengupta operator is presented in section 3. In section 4, we present main zero finding algorithm to solve 
the system of the polynomial equation and use the B-spline Hansen-Sengupta operator algorithm for pruning the 
bounds. In section 5, we demonstrate the use of the suggested algorithm to solve a system of nonlinear 
polynomial equations by considering two numerical examples. The performance of proposed zero finding 
algorithm is compared with solver based on the INTLAB software. Finally, in the last section, we conclude. 
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II. BACKGROUND: POLYNOMIAL B-SPLINE FORM 
Firstly, we present brief review of B-spline form, which is used as inclusion function to bound the range of 
multivariate polynomial in power from. The B-spline form is then used as basis of main zero finding algorithm in 
section 3. 

We follow the procedure given in [12][13] for B-spline expansion. Let 1( , )
l

t t  be a multivariate polynomial in 
l  real variables with highest degree  1 ,

l
m m (1). 

1
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2.1 Univariate polynomial 
Lets consider univariate polynomial case first, (2) 

 
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
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for degree d  (i.e. order d+1) B-spline expansion where ,d m  on compact interval I=[p,q].  We use  ,
d

I u  to 

represent the space of splines of degree d on the uniform grid partition known as Periodic or Closed  knot vector, 
u : 

 0 1 1: ,
k k

t t t t    u  (3) 

Where : ,
i

t p iy  0 ,i k  k  denotes B-spline segments and  : / .y q p k   

Let 
d

P  reflects the space of degree d  splines. We then denote the space of degree d  splines with 1d
C

  
continuous on [ , ]p q  and defined on u as 

  1
1,u : { ( ) : | [ , ] P ,  0, , 1}.d

d i i d
I C I t t i k  

      (4) 

Since  ,u
d

I is ( )k d  dimension linear space [14]. Therefore to construct basis of splines supported locally for 

 ,u ,
d

I  we use few extra knots 1d
t t p    and 1k k d

q t t     at the ends in knot vector. These types of 

knot vectors are known as Open or Clamped knot vectors, (5). Since knot vector u  is uniform grid partition, we 
choose :  

i
t p iy  for    , , 1 1, , ,i d k k d       

1 0 1 1 1: { }.
d k k k k d

t t p t t t q t t t                u  (5) 

The B-spline basis    1

1

k
d

i
i

B t



of  ,u

d
I  is defined in terms of divided differences: 

     1 1: [ , ,, , ] .
dd

i i d i i i i d
B t t t t t t t    

    (6) 

where  . d


 represent the truncated power of degree .d  This can be easily proven that 

  : , 1,d

i d

t a
B t i d i k
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     1 1: [ , ,, , ] .
dd

i i d i i i i d
B t t t t t t t    

    is the polynomial B-spline of the degree .d  The B-spline basis can be 

computed by a recursive relationship that is known as Cox-deBoor  recursion formula 

          1 1
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and 

10 1,     if  [ , ),
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0,     otherwise.
i i

i

t t t
B t


 
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 (11) 

The set of spline basis    1

1

k
d

i
i

B t



 satisfies following interesting properties: 

1. Each  d

i
B t  is positive on its support 1[ , ]

i i d
t t   . 

2. Set of spline basis    1

1

k
d

i
i

B t



 exhibits a partition of unity, i.e.  

1

1

1.
k

d

i

i

B t




  

The power basis functions  
0

m
r

r
t


 in power form polynomial (2) can be represented in term of B-spline using 

following relation 

   
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and the symmetric polynomial  s

v
  defined as 
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Then by substituting (12) in (2) we get B-spline extension of power form polynomial (2) as follows: 

         
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 

0

: .
m

s

v s v

s

d a 


  (15) 

2.2 Multivariate polynomial case 
Lets consider next multivariate power form polynomial (16)  for B-spline expansion 
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where  1: , ,
l

s ss and  1: , , .
l

k kk  By substituting (12) for each s
t , (16) can be written as 
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we can write (17) as 
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where  1v : , ,
l

v v and vd is B-spline coefficient given as 
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The B-spline expansion of  (16) is given by (17). The derivative of polynomial can be found in a particular 
direction using the values of vd i.e. B-spline coefficients of original polynomial for ,Iy the derivative of a 

polynomial  t with respect to 
r

t  in polynomial B-spline form is (20), 

     
,1 , 1

, 1

,
1 1

( ) ,1  , ,
r r

rr

r

r

Im

m
d d B t r l t







  

         s s m s

ms s

y y y y
u u

 (20) 

where u is a knot vector. The partial derivative ( )
r

  y now includes range enclosure for derivative of  on .y  Lin 
and Rokne proposed (13) for symmetric polynomial and used closed or periodic knot vector(3).  Due to change in 
knot vector from (3) to (5) we propose new form of (13) as follows, 

   Sym 1, ,
: .s s

v
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2.3 B-spline range enclosure property 

 
1

: ( ), .
m

d

i i

i

t d B t t


  y  (22) 

Let (22) be a B-spline expansion of polynomial ( )q t in power form and ( )q y denotes the range of the power form 
polynomial on subbox .y  The B-spline coefficients are collected in an array ( ) : ( ( ))

i i
D d y y where : {1, , }.m   

Then for ( )D y it holds 

( ) ( ) [min ( ),max ( )].q D D D y y y y  (23) 

The range of the minimum and the maximum value of B-spline coefficients of multivariate polynomial B-spline 
expansion provides an range enclosure of the multivariate polynomial q on .y  
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2.4 Subdivision procedure 

We can improve the range enclosure obtained by B-spline expansion using subdivision of subbox .y  Let 

1 1: , , , ,
r r l l

              y y y y y y y  

represent the box to be subdivided in the r th direction (1 ).r l   Then two subboxes 
Ay and 

By are generated as 
follows 

1 1: , , ( ) , ,
r r l l

m              Ay y y y y y y  

 1 1: , ( ), , ,
r r l l

m          By y y y y y y  

where )(
r

m y is a midpoint of [ , ].
rr

y y  

III. B-SPLINE HANSEN-SENGUPTA OPERATOR ALGORITHM 
The interval Newton operator is given in [15] as 

( )
, , .

( )

p y
y y


       

N p y
p y

                                          (24) 

Let : [ , ]p y y y  be a continuously differentiable multivariate polynomial on ,y  let that there exists *
y  y  

such that  * 0,p y   and suppose that .y


y  Then, since the mean value theorem implies 

   * *0 ,p y p y p y y
          

   
 

therefore 
 

*

p y

y y
p 





 
 
  


 for some . y  If  p y  is any interval extension of the derivative of p  over ,y  then 

 
*  ,   .

p y

y y y



 

 
 
   


y
p y

                                            (25) 

Because of (25), any solution of ( ) 0p y   that are in y  must also be in N , , y
 

 





p y  and therefore (25)  is the 

basis of the  univariate Newton method (24). 

The  univariate Newton method (24) can be extended as a Multivariate Newton method which execute an iteration 
equation similar to equation (24). 

Suppose now that s
y  and ( ) n

f y   (continuously differentiable nonlinear) polynomial equations in s  

unknowns, and let that .S
y


  Then a basic formula for multivariate Newton method is 

, , ,f y y
     

 
N y w                                                    (26) 

where w  is a vector of interval bounding all zeros w  of system ,Aw f y
    

 
 as  ,A f y such that  f y  is the 
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Jacobi matrix f  interval extension over .y  

As interval Newton operator given by(26), we can write as follows: 

  , , .x x f x
                 

f x N f x

                                             (27) 

Preconditioning equation (27) withY , as midpoint inverse of an interval extension of the Jacobi matrix ( )f x , i.e. 

   1
mid Y


 f x gives 

   * *0 ,p y p y p y y
          

   

 

therefore 
 

*

p y

y y
p 





 
 
  


 for some . y  If  p y  is any interval extension of the derivative of p  over ,y  then 

 
*  ,   .

p y

y y y



 

 
 
   


y
p y

                                                       (28) 

Because of (28), any solution of ( ) 0p y   that are in y  must also be in N , , y
 

 





p y  and therefore (28) is the basis 

of the  univariate Newton method (24). 

The univariate Newton method (24) can be extended as a Multivariate Newton method which execute an iteration 
equation similar to equation (24). 

Suppose now that s
y  and ( ) n

f y   (continuously differentiable nonlinear) polynomial equations in s  

unknowns, and let that .S
y


  Then a basic formula for multivariate Newton method is 

, , ,f y y
     

 
N y w                                               (29) 

where w  is a vector of interval bounding all zeros w  of system ,Aw f y
    

 
 as  ,A f y such that  f y  is the 

Jacobi matrix f  interval extension over .y  

We can write (29) as follows: 

  , , .x x f x
                 

f x N f x

                                        (30) 

Preconditioning equation (30)  withY , as midpoint inverse of an interval extension of the Jacobi matrix ( )f x , i.e. 

   1
mid Y


 f x gives 



ISSN: 2633-4828  Vol. 4 No.3, December, 2022  

 

International Journal of Applied Engineering & Technology 
 

 

Copyrights @ Roman Science Publications Ins.  Vol. 4 No.3, December, 2022 

 International Journal of Applied Engineering & Technology 

 

 108 
 

  , , .Y x x Yf x
                 

f x N f x

                                        (31) 

Changing the notation , , x
 

 
 

N f x to , , x
 

 
 

H f x and defining, 

  , ,M Y b Yf x
    

 
f x  

the interval Gauss-Seidel procedure proceeds component by component to give the iteration 

1 11
1 1

1 1
, , ,

k ki n
k k

i ij ijk k
j j ik

i

iii

b Y x Y x

x x
Y

 

 

 
 

  

   
      

       
 

 x x

H f x

                 (32) 

1 , , ,
k

k k k

i i

i

x


  
  

 
x H f x x

                                          (33) 

for 0,1, ,k n and .
k

k
x


x  

In this iteration after the ith component of , ,
k

k
x
 

 
 

H f x  is computed using (32), the intersection (33) is performed. 

The result is then used to calculate subsequent component of , ,
k

k
x
 

 
 

H f x . 

We now present the algorithm for bounding zeros of polynomial systems similar to [16], 

Algorithm 3.1: Subdivision Algorithm for Solving a Polynomial Systems 

Input:  Here 
c

A  is a cell structure containing the coefficients array 
I

a  of the polynomials in the power form. 

c
N  is a cell structure, containing degree vector, 

I
N  which contains degree of each variable in 

polynomial function. Initial bound x  of each variable and tolerance limit .ò  

Output: The zero(s) of f in x or   as no solution exists in .x  

Begin Algorithm 

1  {Compute the B-spline coefficients} 

Compute the B-spline coefficients ( )
i

D x  of given n  polynomials on the initial box ,x  where 1,2, , .i n ( Use 
algorithms given in [9]) 

2  {Initialize iteration number} 

Set 0,k   0 .x x  

3  {Compute ( )f x


} 
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Choose ( )mid( )k
x


 x and obtain the value of ( )f x


directly from the B-spline coefficient value at the vertex of 
( )mid( )kx . 

4  {Compute ( )f x } 

Use the B-spline coefficients of f on   ,k
x to compute the B-spline coefficients of all the first partial 

derivatives of f on  k
x via (21). From the minimum and maximum B-spline coefficients of the first 

derivative, construct their range enclosure interval, and form the interval Jacobian matrix ( ).f x  

5  {Compute the precondition matrix Y } 

Compute the preconditioning matrix Y as 

   1

= mid  .k
Y


f x

 

6  {B-spline Hansen-Sengupta operator} 

Compute the value of B-spline Hansen-Sengupta operator H and update the solution, 

Set  M Y  f x , b Y f x
    

 
and .n s  

for i=1 to n do 

if i == 1 then 

 
else 

 
end 

end 

7  {Return  } 

If   0,k x then return   as solution and exit algorithm. 
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8  {Termination} 

If   ,k x ò then return  1k
x  as solution and exit algorithm. 

9 Set 1k k  and go to step 3. 

End Algorithm 

IV. NUMERICAL RESULTS 
We consider the two problems to test and compare the performance of B-spline Hansen-Sengupta operator 
(BHSO) over the interval Hansen-Sengupta operator (IHSO). The performance metrics are taken as the number of 
iterations and computational time (in seconds). Our MATLAB source code implementation of interval Hansen-
Sengupta operator based on INTLAB. 

Example 1: This example is taken from [17].  This is a problem with 4 variables. The polynomial systems is 
given by 

1 2 3 4

1 1 2 2 3 3 4 4

1 2 1 2 3 2 3 4 3 4 1 4

1 2 3 1 2 3 4 2 3 4 3 4 1 1 2 4

1 0,

0,

0,

0.

x x x x

x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

    
    
    
      

and the bounds on the variables are 

1 2 3 4[0.95,1.05],  [0.95,1.05],  [ 2.65, 2.6],  [ 0.4, 0.37].x x x x         

The results of algorithm are tabulated in Table 1. 

Table 1: Roots of Example 1. 
Roots 

1x  1 

2x  1 

3x  -2.6180 

4x  -0.3819 

Table 2: Comparison of performance between BHSO and IHSO. 
 Number of 

Iterations 
Computation 
Time (Sec.) 

BHSO 15 3.77 
IHSO 4 3.06 

Example 2: This example is taken from [17].  This is a problem with 5 variables. The polynomial systems is 
given by 

1 2 3 4 5

1 1 2 2 3 3 4 4 5 5

1 2 1 2 3 2 3 4 3 4 5 4 5 1 5

1 2 3 1 2 3 4 2 3 4 5 3 4 5 1 4 5 1 2 5

1 2 3 4 1 2 3 4 5 2 3 4 5 3 4 5 1 1 2 4 5 1 2 3 5

1 0,

0,

0,

0.

0.

x x x x x

x x x x x x x x x x

x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x x x x x x

     

     

     

     

       
and the bounds on the variables are 

1 2 3 4 5[0.95,1.05],  [ 3.75, 3.70],  [ 0.28, 0.25],  [0.95,1.01],  [0.95,1.01].x x x x x          
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From Table 3 we observe that the existing interval Newton operator require 4 iterations to bound the roots of the 

polynomial systems with the accuracy of 
06.10ò  The proposed B-spline Newton operator algorithm computes 

the result in 7 iterations within the same accuracy. The computational time required for the proposed B-spline 
Newton operator is 1.23 seconds, whereas the interval Newton operator method requires computational time 1.44 
seconds. The results of algorithm are tabulated in Table 3. 

Table 3:  Roots of Example 2. 
Roots 

1x  1 

2x  -3.7320 

3x  -0.2679 

4x  1 

5x  1 

Table 4: Comparison of performance between BHSO and IHSO. 
 Number of Iterations Computation Time (Sec.) 

BHSO 14 6.01 
IHSO 4 3.83 

V. CONCLUSION 
In this paper we presented an algorithm for contracting the search domain using B-spline Hansen-Sengupta. The 
computational examples demonstrate that the algorithm suggested quite effectively solves the polynomial system 
but requires more number of iterations due to over estimation in range enclosure of the first partial derivatives of 
the original polynomial. 
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