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ABSTRACT 

As smart homes and cities increasingly rely on interconnected IoT devices and cloud-based services, the risk of 

sophisticated cyberattacks targeting these environments has escalated significantly. This research presents a real-

time cyberattack detection framework using optimized Artificial Intelligence (AI) models tailored for the unique 

constraints and complexity of smart infrastructure. The proposed system employs lightweight deep learning 

architectures—such as Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) 

networks—optimized through hyper parameter tuning and pruning techniques to ensure low-latency performance 

on edge devices. The framework detects a wide range of cyber threats, including malware, denial-of-service 

attacks, data spoofing, and unauthorized access attempts, by analysing heterogeneous data from smart sensors, 

controllers, and cloud gateways. Extensive evaluations on publicly available smart home and smart city datasets 

demonstrate high detection accuracy, minimal false positives, and scalable deployment across diverse IoT 

environments. The integration of optimized AI models with edge intelligence offers a proactive, real-time, and 

resource-efficient solution to safeguard the digital infrastructure of future smart living ecosystems. 

Keywords: Smart Homes, Smart Cities, Cyberattack Detection, Artificial Intelligence (AI), Real-Time Monitoring, 

Machine Learning, Anomaly Detection, Internet of Things (IoT) Security, Intrusion Detection Systems (IDS), 

Hyper parameter Optimization. 

1. INTRODUCTION 

The evolution of the Internet of Things (IoT) has brought significant advancements in the development of smart 

homes and smart cities, where interconnected devices work collaboratively to enhance the quality of life, improve 

energy efficiency, and automate essential services [1]. These smart environments rely heavily on continuous data 

communication between sensors, actuators, and cloud-based platforms to facilitate operations such as traffic 

management, healthcare monitoring, energy consumption, and home automation. However, the very 

interconnectivity that makes these systems intelligent also exposes them to an increasing range of sophisticated 

cyber threats. 

Cyberattacks targeting smart infrastructure can result in severe consequences including privacy breaches, service 

disruptions, and even physical damage. Traditional security mechanisms, which are largely rule-based and 

reactive, often fail to cope with the dynamic and complex nature of modern cyber threats [2]. As these threats 

become more frequent and evolve in complexity, there is a pressing need for intelligent, proactive, and real-time 

security solutions. 

Artificial Intelligence (AI) has emerged as a powerful tool to address these challenges. AI-driven models, 

especially those based on machine learning and deep learning, have shown great promise in detecting anomalous 

behavior and identifying cyber threats across complex systems [3]. However, deploying AI in real-time smart 

environments presents challenges such as computational limitations, high false-positive rates, and model 

inefficiency when faced with imbalanced or high-dimensional data. 

To overcome these challenges, this research focuses on developing optimized AI models for real-time cyberattack 

detection in smart homes and cities [4]. By leveraging hyperparameter tuning, dimensionality reduction, and 
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lightweight architectures, the models aim to provide high accuracy while ensuring low latency and minimal 

resource consumption. These optimizations are essential for integration with edge devices and IoT nodes that 

form the backbone of smart ecosystems. 

The goal is not only to enhance detection capabilities but also to build an adaptive and scalable framework 

capable of evolving with emerging threats [5]. This study contributes to the growing field of intelligent 

cybersecurity by proposing models that can be integrated seamlessly into the existing infrastructure of smart cities 

and homes, thereby fortifying them against real-time cyberattacks. 

Smart Homes & Smart Cities 

Smart homes and smart cities represent the next frontier in digital transformation, leveraging a vast array of 

interconnected devices, sensors, and automated systems to enhance efficiency, comfort, and security in urban and 

residential environments. These technologies are underpinned by the Internet of Things (IoT), enabling devices to 

communicate, process data, and make decisions with minimal human intervention. 

Smart homes are designed to automate daily household functions such as lighting, heating, security surveillance, 

and appliance management. By integrating IoT-enabled devices, homeowners can monitor and control systems 

remotely, optimize energy usage, and ensure safety [6]. However, the reliance on always-connected systems also 

introduces critical vulnerabilities. Unauthorized access to smart locks, surveillance feeds, or even HVAC systems 

can lead to privacy intrusions, property damage, or physical harm. 

Smart cities, on a larger scale, apply similar technologies across urban infrastructures to manage public utilities, 

traffic systems, waste management, and emergency services [7]. The aim is to improve the quality of life for 

citizens, reduce operational costs, and create sustainable environments. These systems depend on constant data 

flow and communication between heterogeneous devices and platforms [8]. Any compromise in these systems—

such as a cyberattack on traffic lights, public transport networks, or emergency response coordination—can lead 

to large-scale disruptions and endanger public safety. 

Given the scale and complexity of smart homes and cities, traditional cybersecurity approaches are no longer 

sufficient [9]. The increasing number of endpoints, varied device capabilities, and real-time data requirements 

demand intelligent security solutions that can adapt dynamically. Artificial Intelligence (AI) has emerged as a 

promising solution to address these needs, providing proactive threat detection, pattern recognition, and 

autonomous response mechanisms. 

To ensure the safe operation of these environments, AI models must be optimized for real-time performance, low 

resource consumption, and high accuracy in threat detection. This involves not just detecting known attack 

patterns, but also identifying new, evolving threats through anomaly detection and predictive analytics. As smart 

environments become more pervasive, integrating optimized AI-driven cybersecurity systems is critical to 

safeguarding infrastructure, preserving user trust, and ensuring long-term resilience. 

Real-Time Monitoring 

Real-time monitoring is a critical component in the cybersecurity framework of smart homes and smart cities. 

With the proliferation of IoT devices and interconnected systems, massive volumes of data are generated and 

transmitted continuously [10]. These data streams often include network traffic logs, device activity patterns, user 

behavior analytics, and system event records. Monitoring these data points in real time enables prompt 

identification of malicious activities, system anomalies, and potential cyberattacks. 

Unlike traditional periodic or manual checks, real-time monitoring ensures continuous oversight, allowing 

security mechanisms to detect threats as they occur—before they can cause significant damage. This is especially 

important in smart environments where delayed detection could result in widespread service disruption, 

compromised public safety, or loss of sensitive information. 
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For effective real-time monitoring, AI models are integrated into the data flow to perform dynamic analysis. 

These models process data instantly using classification, clustering, and anomaly detection algorithms to flag 

suspicious behavior. Examples include unusual data transfer rates, unauthorized access attempts, or deviations 

from normal device communication patterns. 

The implementation of optimized AI models enhances the efficiency of real-time monitoring. These models are 

trained to handle high-frequency, low-latency data with minimal computational overhead, making them suitable 

for deployment on edge devices and embedded systems within smart environments. Optimization techniques such 

as feature selection, lightweight neural networks, and model pruning are employed to ensure fast inference 

without compromising accuracy. 

In smart homes, real-time monitoring can prevent breaches such as unauthorized control of smart locks or 

surveillance cameras. In smart cities, it helps in defending critical infrastructure like traffic control systems, 

energy grids, and emergency communication networks [11]. Furthermore, real-time alerts and automated 

responses enable a proactive security posture, empowering administrators to neutralize threats immediately. Real-

time monitoring powered by AI is essential for maintaining trust, operational continuity, and resilience in the 

intelligent ecosystems of the future. 

2. OPTIMIZED AI MODELS FOR REAL-TIME CYBERATTACK DETECTION IN SMART HOMES 

AND CITIES 

The emergence of smart homes and smart cities marks a technological revolution that integrates computing 

systems with everyday living and urban management. While this connectivity brings enhanced convenience, 

efficiency, and data-driven decision-making, it also significantly expands the attack surface for cybercriminals 

[12]. Cybersecurity has thus become a foundational concern in these interconnected environments. Artificial 

Intelligence (AI) has emerged as a transformative solution to manage the complexity and dynamism of modern 

cyber threats. AI algorithms can learn patterns, detect anomalies, and respond autonomously—making them ideal 

for the unpredictable nature of cyberattacks in smart ecosystems. 

Smart homes are often populated with IoT devices such as smart locks, thermostats, and surveillance cameras, 

while smart cities rely on interconnected traffic systems, energy grids, and public services. These systems are 

frequently resource-constrained and heterogeneous, complicating centralized threat detection and requiring 

lightweight yet effective security models [13]. Unoptimized AI models, while accurate in theory, often suffer 

from high computational demands, slow response times, and memory inefficiency. For smart environments, 

which typically include edge devices with limited hardware resources, optimizing AI models is essential to enable 

real-time performance and reduce energy consumption. 

A critical first step in optimizing AI models is data handling. Smart environments generate diverse data types, 

including sensor outputs, network traffic, and user behavior logs. Effective preprocessing—such as noise removal, 

normalization, and feature extraction—improves model accuracy and speeds up learning [14]. Not all features 

contribute equally to model performance. By using algorithms such as Recursive Feature Elimination (RFE), 

Mutual Information, or Principal Component Analysis (PCA), only the most relevant features are retained, 

reducing dimensionality and improving both speed and interpretability. 

Hyperparameters control the behavior of learning algorithms [15]. Techniques like Grid Search, Random Search, 

and Bayesian Optimization are used to fine-tune parameters such as learning rate, depth of decision trees, and 

number of neurons in neural networks, resulting in higher performance and stability. Lightweight AI 

architectures, such as MobileNet, TinyML, and compressed CNNs, are specifically designed for execution on 

low-power devices. These models deliver sufficient predictive power while maintaining efficiency in terms of 

memory and processing time—ideal for real-time deployment in smart homes and cities. 

3. LITERATURE SURVEY ANALYSIS 
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The domain of cybersecurity in smart environments has gained considerable attention over the past decade, with 

numerous studies focusing on the application of artificial intelligence for real-time threat detection. This literature 

survey explores the key contributions, methodologies, and limitations of prior research to highlight the need for 

optimized AI models in smart homes and smart cities [16]. Several studies have proposed AI-driven Intrusion 

Detection Systems (IDS) for smart homes. A hybrid deep learning framework combining CNN and LSTM to 

detect intrusions from smart home traffic. While the model showed promising accuracy, it was computationally 

expensive and not well-suited for deployment on resource-constrained IoT devices. 

Machine learning algorithms like k-NN, SVM, and decision trees on network flow features to detect anomalies in 

IoT device behavior. Despite achieving high accuracy, the approach suffered from high false positives and lacked 

adaptability to new or zero-day attacks [17]. To address latency and scalability concerns, autoencoder-based 

models optimized for real-time processing. These models reduced feature space but were still limited in 

interpretability and required retraining for new attack types. 

Leverage federated learning to train AI models across decentralized IoT nodes without sharing raw data. This 

ensures privacy while maintaining accuracy. However, communication overhead and model synchronization 

remain significant challenges. Studies have demonstrated the impact of hyperparameter tuning on model 

performance. Employed grid search and genetic algorithms to optimize detection models for smart city 

infrastructure. These optimizations improved precision but increased training time and complexity. 

Hybrid AI models that combine multiple classifiers have been explored to improve detection reliability. A model 

combining random forests with gradient boosting for smart grid cybersecurity [18]. While effective, these models 

tend to consume more memory, which can be problematic for edge deployment. Real-time threat monitoring in 

smart cities has been studied through edge-cloud collaboration. Demonstrated a distributed AI framework for 

detecting attacks on traffic and utility systems. The model benefited from parallel processing but was dependent 

on stable communication infrastructure. 

DRL for autonomous threat response in smart environments. The system could adapt over time to evolving threats 

[19]. However, DRL models are typically data-hungry and require significant training cycles, making them less 

practical for small-scale smart home systems. Interpretability of AI models is crucial in critical applications. 

SHAP and LIME to explain model predictions in smart city IDS. While XAI improves trust and regulatory 

compliance, it adds computational overhead. 

Many studies rely on datasets like CICIDS, UNSW-NB15, and TON_IoT. However, most datasets do not reflect 

real-world heterogeneous environments [20]. The lack of standardized real-time benchmarks poses a challenge for 

validating models across smart homes and cities. 

Summary of Gaps Identified: 

 Lack of lightweight models suitable for both smart homes and large-scale city systems. 

 High false positives in traditional ML approaches without sufficient optimization. 

 Limited real-time capability in existing AI models under resource constraints. 

 Inadequate use of edge-based inference in deployed environments. 

 Few models with continuous learning and adaptability to evolving threats. 

The literature reveals strong progress in applying AI for smart environment security, but significant challenges 

remain. There is a clear need for optimized AI models that balance performance, interpretability, real-time 

capability, and resource efficiency. This study addresses these gaps by proposing a novel, lightweight, and 

adaptive AI framework tailored for cyberattack detection across smart homes and cities. 

4. EXISTING APPROCHES 
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In the quest to secure smart homes and cities from cyber threats, various AI-driven methodologies have been 

developed. Traditional signature-based intrusion detection systems (IDS), such as Snort and Suricata, have been 

widely used for detecting known attacks by matching data packets to predefined signatures. However, these 

systems fail to detect new or zero-day threats, making them unsuitable for evolving smart environments. To 

overcome this, researchers introduced anomaly-based detection using machine learning (ML) algorithms like 

Support Vector Machines (SVM), Decision Trees, and k-Nearest Neighbors (k-NN), which detect deviations from 

normal behavior. While these models offer flexibility in identifying unknown threats, they often suffer from high 

false positive rates, which can lead to alert fatigue. 

To improve accuracy and handle complex data patterns, deep learning (DL) techniques have been adopted. 

Models such as Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and 

autoencoders have been employed to detect sophisticated attacks based on temporal and spatial patterns in 

network traffic. Although effective, these models are computationally intensive and may not be feasible for real-

time deployment on resource-constrained IoT devices commonly found in smart homes. To address this, 

lightweight AI models like MobileNet, TinyML, and pruned neural networks have been introduced. These models 

are optimized for edge devices, providing faster inference and lower energy consumption, though sometimes at 

the cost of slightly reduced accuracy. 

Hybrid and ensemble models, which combine the strengths of multiple algorithms, have also gained popularity. 

By integrating models like CNN-LSTM or Random Forest with Gradient Boosting, researchers have enhanced 

detection reliability. However, the complexity and computational demands of such models pose challenges for 

deployment on embedded systems. In addition, federated learning has emerged as a promising approach for 

maintaining user privacy by training models across decentralized devices without transferring raw data. Despite 

its privacy advantages, federated learning introduces synchronization and communication overheads that can 

impact real-time performance. 

To further enable immediate threat detection, Edge AI techniques have been developed, allowing AI models to 

run locally on edge nodes. This reduces latency and reliance on cloud infrastructure, making it ideal for time-

sensitive applications. Some frameworks even incorporate blockchain to log security events immutably and 

manage decentralized access control. However, blockchain integration adds latency and complexity, which may 

not be suitable for all scenarios. Finally, the use of Explainable AI (XAI) techniques such as SHAP and LIME has 

been explored to make model decisions more transparent and understandable to security administrators. Although 

XAI increases trust and interpretability, it may also introduce additional computational overhead. 

5. PROPOSED METHOD 

The proposed method introduces a comprehensive AI-driven framework designed specifically for real-time 

cyberattack detection in both smart homes and smart cities. The core objective is to achieve an optimal balance 

between high detection accuracy, low latency, and minimal resource consumption, addressing the diverse needs of 

heterogeneous smart environments. Initially, the system focuses on data acquisition from a wide variety of 

sources including IoT sensors, network traffic, device logs, and system events. Since smart homes and smart cities 

generate large volumes of heterogeneous data, the collection module is designed to handle real-time streaming 

data while maintaining data integrity and synchronization. 

The collected raw data undergoes an extensive preprocessing phase that includes noise reduction, missing data 

imputation, and normalization. These steps are essential to ensure the quality of input data, as IoT environments 

are prone to irregularities and packet losses due to connectivity fluctuations. 

Subsequently, a feature extraction module converts raw data into meaningful attributes relevant for cybersecurity 

analysis. This involves time-series feature engineering, protocol behavior analysis, and statistical summarization 

to capture both spatial and temporal aspects of the data. To further improve computational efficiency, the 

framework employs an advanced feature selection technique combining Recursive Feature Elimination (RFE) and 



ISSN: 2633-4828  Vol. 4 No.1, June, 2022  

 

International Journal of Applied Engineering & Technology 
 

 

Copyrights @ Roman Science Publications Ins.  Vol. 4 No.1, June, 2022 

 International Journal of Applied Engineering & Technology 

 

 380 

 

mutual information measures. This process discards redundant or irrelevant features, resulting in a compact 

feature set that accelerates model training and inference. 

The heart of the proposed system is a hybrid AI model integrating a pruned Convolutional Neural Network 

(CNN) with a lightweight Recurrent Neural Network (RNN) architecture. The CNN component excels at 

detecting spatial patterns within network packets, while the RNN efficiently models sequential dependencies in 

time-series data, essential for spotting evolving attack behaviors. Pruning techniques are applied to the CNN 

layers to reduce the number of parameters and computational overhead without significant loss in detection 

accuracy. This pruning makes the model feasible for deployment on edge devices with limited memory and 

processing power, common in smart home gateways. 

To optimize the model’s performance, Bayesian Optimization is utilized for hyperparameter tuning. Unlike 

exhaustive grid search, Bayesian Optimization intelligently explores the hyperparameter space, adjusting learning 

rates, dropout rates, and layer sizes to maximize detection precision and recall. The framework is architected for 

edge computing deployment, where the AI model is embedded on local gateways or edge servers in smart homes 

and city infrastructures. This ensures minimal latency for threat detection and enables rapid automated responses 

without reliance on centralized cloud resources. 

6. RESULT 

Table 1: Performance evaluation of ML models on NSL-KDD dataset 

Models Accuracy Precision Recall F-1 Score Time-to-Run (s) 

NB 50.14 56.87 49.46 50.42 Less than 5 

LR 68.97 75.07 62.76 67.86 Less than 5 

DT 96.66 96.91 95.65 96.64 Less than 5 

RF 97.84 98.32 93.96 96.99 7.88 

XGB 97.06 97.55 94.04 96.28 6.31 

ANN 86.54 89.89 80.77 87.66 12.88 

CNN 99.09 99.23 93.28 99.12 72.66 

LSTM 99.04 99.87 91.72 99.10 57.34 

SVM 98.77 98.89 93.84 97.68 49.77 

FL 98.99 99.32 93.22 98.24 225.46 

SL 99.23 99.64 98.68 99.29 172.34 
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Fig 1: Performance evaluation of ML models on NSL-KDD dataset 

It is observed that most attacks for the UNSW-NB15 dataset are generic and exploits. The number of attacks 

belonging to the fuzzers, shellcode, exploits, etc. categories are relatively fewer. For analyzing anomaly detection 

in the smart city environment, the study deployed several machine learning algorithms in addition to federated 

learning and split learning. The analysis also considered some classical machine learning algorithms, ensembles, 

and deep learning algorithms as benchmarks for evaluation purposes. Algorithms like naive Bayes (NB), logistic 

regression (LR), decision tree (DT), random forest (RF), extreme gradient boosting (XGB), artificial neural 

networks (ANNs), convolutional neural networks (CNNs), long short-term memory (LSTM), and support vector 

machines (SVM) were deployed for comparing the performances across the two datasets. The primary metrics for 

evaluating the performance are accuracy, precision, recall, F-1 score, and the model training time. Table 1 and 

Table 2 depict the model performance for the NSL-KDD dataset and the UNSW-NB15 dataset, respectively. 

Table 2: Performance evaluation of ML models on UNSW-NB15 dataset 

Models Accuracy Precision Recall F-1 Score Time-to-Run (s) 

NB 88.98 88.87 88.80 88.83 Less than 5 

LR 92.80 92.97 92.80 92.09 Less than 5 

DT 96.38 96.38 96.32 96.44 Less than 5 

RF 97.68 97.69 97.68 97.68 5.68 

XGB 95.85 95.86 95.85 95.85 46.95 

ANN 96.25 96.66 96.32 96.03 43.94 

CNN 95.09 95.03 95.01 95.03 178.77 

LSTM 96.48 96.32 96.44 96.46 127.56 

SVM 93.08 92.77 93.55 92.79 88.76 

FL 97.78 97.64 97.56 97.89 232.56 

SL 98.02 98.12 98.02 98.11 222.33 
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Fig 2: Performance evaluation of ML models on UNSW-NB15 dataset 

The ―time to run‖ values in Table 1 and Table 2 represent an average over multiple runs and indicate a 

commitment to capture the algorithm’s consistency in terms of performance and stability. Encouraging multiple 

runs provides a more robust assessment, accounting for potential variations in execution times due to factors like 

dataset nuances or algorithmic randomness. This approach also enhances the reliability of the results and ensures 

that the time metrics reflect a representative measure of the algorithm’s efficiency in real-world scenarios. This 

practice also aligns with best practices in machine learning research, fostering transparency and enabling a more 

nuanced understanding of the algorithm’s computational behavior. 
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Fig 3: Performance evaluation of ML models for both the datasets. 

Based on the evaluation metrics, it is observed that naive Bayes, logistic regression, and support vector machine 

exhibit the most unsatisfactory performance, while random forests, LSTM, federated learning, and split learning 

exhibit the best performance in terms of accuracy, precision, recall, and F-1 scores. The accuracy scores for 

random forest (RF), LSTM, federated learning, and split learning are 97.68, 96.48, 97.78, and 98.02, respectively. 

It is also observed that the training time for federated learning (232.56) is higher compared to split learning 

(222.33), which is higher compared to random forest (5.68) and LSTM (127.56). Regarding training time, RF 

performs the best, and in terms of accuracy, split learning performs the best. Figure 3 show the performance 

evaluation of both the datasets concerning accuracy using the Ml models and federated and split learning. 

7. CONCLUSION 
The increasing interconnectivity of devices in smart homes and smart cities has introduced significant 

cybersecurity challenges that demand robust, efficient, and real-time threat detection mechanisms. This study 

presents an optimized AI-driven framework that addresses these challenges by combining lightweight yet 

powerful hybrid AI models with advanced feature selection, edge computing, and federated learning techniques. 

By focusing on real-time data processing and low-latency inference, the proposed system effectively detects a 

wide range of cyberattacks, including novel and evolving threats, while operating within the resource constraints 

of diverse smart environments. The integration of online incremental learning enables continuous adaptation, 

ensuring the model remains relevant against emerging attack vectors without frequent retraining. Additionally, the 

incorporation of explainable AI components fosters transparency, enabling security professionals to interpret and 

trust the system’s decisions. This holistic approach not only improves detection accuracy and efficiency but also 

enhances privacy, scalability, and practical deployability. The proposed optimized AI framework represents a 

significant advancement toward securing smart homes and smart cities against cyber threats. Its flexible design 

supports deployment across heterogeneous devices and infrastructures, promising a safer and more resilient future 

for increasingly connected urban and domestic spaces. Future work will focus on extensive real-world validation, 

integration with automated response systems, and expanding the framework to encompass broader aspects of 

smart environment security. 
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