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ABSTRACT

To examine the composites' magnetization behavior, temperature-dependent magnetic measurements were made.
Experiments involving field cooling and zero field cooling revealed that the magnetization rise with field cooling
and fell with zero field cooling. The observed behaviour was explained by the alignment of spins in the direction
of the magnetic field and the thermal agitation at high temperatures that breaks magnetic couplings. Dielectric
investigations were performed on particulate composites of (1-x)SmBT-xSmCF, and the results showed a high
dielectric constant (er) and temperature-dependent behavior. The observation of an increase in er with
temperature was ascribed to the hopping mechanism between Fe3+—Fe2+ and Sm3+—Sm2+ ions. Nonetheless,
the structural transition was the cause of the drop in er below the Curie point. The critical temperature (Tc) and
dielectric constant (er) increased with the addition of the SmCF phase, and this increase was ascribed to denser
structures and improved electron mobility. Dielectric loss (tand) decreased for the composite materials, with peak
values found close to the Curie temperatures. This thorough investigation advances knowledge of the composites'
structural, magnetic, dielectric, and chemical properties.

Keywords: Magnetic properties, dielectric properties, hysteresis loops, domain structures, temperature-
dependent magnetization.

INTRODUCTION

The capacity of artificial multiferroic composites to combine multiple ferroic orders to exhibit distinct functional
features has attracted a lot of attention in recent years. Because these composites are designed to combine the
benefits of several ferroic features into a single material system, they are incredibly adaptable and can be used in
a wide range of applications, such as memory devices, actuators, and sensors. Of all the connection schemes used
in the fabrication of these composites, the 0-3 particulate approach is the most straightforward and effective. In
contrast to alternative techniques like 2-2 laminated and 1-3 fiber rod composites, the 0-3 particulate approach is
accessible and economical for large-scale production because it doesn't require complicated equipment.

A broad range of ferroic and magneto-dielectric properties are possible in the 0-3 particle composites due to the
embedding of ferroelectric and ferrimagnetic phases inside a matrix, which results in multiferroic behavior. The
interaction between the implanted particles and the surrounding matrix results in improved coupling between the
ferroelectric and ferromagnetic orders, which gives rise to unique properties of these composites. This coupling
allows magnetic properties to be controlled by an electric field and vice versa, which is essential for the
development of advanced multiferroic devices [1-3].

The structural, magnetic, dielectric, and ferroelectric-ferromagnetic coupling characteristics of these composites
are all thoroughly examined. Through the utilization of methods like temperature-dependent magnetization
investigations, X-ray photoelectron spectroscopy, and Raman spectroscopy, scientists can acquire more profound
comprehension of the fundamental principles that dictate the actions of these materials. Optimizing the
performance of multiferroic composites and customizing them for particular purposes require an understanding of
this.

The design of next-generation multiferroic devices could be completely changed by the creation of novel 0-3
particulate composites with improved properties, opening up new possibilities in fields like energy harvesting,
spintronics, and multifunctional materials, provided this field of study continues to progress. By examining the
complex interactions between structure, magnetism, and dielectric characteristics in samarium-doped barium
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titanate and cobalt ferrite composites, this work seeks to add to the expanding body of knowledge and pave the
way for future advancements in multiferroic materials.[3-6]
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Fig.1: Diagrammatic representation of three bulk composites with three common connection schemes: (a) 0-3
particulate composite, (b) 2—2 laminate composite, and (c) 1-3 fiber/rod composite.

A popular strategy for enhancing the ferroic characteristics of multiferroic composites is to maximize the transfer
of strain between the electric and magnetic phases. A ferroelectric phase with low leakage currents and a
magnetic phase with a high magnetic moment and magnetostriction can be chosen to accomplish this. By
strengthening the magneto electric (ME) response at the boundary interface, this approach can improve the
composite material's ME performance. The direct ME effect, which measures the ratio of polarization (P)
produced by an applied magnetic field (H), is a measure of the ME responsiveness of these composites.
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where ¢, and g, are, respectively, the relative permittivity of the medium and the dielectric permittivity of the
object. Since E =V/t, where V is the voltage and t are the thickness, the following relationship for the
magnetically generated magnetoelectric effect is discovered
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The voltage magneto-electric coefficient (o) is the key parameter used in evaluating experimental data and
designing various multiferroic-based applications [6-8].

Studying the structural characterizations of composite materials like barium titanate-cobalt ferrite (BaTiO3-
CoFe204) has shown relationships between interfacial stress, vacancies, and the ferroelectric structure's reduction
of tetragonal distortion. According to these results, BCZT85-CFO15 composites may be a viable option for the
development of lead-free materials with improved magnetoelectric (ME) coupling at room temperature.
Specifically, it was discovered that the ME coupling coefficient for BCZT85-CFO15 was roughly 6.03 ps/m.
Subsequent studies have shown that synthesising (1-x)BaTiO3—(x) CoFel.8Zn0.204 using the solid-state reaction
method, where x = 10, 20, 30, and 40 weight percentages, results in an increase in the morphology and dielectric
constant as the ferrite fraction rises. Furthermore, a sequence of materials with different concentrations of (1-
x)(Ba0.8Ca0.2Ti03)—x(Co00.6Zn0.4Fe204) were created using a wet chemical process. It was discovered that the
measured leakage current values in all samples agreed with the Ohmic conduction mechanism. The saturation
magnetization (Ms), which peaked at x = 0.04, rose together with the ferrite content.
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The solid-state reaction approach was used in the current investigation to create the composite materials (1-
x)Ba0.5Sm0.5TiO3 - x Co0.5Sm0.5Fe204 (where x = 0.02, 0.04, and 0.06). The objective of this study was to
examine these composite materials' structural, magnetic, temperature-dependent dielectric, and magnetoelectric
(ME) coupling characteristics. The findings pave the way for future applications in lead-free multiferroic devices
by providing a better knowledge of how changing the composition influences the multiferroic behavior and ME
coupling in samarium-doped barium titanate and cobalt ferrite composites.

Magnetic Studies

The ferrimagnetic behavior of the SmBT phase and its particulate composites [(1-x)SmBT-xSmCF
(0.02,0.04,0.06)] at room temperature is confirmed by the saturated M-H loops in Figure 3, and the corresponding
parameters are displayed in Table 1. All of the SmBT-SmCF composites and the pure SmBT phase show the
typical hysteresis loops, indicating that there is exchange interaction between spins with different orientations
within domains. As the proportion of the magnetic SmCF ferromagnetic phase increases in the composites, the
exchange interactions between different spins become stronger, resulting in an increase in saturation
magnetization(M;) and magnetic moments (u). This trend is in accordance with the mass ratios of the SmBT
phase used in the synthesis, the remnant magnetization (M,) in the composites also exhibits this same behavior.
This gives us reassurance that the ferroelectric SmBT phase limitations prevent the bulk numbers of spins from
being orientated in the field direction. One potential explanation for the increased magnetoelectric response is that
this causes strain inside the composites[8-12].

The study of domain structures of the SmBT phase and its composites were analyzed by calculating the square-
ness ratios (M,/M;). The results showed that all the samples SmBT as well as its composites have multi-domain
structure as the value of (M,/M;<0.5). The small values of M,/M; in the samples may be attributed to the magnetic
domains pinning effect, which is caused by the SmBT ferroelectric phase by blocking the spins from orienting in
the field direction. In order to compute the magneto-crystalline anisotropy for such confined magnetic multi-
domains, we used the Law of Approach to Saturation (LAS)[13-14].

b
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The b/H” term in the equation is related to the magneto-crystalline anisotropy, which is a measure of the energy
difference between different orientations of a magnetic moment within a crystal lattice. This term is dependent on
the crystal structure and the atomic magnetic moments within the lattice. The cH term is referred to as a
paramagnetic-like term and is associated with the high field magnetization. This term is related to the
susceptibility of the material to an applied magnetic field and the alignment of the atomic magnetic moments
within the material.
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Where p, (permeability of free space) = 4m x 10”7 H/m, K is the magneto-crystalline anisotropy constant which is

measure of the energy difference between the easy axis and the hard axis of a ferromagnetic material. The

magneto-crystalline anisotropy constant (K) increases with the increase in ferrite concentration in Sm-based

ternary (SmBT) composites. This is due to the increase in Co>* ions in the composites, which results in stronger

exchange interactions between Co” and Fe™ ions. These interactions lead to an increase in the alignment of the

magnetic moments, leading to an increase in K [15]. The magnetic moment(u.y,) experimentally is also calculated

by the expression [16].
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Where M,, is molecular weight of samples.
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Table 1: Various parameters of magnetic studies of particulate multiferroic composite of SmBT-
XSmCF(X=0.02,0.04,0.06)
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Figure 2: M-H loop of particulate multiferroic composite of (1-x)BagsSmg sTiO;—xCoq sSmg sFe,05
(x=0.0,0.02,0.04,0.06).
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Figure 3: LAS approach of particulate multiferroic composite of (1-x)BagsSmg sTiO3—xCog sSmg sFe,05 ,(x=0.02,
0.04, 0.06)

Dielectric Studies

The dielectric constant (g;) and dielectric loss (tand) of the sintered pellets of thickness‘d’ and area ‘A’ were

evaluated relations 10 and 11 respectively
Cod

&y =
Epd
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where 'C,' stands for capacitance and ¢ is the imaginary portion of the dielectric function, which is €* = g+ie.

Temperature Dependent Dielectric Properties and Curie Weiss Behavior

Figure 7 shows the fluctuation of dielectric constant g, for particulate composites (1-X)SmBT-
xSmCF(x=0.0,0.02,0.04,0.06) with temperature (100-400 K) at a frequency of 10 kHz. All of the composites
exhibit a high value of ¢, as a result of the samarium doping [17], and their behavior is remarkably comparable to
that of previous composites made of BaTiO; and CoFe,O, [17-21]. Since the process of electron hopping
between (Fe’*—Fe? and Sm**—Sm”) ions is temperature sensitive, an increase in g, with temperature is
noticeable. Dielectric polarization rises as a result of the hopping mechanism, which is a temperature-dependent
phenomenon. Beyond Curie temperatures, a dramatic decrease in the dielectric constant is seen because the
structural transition from the non-centrosymmetric tetragonal phase to the centrosymmetric orthogonal phase
cancels the net dipole moment owing to the deformed domain structure [21-23]. Comparing composites to
published BaTiO;, the Curie temperature (T.) is lower. The observed reduction in dielectric constant (g,) may be
ascribed to the dopant ions presence impeding the migration of Ti** ions in the core area. In composites, when the
SmCF phase concentration rises, the internal stress that SmCF grains creates on SmBT grains causes a modest
increase in the critical temperature (T.). The increase in dielectric constant (¢,) in composites containing the
SmCF phase, that can increase in electron hopping between Fe**«>Fe* and Sm**«<>Sm** ions. Smaller grains
provide a compact and dense structure in the composite material, which facilitates interfacial polarisation and
results in higher dielectric constants [23-25]. Additionally, the reduction in bond and hopping lengths positively
corresponds with the increase in electron hopping brought on by the SmCF phase. We analyzed and thoroughly
describe the lengths of the octahedral (B,.) and tetrahedral (B, bonds. Similar calculations were made for the
hopping distances between neighboring ions occupying octahedral and tetrahedral sites [26]. From SmBT-
SmCF(0.02) to SmBT-SmCF(0.06), an increase in Curie temperature is seen in the composites Larger grain size
and constrained ferroelectric domains are responsible for this rise in internal tensions. The Curie temperature of
SmBT was considerably influenced by Sm* among all the replaced rare earth ions. The change of Tc has been
shown to be larger for composites. Compared to their lower concentrations, rare earth ion concentrations had a
substantial impact on Curie temperature. Since there is more electron interaction between the octahedral and
tetrahedral sites when the hopping duration is shorter, polarisation is thus increased.
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Figure 4: Temperature dependent dielectric constant (g;) of (1-x) Bay sSmy sTiO3-xCoy sSmy sFe,05 (x =0.02, 0.04,
0.06) and insets shows the g, of BaysSm, sTiO5; and Curie Weiss Behavior.
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CONCLUSION

Temperature-dependent magnetic experiments demonstrated that the processes of zero field cooling and field
cooling had an impact on the magnetization behavior. Understanding the ferroelectric-ferromagnetic coupling in
these composites requires an understanding of the association between the concentration of the non-magnetic
SmBT phase and the Curie temperature (Tc), which suggests a reduction in magnetic linkages.

Dielectric analyses of the (1-X)SmBT-xSmCF particulate composites showed interesting temperature-dependent
behavior and improved dielectric characteristics. According to the conductivity analysis, the SmCF phase
improved the connection between the ferroelectric and magnetic phases and greatly increased the conductivity of
the composites. All things considered, our research advances our knowledge of multiferroic composites and their
possible use in advanced materials. The foundation for future research and development in the field of
multiferroics is laid by this work, which presents chances to produce materials with improved multifunctional
qualities.
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