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Abstract - This paper proposes a solution to the sliding puzzle 

problem with a large state space using reinforcement learning. 

While it is possible to converge the agent's policy with fewer 

learning iterations when the environment's state space is small, 

more learning is required to solve the problem when the state 

space is large and there are many states to explore. Previous 

research has applied Monte Carlo methods and temporal 

difference learning methods in sliding puzzle environments 

with large state spaces. However, there were issues such as high 

memory space consumption for storing state or action value 

functions and long episode lengths leading to extended learning 

times. In this paper, we propose using DQN (Deep Q Network) 

to reduce memory space consumption and perform pre-

training on puzzles during neural network initialization to 

reduce the initial state exploration range. Pre-training involves 

collecting some puzzle problems and their solutions and 

training the neural network through supervised learning to 

initialize the weights. Experimental results confirmed that the 

application of DQN reduced memory space, and the proposed 

pre-training method reduced the initial exploration range, 

thereby improving learning performance and reducing 

learning time. 

Index Terms - Reinforcement learning, Supervised learning, 

Pre-training, DQN, Sliding puzzle. 

INTRODUCTION 

In recent years, there has been an increase in solving 

problems that are difficult to implement algorithmically 

through systematic methods using mathematical analysis, by 

employing artificial intelligence. Artificial intelligence has 

evolved not only to classify, predict, and detect data but also 

to generate data and make decisions. One of the factors that 

have elevated the level of artificial intelligence, which could 

only perform simple tasks, is its 'decision-making ability.' 

The method applied to solve such decision-making problems 

is Reinforcement Learning[1]. Reinforcement learning is an 

artificial intelligence learning method where a learning agent 

learns optimal decision-making through actions it has taken. 

Humans go through various trials and errors to establish and 

modify appropriate action policies for different situations. 

Reinforcement learning mimics this process, adjusting the 

agent's action policy based on rewards received from 

experiencing various states in a given environment. 

Previous research[2] on the Sliding Puzzle problem with 

a large state space has used reinforcement learning methods 

like the Monte-Carlo method and Temporal Difference 

Learning. However, these methods have the drawback of 

requiring memory storage for the state or action value 

functions for all experienced states, leading to high memory 

consumption. Additionally, each episode length becomes 

long as learning episodes do not end before reaching the 

completion state, resulting in significant time consumption 

during the learning process. 

In this study, we propose methods to improve the issues 

raised in previous research. To solve the memory problem 

arising from storing action-value function values for all 

states experienced during the learning process, we propose 

the application of DQN (Deep Q Network). To alleviate the 

issue of extended learning time, we perform pre-training on 

puzzles during neural network initialization to reduce the 

initial state exploration range in environments with large 

state spaces. Pre-training involves collecting some puzzle 

problems and their solutions, and then training the neural 

network through supervised learning to initialize the 

network's weights. 

SLIDING PUZZLE AND REINFORCEMENT LEARNING 

I. Sliding Puzzle 

In this paper, we propose a reinforcement learning method 

for training an agent to solve the 8-puzzle problem, which 

consists of eight numbered tiles. The puzzle configuration is 

as follows: 

 [Configuration 1] The puzzle consists of a total of 8 

tiles, each labeled with a number from 1 to 8 to 

distinguish and represent the arrangement of the tiles. 

 [Configuration 2] There is one empty space, and a tile 

adjacent to the empty space (above, below, left, or right) 

can be swapped with the empty space. 

 [Configuration 3] Tiles not adjacent to the empty space 

cannot be moved. 
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In this paper, we define the objectives for solving the 

sliding puzzle as follows. Let s0 be the initial state of the 

puzzle and sT be the goal state: 

 [Objective 1] The agent should be able to reach the state 

sT from any arbitrarily chosen s0. 

 [Objective 2] The agent should be able to reach sT from 

s0 with the minimum number of actions. 

The number of possible states in a sliding puzzle is 

proportional to the number of tiles. Generally, the number of 

tile arrangements that a puzzle can display is (number of 

puzzle tiles + number of empty spaces)!, and we have 

verified whether there are unsolvable states. According to 

Sam Loyd's '15-puzzle' paper [3], unsolvable states are as 

follows: 

 [Condition 1] If the number of inversions (i.e., the 

number of pairs where a larger number precedes a 

smaller number) is odd, the puzzle is unsolvable. 

The 2D puzzle is converted into a 1D array, and 

adjacent tile pairs are examined based on their sequence. If 

the tiles are in descending order, this is defined as an 

'inversion.' The number of inversions denoted as c is 

calculated to determine whether it is odd or even. If c is 

even, the puzzle is solvable; if it's odd, the puzzle is 

unsolvable. The number of solvable states for a sliding 

puzzle with n tiles is (a×b)! ÷ 2. Here, a and b represent the 

width and height of the puzzle, respectively. The number of 

states with an even number of inversions, which is the same 

as the number of solvable states, is half of the total number 

of states. This is calculated by subtracting the number of 

states with an odd number of inversions from the total. The 

8-puzzle used in the experiment has 9! ÷  2 = 181,440 

solvable states. 

II. Reinforcement Learning 

Reinforcement learning is a field of machine learning that 

focuses on maximizing rewards through interactions 

between an environment and an agent. The given problem to 

be solved, or the 'environment,' is a 'sequential decision-

making problem' where the agent perceives its current state, 

chooses one of the possible actions, and transitions to the 

next state through repeated iterations. To apply sequential 

decision-making problems to computer programming, 

mathematical definitions and models are required. Typically, 

the environment is defined in terms of components based on 

the Markov Decision Process (MDP) for application in 

reinforcement learning. [4] 

The components of reinforcement learning based on the 

Markov Decision Process include State (S), Action (A), 

Policy (π), Transition Probability (Pss’ 
a
), and Reward (R). 

The goal of reinforcement learning is for the agent to find 

the optimal policy (π
*
) that maximizes the cumulative 

reward received from the environment through repeated 

learning iterations involving these components. 

 

 

III. DQN (Deep Q-Network) 

Reinforcement learning utilizes the Value Function in the 

process of converging to the optimal policy. The Value 

Function estimates the value of a specific state or the value 

of an action taken in a specific state, derived through the 

multiplication of rewards and the discount factor. The 

function that returns the value of each state is called the 

State-Value Function, and the function that returns the value 

of an action taken in a specific state is called the State-

Action Value Function, also known as the Q Function. The 

State-Value Function and the Q Function can be expressed 

mathematically as follows in equation (1) and (2). 

V(s)  =  r(s,a) + V(s’)                             (1) 

Q(s, a) = r(s,a) +maxQ(s’, a’)                     (2) 

In equation (1) for the State-Value Function, the values 

of all possible next states from the current state are 

considered. In equation (2) for the Q Function, only the 

highest State-Action Value from the possible actions in the 

next state is considered. Previous research has used Q-

Learning to converge the policy through the Q Function for 

solving the sliding puzzle. Q-Learning updates the value of 

state St using equation (3), where it utilizes the reward Rt+1 

obtained after taking action At in state St and the highest Q 

Function value in the next state St+1. 

 

However, because a tabular method was used to 

estimate Q Function values by storing temporary Q Function 

values for each state-action combination, the memory 

consumption was high in sliding puzzle environments with 

large state spaces. Table 1 in Q-Learning provides some 

examples of the Q-Table during the Q-Learning process 

using the tabular method. 

TABLE 1 

SOME PART OF BEHAVIORAL VALUES EXTRACTED DURING THE 

LEARNING PROCESS Q-TABLE 

State vector 
Q(s, a) 

up down left right 

[8, 1, 3, 6, 7, 2, 4, 5, 0] 
[2, 6, 3, 1, 0, 8, 4, 7, 5] 

[0, 3, 6, 2, 4, 7, 8, 1, 5] 

︙ 

-1.916 
-1.156 

-0.206 

︙ 

-0.206 
-1.698 

-1.458 

︙ 

-1.605 
-1.648 

-1.784 

︙ 

-0.318 
-1.524 

-0.799 

︙ 

This paper addresses these limitations by applying the 

DQN (Deep Q Network) algorithm, which uses neural 

networks to approximate Q function values and make action 

selections. The DQN algorithm calculates and estimates the 

Q function values through an artificial neural network. The 

input layer of the neural network receives the state, and the 

output layer provides the Q function values for the actions 

that can be performed in the current state.  
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The size of the input layer is the same as the size of the 

vector representing the state, and the size of the output layer 

corresponds to the number of actions that can be performed 

in the environment. 

SOLVING THE 8-PUZZLE PROBLEM USING PRE-TRAINED 

DQN 

I. Tile-based State Definition 

The state is defined as a sparse matrix based on the position 

of each tile to minimize numerical differences between each 

state and to represent the correlation between states. The 

process of defining the state is as shown in Figure 1 below. 

When the state of the puzzle is input, a 2D sparse matrix 

representing the position of each tile is generated. Each 2D 

sparse matrix for the tiles is then converted to 1D, and these 

matrices are combined to create the 2D matrix shown on the 

right. This generated sparse matrix containing position 

information is utilized for learning.  

 
FIGURE 1 POSITION-BASED VECTOR REPRESENTATION OF 

SLIDING PUZZLE STATES 

II. Reward Design Using Heuristic Function 

The state changes resulting from actions in the sliding puzzle 

environment can be represented as a tree structure. Utilizing 

the tree structure allows us to determine how far the current 

state is from the completed state. There exists a method of 

applying graph search algorithms to find the minimum 

action path for each state. However, this method consumes a 

lot of time and resources as it involves simple searching to 

derive the optimal path for all states. This paper defines the 

reward function using a heuristic method that approximates 

the distance between the current and completed states. 

The heuristic method applied to the reward function 

uses the concept of Manhattan distance. In an environment 

where the path between the starting point and the destination 

is parallel to the x-axis and y-axis and forms a grid shape, 

and where the only possible directions of movement are up, 

down, left, and right, the shortest distance between the two 

points coincides with the Manhattan distance. 

Utilizing these properties, we calculate the distance each 

tile has to travel from its position in the state after an action 

(s’) to its position in the completed state (sT). We then sum 

these distances and assign the negative of this sum as the 

reward. An example of this is shown in Figure 2. For each 

tile, excluding the empty space, we calculate the Manhattan 

distance and sum these values.  

Before reaching the completed state, we give a negative 

reward reduced by a certain factor. Upon reaching the 

completed state, a reward of 1 is given. To clearly 

differentiate the value between states before completion and 

the completed state, we multiply the negative reward by 0.1 

to create a numerical difference. 

 
FIGURE 2 REWARD FUNCTION ACCORDING TO MANHATTAN 

DISTANCE OF EACH TILE 

III. Supervised Learning for Neural Network Parameter 

Initialization 

In environments with a large number of possible states, 

reinforcement learning can encounter challenges. The 

principle of reinforcement learning involves converging to a 

policy through repeated visits to specific states. Exploring a 

vast state space using an epsilon-greedy policy and updating 

the policy can be time-consuming. To address this, our study 

collects a subset of puzzle data and initializes the parameters 

of the neural network computing the Q-function using 

supervised learning. 

The neural network used for supervised learning takes 

the puzzle state as input and returns the Q-function values 

for each action in the current state. The collected puzzle data 

consists of an Observation vector, which is a 1D list 

representing the tile states of the puzzle, and approximate Q-

function values. For supervised learning, the input data 

(Input Data) is transformed from the Observation vector to 

the tile location-based matrix. The labels (Labels) are 

computed using the approximations of the Q-function. The 

equations for calculating the approximate Q-function values 

are represented as Equation (4) and (5). 

 

IV. Sliding Puzzle Learning Modeling 

Figure 3 illustrates the overall sequence of learning and the 

interactions between the developed models. The collected 

training data undergoes preliminary training through 

supervised learning. The parameters of the trained neural 

network model are then initialized as the parameters for the 

reinforcement learning model. At this point, both the Q 

Network and the Target Q Network in the DQN model are 

initialized with the same parameters. 
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The DQN model, once initialized, interacts with the 

sliding puzzle environment to learn the optimal policy 

through trial and error in unexplored states. After a certain 

number of learning iterations, the DQN model is tested by 

inputting test data that was not included in the preliminary 

training data. This performance test involves solving puzzles 

and is conducted by inputting a total of 30 problems into the 

model 20 pre-extracted problems and 10 newly selected 

ones. The performance is measured by counting the number 

of actions taken to reach the completed state for each puzzle. 

 
FIGURE 3 SLIDING PUZZLE LEARNING MODEL DIAGRAM 

PRE-TRAINING MODEL PERFORMANCE EXPERIMENT AND 

ANALYSIS 

I. Experimental Environment 

The experiments in this paper are conducted in the hardware 

and software environment specified in Table 2.  

TABLE 2 

HARDWARE AND SOFTWARE ENVIRONMENTS USED IN THE EXPERIMENT 

Resources Device / Software 

CPU 

RAM 
GPU 

OS 

CUDA 

Intel i5-10400F 2.90GHz 

16G DDR4 2667MHz 
NVIDIA GeForce GTX 1660 Ti 

Windows 10 

CUDA 11.7 

Table 3 specifies the fixed numerical values, known as 

hyper-parameters, used in the experiment. is the probability 

of performing random actions according to the ϵ-greedy 

policy. The Decreasing Rate multiplies ϵ by a decay rate at 

the end of each episode, making ϵ decrease as learning 

progresses. The Experience Memory size indicates the 

capacity of the memory that stores information about 

experienced states, actions, and rewards during the DQN 

learning process. It can hold up to 10,000 tuples of (state, 

action, reward, next state). 

TABLE 3 

HYPER-PARAMETERS USED IN THE EXPERIMENT 

Hyper-Parameter Figure used 

ϵ in ϵ-greedy 

ϵ Decreasing Rate 

Discounting Factor () 

Experience Memory size 

Batch size 

Target Update N-step 

0.9 

0.99 

0.99 

10000 

128 

100 

II. DQN Model Training Results 

To compare learning performance, a DQN model without 

pre-training was also simultaneously subjected to 

reinforcement learning. Both models were given the same 

problem in each episode, and their respective learning 

processes were observed. The two models that completed the 

training are in a state after approximately 260 episodes, and 

the data and figures applied to each model are the same, 

except for the presence or absence of pre-training. 

Figure 4 shows the results recorded for the actions 

performed in each episode during the learning process. It can 

be observed that the model with pre-training took fewer 

actions for exploring various states in the initial stages of 

learning compared to the model without pre-training. 

Moreover, the pre-trained model was able to complete the 

puzzle with fewer actions overall compared to the general 

DQN model. 

 
FIGURE 4 NUMBER OF ACTIONS PER EPISODE DURING 

REINFORCEMENT LEARNING PROCESS 

III. Comparison of Model Performance Depending on the 

Presence or Absence of Pre-training 

After performing 1000 episodes during the reinforcement 

learning process, the puzzle-solving performance of the 

DQN model with pre-training was compared to that of the 

regular DQN model. The comparison criterion was the 

number of actions taken to complete the solution when 

applying the pre-collected test puzzle data to the model. The 

test problems consist of a total of 30 problems, ranging from 

problems that can be solved with one move to problems that 

require 30 moves. Figure 5 shows the results when applying 

the test problems to the two models that have completed 

their training. 

Figure 5 shows two graphs that indicate the number of 

actions taken by the DQN model without pre-training and 

the DQN model with pre-training to complete the solution 

for each problem. For puzzles that can be solved within 1 to 

9 actions, both models completed the solution with the 

minimum number of actions. However, for more challenging 

problems, as shown in the lower graph, the pre-trained DQN 

model was able to complete the puzzle solution in fewer 

actions compared to the regular DQN model. 
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Figure 5 Comparison of Puzzle Solving Performance of Models 

Reinforced with 1000 Episodes 

CONCLUSION 

In conclusion, we proposed a DQN-based reinforcement 

learning method to efficiently solve the 8-puzzle problem in 

large state spaces, addressing memory and learning time 

issues. Traditional models require storing 720,000 Q-

function values, but our DQN model operates with only 

10,000 data storage spaces and a neural network structure. 

Additionally, we introduced a pre-training process to 

initialize the DQN's neural network parameters with pre-

collected puzzle data, significantly accelerating learning.  

 

This method reduced initial exploration time and 

improved puzzle-solving performance by 16.6%. Our 

approach effectively addresses the challenges of learning in 

large state space environments, confirming that pre-training 

with partial environment information can expand exploration 

while reducing learning time. 
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