
ISSN: 2633-4828 Vol. 6 No.1, January, 2024

International Journal of Applied Engineering and Technology

Copyrights @ Roman Science Publications Vol. 6 No.1, January, 2024

International Journal of Applied Engineering and Technology

63

Improving the Training Performance of DQN Model on

8-puzzle Environment through Pre-training
 Seong Uk Moon

1
, Youngwan Cho

2

1
Seokyeong University,

2
ywcho@skuniv.ac.kr

Date of Submission: 15
th

 November 2023 Revised: 27
th

 December 2023 Accepted: 20
th

 January 2024

How to Cite: Seong Uk Moon and Youngwan Cho (2024). Improving the Training Performance of DQN
Model on 8-puzzle Environment through Pre-training. International Journal of Applied Engineering Research
6(1), pp. 63-67.

Abstract - This paper proposes a solution to the sliding puzzle

problem with a large state space using reinforcement learning.

While it is possible to converge the agent's policy with fewer

learning iterations when the environment's state space is small,

more learning is required to solve the problem when the state

space is large and there are many states to explore. Previous

research has applied Monte Carlo methods and temporal

difference learning methods in sliding puzzle environments

with large state spaces. However, there were issues such as high

memory space consumption for storing state or action value

functions and long episode lengths leading to extended learning

times. In this paper, we propose using DQN (Deep Q Network)

to reduce memory space consumption and perform pre-

training on puzzles during neural network initialization to

reduce the initial state exploration range. Pre-training involves

collecting some puzzle problems and their solutions and

training the neural network through supervised learning to

initialize the weights. Experimental results confirmed that the

application of DQN reduced memory space, and the proposed

pre-training method reduced the initial exploration range,

thereby improving learning performance and reducing

learning time.

Index Terms - Reinforcement learning, Supervised learning,

Pre-training, DQN, Sliding puzzle.

INTRODUCTION

In recent years, there has been an increase in solving

problems that are difficult to implement algorithmically

through systematic methods using mathematical analysis, by

employing artificial intelligence. Artificial intelligence has

evolved not only to classify, predict, and detect data but also

to generate data and make decisions. One of the factors that

have elevated the level of artificial intelligence, which could

only perform simple tasks, is its 'decision-making ability.'

The method applied to solve such decision-making problems

is Reinforcement Learning[1]. Reinforcement learning is an

artificial intelligence learning method where a learning agent

learns optimal decision-making through actions it has taken.

Humans go through various trials and errors to establish and

modify appropriate action policies for different situations.

Reinforcement learning mimics this process, adjusting the

agent's action policy based on rewards received from

experiencing various states in a given environment.

Previous research[2] on the Sliding Puzzle problem with

a large state space has used reinforcement learning methods

like the Monte-Carlo method and Temporal Difference

Learning. However, these methods have the drawback of

requiring memory storage for the state or action value

functions for all experienced states, leading to high memory

consumption. Additionally, each episode length becomes

long as learning episodes do not end before reaching the

completion state, resulting in significant time consumption

during the learning process.

In this study, we propose methods to improve the issues

raised in previous research. To solve the memory problem

arising from storing action-value function values for all

states experienced during the learning process, we propose

the application of DQN (Deep Q Network). To alleviate the

issue of extended learning time, we perform pre-training on

puzzles during neural network initialization to reduce the

initial state exploration range in environments with large

state spaces. Pre-training involves collecting some puzzle

problems and their solutions, and then training the neural

network through supervised learning to initialize the

network's weights.

SLIDING PUZZLE AND REINFORCEMENT LEARNING

I. Sliding Puzzle

In this paper, we propose a reinforcement learning method

for training an agent to solve the 8-puzzle problem, which

consists of eight numbered tiles. The puzzle configuration is

as follows:

 [Configuration 1] The puzzle consists of a total of 8

tiles, each labeled with a number from 1 to 8 to

distinguish and represent the arrangement of the tiles.

 [Configuration 2] There is one empty space, and a tile

adjacent to the empty space (above, below, left, or right)

can be swapped with the empty space.

 [Configuration 3] Tiles not adjacent to the empty space

cannot be moved.

Improving the Training Performance of DQN Model on 8-puzzle Environment through Pre-training

Copyrights @ Roman Science Publications Vol. 6 No.1, January, 2024

International Journal of Applied Engineering and Technology

64

In this paper, we define the objectives for solving the

sliding puzzle as follows. Let s0 be the initial state of the

puzzle and sT be the goal state:

 [Objective 1] The agent should be able to reach the state

sT from any arbitrarily chosen s0.

 [Objective 2] The agent should be able to reach sT from

s0 with the minimum number of actions.

The number of possible states in a sliding puzzle is

proportional to the number of tiles. Generally, the number of

tile arrangements that a puzzle can display is (number of

puzzle tiles + number of empty spaces)!, and we have

verified whether there are unsolvable states. According to

Sam Loyd's '15-puzzle' paper [3], unsolvable states are as

follows:

 [Condition 1] If the number of inversions (i.e., the

number of pairs where a larger number precedes a

smaller number) is odd, the puzzle is unsolvable.

The 2D puzzle is converted into a 1D array, and

adjacent tile pairs are examined based on their sequence. If

the tiles are in descending order, this is defined as an

'inversion.' The number of inversions denoted as c is

calculated to determine whether it is odd or even. If c is

even, the puzzle is solvable; if it's odd, the puzzle is

unsolvable. The number of solvable states for a sliding

puzzle with n tiles is (a×b)! ÷ 2. Here, a and b represent the

width and height of the puzzle, respectively. The number of

states with an even number of inversions, which is the same

as the number of solvable states, is half of the total number

of states. This is calculated by subtracting the number of

states with an odd number of inversions from the total. The

8-puzzle used in the experiment has 9! ÷ 2 = 181,440

solvable states.

II. Reinforcement Learning

Reinforcement learning is a field of machine learning that

focuses on maximizing rewards through interactions

between an environment and an agent. The given problem to

be solved, or the 'environment,' is a 'sequential decision-

making problem' where the agent perceives its current state,

chooses one of the possible actions, and transitions to the

next state through repeated iterations. To apply sequential

decision-making problems to computer programming,

mathematical definitions and models are required. Typically,

the environment is defined in terms of components based on

the Markov Decision Process (MDP) for application in

reinforcement learning. [4]

The components of reinforcement learning based on the

Markov Decision Process include State (S), Action (A),

Policy (π), Transition Probability (Pss’
a
), and Reward (R).

The goal of reinforcement learning is for the agent to find

the optimal policy (π
*
) that maximizes the cumulative

reward received from the environment through repeated

learning iterations involving these components.

III. DQN (Deep Q-Network)

Reinforcement learning utilizes the Value Function in the

process of converging to the optimal policy. The Value

Function estimates the value of a specific state or the value

of an action taken in a specific state, derived through the

multiplication of rewards and the discount factor. The

function that returns the value of each state is called the

State-Value Function, and the function that returns the value

of an action taken in a specific state is called the State-

Action Value Function, also known as the Q Function. The

State-Value Function and the Q Function can be expressed

mathematically as follows in equation (1) and (2).

V(s) = r(s,a) + V(s’) (1)

Q(s, a) = r(s,a) +maxQ(s’, a’) (2)

In equation (1) for the State-Value Function, the values

of all possible next states from the current state are

considered. In equation (2) for the Q Function, only the

highest State-Action Value from the possible actions in the

next state is considered. Previous research has used Q-

Learning to converge the policy through the Q Function for

solving the sliding puzzle. Q-Learning updates the value of

state St using equation (3), where it utilizes the reward Rt+1

obtained after taking action At in state St and the highest Q

Function value in the next state St+1.

However, because a tabular method was used to

estimate Q Function values by storing temporary Q Function

values for each state-action combination, the memory

consumption was high in sliding puzzle environments with

large state spaces. Table 1 in Q-Learning provides some

examples of the Q-Table during the Q-Learning process

using the tabular method.

TABLE 1

SOME PART OF BEHAVIORAL VALUES EXTRACTED DURING THE

LEARNING PROCESS Q-TABLE

State vector
Q(s, a)

up down left right

[8, 1, 3, 6, 7, 2, 4, 5, 0]
[2, 6, 3, 1, 0, 8, 4, 7, 5]

[0, 3, 6, 2, 4, 7, 8, 1, 5]

︙

-1.916
-1.156

-0.206

︙

-0.206
-1.698

-1.458

︙

-1.605
-1.648

-1.784

︙

-0.318
-1.524

-0.799

︙

This paper addresses these limitations by applying the

DQN (Deep Q Network) algorithm, which uses neural

networks to approximate Q function values and make action

selections. The DQN algorithm calculates and estimates the

Q function values through an artificial neural network. The

input layer of the neural network receives the state, and the

output layer provides the Q function values for the actions

that can be performed in the current state.

Seong Uk Moon and Youngwan Cho

Copyrights @ Roman Science Publications Vol. 6 No.1, January, 2024

International Journal of Applied Engineering and Technology

 65

The size of the input layer is the same as the size of the

vector representing the state, and the size of the output layer

corresponds to the number of actions that can be performed

in the environment.

SOLVING THE 8-PUZZLE PROBLEM USING PRE-TRAINED

DQN

I. Tile-based State Definition

The state is defined as a sparse matrix based on the position

of each tile to minimize numerical differences between each

state and to represent the correlation between states. The

process of defining the state is as shown in Figure 1 below.

When the state of the puzzle is input, a 2D sparse matrix

representing the position of each tile is generated. Each 2D

sparse matrix for the tiles is then converted to 1D, and these

matrices are combined to create the 2D matrix shown on the

right. This generated sparse matrix containing position

information is utilized for learning.

FIGURE 1 POSITION-BASED VECTOR REPRESENTATION OF

SLIDING PUZZLE STATES

II. Reward Design Using Heuristic Function

The state changes resulting from actions in the sliding puzzle

environment can be represented as a tree structure. Utilizing

the tree structure allows us to determine how far the current

state is from the completed state. There exists a method of

applying graph search algorithms to find the minimum

action path for each state. However, this method consumes a

lot of time and resources as it involves simple searching to

derive the optimal path for all states. This paper defines the

reward function using a heuristic method that approximates

the distance between the current and completed states.

The heuristic method applied to the reward function

uses the concept of Manhattan distance. In an environment

where the path between the starting point and the destination

is parallel to the x-axis and y-axis and forms a grid shape,

and where the only possible directions of movement are up,

down, left, and right, the shortest distance between the two

points coincides with the Manhattan distance.

Utilizing these properties, we calculate the distance each

tile has to travel from its position in the state after an action

(s’) to its position in the completed state (sT). We then sum

these distances and assign the negative of this sum as the

reward. An example of this is shown in Figure 2. For each

tile, excluding the empty space, we calculate the Manhattan

distance and sum these values.

Before reaching the completed state, we give a negative

reward reduced by a certain factor. Upon reaching the

completed state, a reward of 1 is given. To clearly

differentiate the value between states before completion and

the completed state, we multiply the negative reward by 0.1

to create a numerical difference.

FIGURE 2 REWARD FUNCTION ACCORDING TO MANHATTAN

DISTANCE OF EACH TILE

III. Supervised Learning for Neural Network Parameter

Initialization

In environments with a large number of possible states,

reinforcement learning can encounter challenges. The

principle of reinforcement learning involves converging to a

policy through repeated visits to specific states. Exploring a

vast state space using an epsilon-greedy policy and updating

the policy can be time-consuming. To address this, our study

collects a subset of puzzle data and initializes the parameters

of the neural network computing the Q-function using

supervised learning.

The neural network used for supervised learning takes

the puzzle state as input and returns the Q-function values

for each action in the current state. The collected puzzle data

consists of an Observation vector, which is a 1D list

representing the tile states of the puzzle, and approximate Q-

function values. For supervised learning, the input data

(Input Data) is transformed from the Observation vector to

the tile location-based matrix. The labels (Labels) are

computed using the approximations of the Q-function. The

equations for calculating the approximate Q-function values

are represented as Equation (4) and (5).

IV. Sliding Puzzle Learning Modeling

Figure 3 illustrates the overall sequence of learning and the

interactions between the developed models. The collected

training data undergoes preliminary training through

supervised learning. The parameters of the trained neural

network model are then initialized as the parameters for the

reinforcement learning model. At this point, both the Q

Network and the Target Q Network in the DQN model are

initialized with the same parameters.

Improving the Training Performance of DQN Model on 8-puzzle Environment through Pre-training

Copyrights @ Roman Science Publications Vol. 6 No.1, January, 2024

International Journal of Applied Engineering and Technology

66

The DQN model, once initialized, interacts with the

sliding puzzle environment to learn the optimal policy

through trial and error in unexplored states. After a certain

number of learning iterations, the DQN model is tested by

inputting test data that was not included in the preliminary

training data. This performance test involves solving puzzles

and is conducted by inputting a total of 30 problems into the

model 20 pre-extracted problems and 10 newly selected

ones. The performance is measured by counting the number

of actions taken to reach the completed state for each puzzle.

FIGURE 3 SLIDING PUZZLE LEARNING MODEL DIAGRAM

PRE-TRAINING MODEL PERFORMANCE EXPERIMENT AND

ANALYSIS

I. Experimental Environment

The experiments in this paper are conducted in the hardware

and software environment specified in Table 2.

TABLE 2

HARDWARE AND SOFTWARE ENVIRONMENTS USED IN THE EXPERIMENT

Resources Device / Software

CPU

RAM
GPU

OS

CUDA

Intel i5-10400F 2.90GHz

16G DDR4 2667MHz
NVIDIA GeForce GTX 1660 Ti

Windows 10

CUDA 11.7

Table 3 specifies the fixed numerical values, known as

hyper-parameters, used in the experiment. is the probability

of performing random actions according to the ϵ-greedy

policy. The Decreasing Rate multiplies ϵ by a decay rate at

the end of each episode, making ϵ decrease as learning

progresses. The Experience Memory size indicates the

capacity of the memory that stores information about

experienced states, actions, and rewards during the DQN

learning process. It can hold up to 10,000 tuples of (state,

action, reward, next state).

TABLE 3

HYPER-PARAMETERS USED IN THE EXPERIMENT

Hyper-Parameter Figure used

ϵ in ϵ-greedy

ϵ Decreasing Rate

Discounting Factor ()

Experience Memory size

Batch size

Target Update N-step

0.9

0.99

0.99

10000

128

100

II. DQN Model Training Results

To compare learning performance, a DQN model without

pre-training was also simultaneously subjected to

reinforcement learning. Both models were given the same

problem in each episode, and their respective learning

processes were observed. The two models that completed the

training are in a state after approximately 260 episodes, and

the data and figures applied to each model are the same,

except for the presence or absence of pre-training.

Figure 4 shows the results recorded for the actions

performed in each episode during the learning process. It can

be observed that the model with pre-training took fewer

actions for exploring various states in the initial stages of

learning compared to the model without pre-training.

Moreover, the pre-trained model was able to complete the

puzzle with fewer actions overall compared to the general

DQN model.

FIGURE 4 NUMBER OF ACTIONS PER EPISODE DURING

REINFORCEMENT LEARNING PROCESS

III. Comparison of Model Performance Depending on the

Presence or Absence of Pre-training

After performing 1000 episodes during the reinforcement

learning process, the puzzle-solving performance of the

DQN model with pre-training was compared to that of the

regular DQN model. The comparison criterion was the

number of actions taken to complete the solution when

applying the pre-collected test puzzle data to the model. The

test problems consist of a total of 30 problems, ranging from

problems that can be solved with one move to problems that

require 30 moves. Figure 5 shows the results when applying

the test problems to the two models that have completed

their training.

Figure 5 shows two graphs that indicate the number of

actions taken by the DQN model without pre-training and

the DQN model with pre-training to complete the solution

for each problem. For puzzles that can be solved within 1 to

9 actions, both models completed the solution with the

minimum number of actions. However, for more challenging

problems, as shown in the lower graph, the pre-trained DQN

model was able to complete the puzzle solution in fewer

actions compared to the regular DQN model.

Seong Uk Moon and Youngwan Cho

Copyrights @ Roman Science Publications Vol. 6 No.1, January, 2024

International Journal of Applied Engineering and Technology

 67

Figure 5 Comparison of Puzzle Solving Performance of Models

Reinforced with 1000 Episodes

CONCLUSION

In conclusion, we proposed a DQN-based reinforcement

learning method to efficiently solve the 8-puzzle problem in

large state spaces, addressing memory and learning time

issues. Traditional models require storing 720,000 Q-

function values, but our DQN model operates with only

10,000 data storage spaces and a neural network structure.

Additionally, we introduced a pre-training process to

initialize the DQN's neural network parameters with pre-

collected puzzle data, significantly accelerating learning.

This method reduced initial exploration time and

improved puzzle-solving performance by 16.6%. Our

approach effectively addresses the challenges of learning in

large state space environments, confirming that pre-training

with partial environment information can expand exploration

while reducing learning time.

ACKNOWLEDGMENT

This research was supported by Seokyeong University in

2022.

REFERENCES

[1] Sutton, Richard S., & Andrew G. Barto. Introduction to reinforcement

learning. Vol. 135. Cambridge: MIT press, 1998.

[2] Seong-Uk Moon, Da-eun Jung, Jae-Hyun Kim, & Young-Wan Cho.

'Comparison of Sliding puzzle agent learning performance through

Monte Carlo method and Temporal difference learning (SARSA

control, Q-learning control) method.' The Korean Institute of

Electrical Engineers Conference 2021.11 (2021): 709-712.

[3] Hayes, Richard. The Sam Loyd 15-Puzzle. Trinity College Dublin,
Department of Computer Science, 2001.

[4] Puterman, Martin L. "Markov decision processes." Handbooks in
operations research and management science 2 (1990): 331-434.

[5] Mnih, Volodymyr, et al. "Playing atari with deep reinforcement

learning." arXiv preprint arXiv:1312.5602 (2013).

[6] Fujimoto, Scott, David Meger, and Doina Precup. "Off-policy deep

reinforcement learning without exploration." International conference
on machine learning. PMLR, 2019.

[7] Felner, A., Korf, R. E., & Hanan, S. (2004). Additive pattern database
heuristics. Artificial Intelligence, 154(1-2), 285-320.

[8] Paul E. Black, “Manhattan distance.” Dictionary of Algorithms and

Data Structures, NIST. Web. 19 March 2023.

AUTHOR INFORMATION

Seong Uk Moon, B.S Student, Department of Computer

Engineering, Seokyeong University, Seoul, Korea.

Youngwan Cho, Corresponding author, Professor, Department

of Computer Engineering, Seokyeong University, Seoul, Korea.

