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Abstract - Observing changes in land use and land cover 

(LULC) is critical for developing strategies and policies that 

facilitate effective planning and equitable rapid growth in 

urban development areas. Hence, this research aimed to 

incorporate the cellular automata and Markov chain models by 

utilizing TerrSet software and geographical information system 

(GIS) methodologies to observe and identify the spatial and 

temporal LULC changes within the city of Rabigh, Saudi 

Arabia. The study utilized multi-temporal satellite images from 

1993, 2003, 2013, and 2023, subjecting them to pre-processing 

techniques and analyzing them using the supervised maximum 

likelihood classification method. The objective was to 

investigate the historical land cover changes in the city from 

1993 to 2023 by employing a GIS program. The study also used 

a combined cellular automata–Markov model to effectively 

model, validate, and utilize future LULC scenarios using 

TerrSet software. The findings indicated that the area used for 

agriculture has expanded by 33.8 km2, and built-up land has 

increased by 24.1 km2, for a loss of 42.2 km2 of barren land 

over the past twenty years. The projected LULC maps for 2033 

and 2043 show that the transformation of barren land into 

built-up and agricultural areas will persist in the coming two 

decades. This phenomenon can be attributed to factors 

including urban expansion, government regeneration efforts, 

and the advancement of agricultural practices. The study offers 

valuable findings for developing strategic plans and 

implementing environmentally conscious land use management 

procedures. 

Keywords: LULC, cellular automata, Markov model, TerrSet 

software, GIS. 

INTRODUCTION 

The main consequences of urbanization and high population 

include important changes in land use and land cover 

(LULC), which affect the earth’s surface locally, regionally, 

and globally over several decades [1]. Moreover,  LULC 

change is a highly consequential phenomenon that is crucial 

in driving worldwide environmental transformations as a 

result of human activities.  

Consequently, natural and human factors, developing 

countries are witnessing unprecedented urban growth and 

LULC change. This growth takes place in a random and 

unplanned manner, but it is done at the expense of 

agricultural lands; hence, urbanization causes significant 

damage and environmental and ecological problems over 

wide spatial areas [2, 3]. Land use (LU) consists of many 

different human uses, such as built-up land, agricultural 

land, and service land (e.g., hospitals, schools, shopping 

centers, and parks; [4]. The most important precondition for 

LULC change is the optimal use of land and awareness of 

the wear patterns of land use  [5]. The ability to comprehend 

the issues that arise from changes in LULC, including their 

origins and consequences, has garnered the interest of 

scholars across various regions of the globe. Researchers 

focusing on models of land use changes in terms of time and 

space have exhibited significant enthusiasm toward applying 

these to alterations in LULC [6, 7]. Various studies have 

found that LULC change has enormous consequences for 

environmental system change, soil erosion, environment 

pollution, climate change, rising temperatures, ecological 

systems, and rainfall distribution, making it a significant 

threat to natural resource management [7-11]. This 

transformation of land has many direct and indirect effects 

on urban areas. Therefore, monitoring and predicting spatial 

and temporal LULC change provides fundamental 

information for decision-making related to planning, 

achieving sustainable evolution, and managing natural 

resources. 

Over the last decades, the use of spatial analysis 

technology, for instance, geographical information systems 

(GIS) and remote sensing (RS), has accelerated the 

development of more complex methods for simulating future 

processes of the Earth’s surface and offering support for land 

planning, policy-making, and management. Maps of LULC 

are essential as they provide observations of land change 

dynamics for analysis. 
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Therefore, previous studies have used GIS and Idris to 

study urban land use and forecast the future of land change  

[12, 13]. One such application is the cellular automata and 

Markov chain model, used in such modeling to predict and 

evaluate urban growth. The use of cellular automata (CA) 

has rapidly become the most common method for recreating 

historical landscapes and urban patterns and then forecasting 

potential outcomes based on various development methods 

[14-17]. He et al. (2006) [18] assert that a model based on 

CA can effectively be a symbol of non-linear, spatial, and 

stochastic phenomena. Moreover, the CA model can 

replicate and regulate intricate geographical processes while 

offering lucid comprehension of regional dynamics and 

worldwide trends of land utilization and coverage alteration. 

CA models provide a planning framework for reasonable 

urban spatial growth, which might reduce conflicts between 

land use and sustainability [19]. In a gridded CA model, 

cells are consistently sized and dispersed throughout the map 

[20], and procedures for converting rural cells to urban ones 

are specified [21]. Each cell’s potential for transformation is 

based on the probability computed from urban development 

drivers [22, 23]. Parameterizing the transition rules may be 

done in various ways, from more traditional statistical 

methods to cutting-edge AI systems [24].  

The utilization of Markov chain (MC) analysis has long 

been prevalent in the field of LULC change, as reported by 

Halmy et al., 2015 [25]. This approach involves a stochastic 

modeling technique. The underlying principle of its 

functionality is based on the physics postulate that the 

subsequent state is contingent solely upon the present state, 

as posited by Bell and Hinojosa (1977). The MC technique 

is used to observe the spatiotemporal dynamics of land-use 

changes based on transition matrices, as described by Guan 

et al., 2011 [26]. The CA–MC combined model has been 

proposed to account for both spatial and temporal shifts in 

LU. Specifically, Guan et al. (2011) have demonstrated that 

MC effectively controls temporal changes, and Nouri et al., 

2014 [27] have shown that spatial changes can be 

determined using a spatial filter of the CA approach. Many 

specialized techniques have been included in CA modeling; 

however, evaluating different models using the same criteria 

remains essential. The utilization of the integrated CA–

Markov model is a dependable approach to the computation 

of quantities and the formulation of spatial and temporal 

variability concerning the alteration of LULC. This can be 

attributed to the adept integration of RS information and 

GIS. Integrating the MC and CA models can transform the 

MC model outputs into spatially explicit outcomes, which 

are crucial for urban planning and design objectives. The 

result is a highly effective approach for examining LULC 

change across various spatial dimensions [28]. 

Recent research has simulated LULC changes 

worldwide utilizing the CA–Markov model using RS and 

GIS to monitor, map, and identify spatial–temporal LULC 

change. For instance, using CA and the MC model in Zaria 

City, Nigeria, revealed a rise in built-up areas [8].  

Likewise, during Tehran’s 1986–2006 urban expansion, 

which was simulated to calibrate and adapt the model, green 

and open areas decreased in built-up areas [3]. In El Jadida, 

Morocco, LULC change from 1999–2018 and urban 

development from 2010–2040 were examined using Markov 

chain analysis (MCA), which showed that built-up areas 

increased by 19.8 km2, with 12.8 km2 of this expansion 

replacing bare land and 7.1 km2 replacing vegetation. By 

2040, the built-up area may reach 43.8 km2 [29]. Rimal et 

al. (2018) examined LULC change dynamics and modeled 

urban land growth in Kathmandu Valley cities and their 

environs. Urban cover increased by 346.85% from 1988 to 

2016, replacing agricultural land. By 2024 and 2032, urban 

areas are projected to expand to 200 and 238 km2, 

respectively. In addition to using MCA to simulate spatial 

and temporal urban development patterns, another study 

used MCA to simulate the spatial and temporal patterns of 

urban development in Seremban, Malaysia, based on data 

collected between 1984 and 2010. The simulation results 

indicated a rise in urban expansion of 177 km2 by 2020, 

with a projected increase to 195.5 km2 by 2030 [30]. 

Landsat imagery was used to analyze urban development 

and LC changes in some of Saudi Arabian cities: the Eastern 

Area, Jeddah, Riyadh, Al-Taif, and Makkah. MC and CA 

modeling were used in the simulation model, and the 

simulated and reference maps were compared and verified. 

The simulation showed urban expansion in all five cities 

from 1985 to 2014 [31]. MCA has been widely applied using 

Idrisi and TerrSet software to analyze and predict urban land 

consumption. For example, a study was conducted in 

districts of Al Baha City between 2021 and 2047. The results 

showed that rangeland, woodland, shrubland, barren land, 

and sand made up 9.1% of the built-up area. Also, a 

simulation of the anticipated LULC change for the period 

2021–2047 predicted the loss of 565 km2 of land, including 

sand, barren land, forest, and shrubland [32]. 

Rabigh, a city in Saudi Arabia, has undergone rapid 

urbanization in recent years, resulting in a significant 

increase in population. It has also experienced widespread 

urbanization over the past few decades. According to the 

data provided by the General Authority for Statistics, Rabigh 

had a population of approximately 40,361 in 2005. 

Subsequently, the population witnessed a significant rise, 

reaching 93,097 in 2010. By the end of 2023, the population 

of Rabigh is anticipated to increase to 112,000. This 

population growth is expected to result in the replacement of 

agricultural and other LULC areas with urban areas. 

Moreover, a combined CA–Markov model has yet to be 

implemented in Rabigh; thus, this area was selected as the 

study area. The study’s objective was, first, to use 

supervised classification of satellite images from Landsat 

collected in 1993, 2003, 2013, and 2023 to observe changes 

in the land cover of Rabigh. Second, the CA–Markov model 

was utilized to predict and simulate land cover in 2033 and 

2043. Finally, the GIS and MCA were integrated to enhance 

the CA–Markov model. 
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STUDY AREA 

Rabigh is located in the Province of Makkah, ranking as the 

seventh-largest city in the province. Geographically, the 

coordinates of the location in question are 22° 47′ 9.77″ N 

and 39° 2′ 39.51″ E as shown in Fig 1. The metropolitan area 

of Rabigh is situated on the Red Sea shoreline, 

approximately 150 km from Jeddah City. The urban locality 

under examination is anticipated to be occupied by some 

112,000 persons by 2023. It sits at an altitude of 13 meters 

(43 feet) above sea level and is near the boundary of the 

Madinah Province. The inception of the urban settlement can 

be traced to the pre-Islamic epoch that preceded the 7th 

century CE. Subsequently, the toponym Al-Juhfah was 

embraced and endured until the 17th century. Rabigh’s 

advantageous geographical position along the Red Sea has 

enabled the inception of various noteworthy endeavors, 

including but not limited to the King Abdullah University of 

Science and Technology, the Petro Rabigh petrochemical 

company, and King Abdullah Economic City. The Rabigh 

Governorate comprises five distinct localities: Rabigh, 

Nuweiba, Abwa', Mastoura, and al-Qadimah. 

 

Fig. 1. Study area 

METHODS 

The present study used four satellite images taken at 10-year 

intervals from 1993 to 2023 to examine the dynamics of 

LULC change. The dataset consisted of Landsat TM 

imagery for 1993, Landsat ETM imagery for 2003, Landsat 

OLI imagery for 2013, and Landsat OLI imagery for 2023. 

In this study, the United States Geological Survey (USGS) 

was the source of the Landsat images that were collected. 

Table 1 lists the various satellite image datasets utilized in 

the research. 

 

 

Table 1.  

Datasets of satellite images used in this research. 

As illustrated in Figs. 2 and 3, this study was 

approached methodologically as follows: (1) The pre-

processing was conducted using ArcGIS 10.8 software to 

process the Landsat data sets for LULC changes. (2) The 

supervised classification method was adopted, utilizing the 

maximum likelihood classification (MLC) algorithm, which 

is widely recognized as the most commonly accepted 

classification method employed for RS data [33]. Therefore, 

the MLC algorithm in ArcGIS software for supervised 

classification was employed to assess the LULC changes 

from 1993 to 2023. The classification of images was based 

on three LULC classes: agriculture areas, barren areas, and 

built-up areas, as outlined in Table 2. (3) Accuracy 

assessment represents the essential last step in the process of 

LULC classification [34], and it can be derived from the 

confusion matrix. Landsat high-resolution images and 

Google Earth were extensively utilized for accuracy 

assessment in the pixel selection process. After 

classification, the study’s image contained 150 points for 

each year selected (1993, 2003, 2013, and 2023), of which 

50 points represent agricultural areas, 50 points represent 

barren areas, and 50 points represent built-up areas. The 

overall accuracy, producer’s accuracy, user’s accuracy, and 

Kappa statistics were generated from the confusion matrix 

[35]. (4) The Markov model is an optimal theoretical 

framework that centers on developing Markovian stochastic 

processes for forecast and control purposes [36]. The 

Markov approach explains the quantification of 

transformation states between various land use types and the 

amount of transfer between different land use categories. 

Geographic research commonly employs a predictive 

method that is not associated with any subsequent effects 

and has become a significant tool for predicting future 

geographical characteristics [37]. Land use change 

predictions were computed using the conditional probability 

formula equation (1–2) [38, 39]. 

                         (1) 

where S(t) and S(t+1) are the status of the system at 

time t or (t+1). 

              (2) 

Years Satellite  Path/Row Sensor 
Type 

UTM 
Zone 

Resolution  

1993 Landsat 

TM 

170/044 TM 37 30 

2003 Landsat 
ETM 

170/044 TM 37 30 

2013 Landsat 

OLI 

170/044 OLI_TIRS 37 30 

2023 Landsat 
OLI 

170/044 OLI_TIRS 37 30 
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(0 ≤  < 1 and  =1, ( , j = 1, 2, . ., )). 

 

where is the probability matrix of transition. 

(5) The CA–Markov model effectively combines the 

benefits of the Markov and CA models to forecast and 

simulate future changes in land use in Rabigh, as shown in 

Figure 3. When integrated into the TerrSet 19.0.6 software, 

the CA–Markov model’s prediction method consists of three 

steps. First, the Markov model is used to generate the 

transfer matrix and the state transition probability matrix, 

which involves using the CA model to forecast future land 

use. The study developed a potential transition matrix 

according to land use map conditions. The periods 1993–

2003 and 2003–2013 were used to predict the changes in 

2013 and 2023. The matrix was subsequently applied to 

forecast changes for 2013 and 2023, thereby facilitating the 

calibration and validation of the model. Moreover, the LU 

maps for 2013 and 2023 were used to forecast future 

changes in 2033 and 2043. Second, CA filters provide an 

obvious idea of the space ranking factor that could be 

changed based on the current state of the cells next to it. In 

this study, a neighborhood is defined by the normal 5×5 

contiguity filter. Every cellular center is surrounded by a 

matrix space made up of 5×5 cells, which influences the 

changes in the cellular center. Third, the CA–Markov model 

was executed with a varying number of iterations, ranging 

from 1 to 200, to determine the best possible iteration 

number. 

 

Fig. 2. Research methodological flowchart. 

 

 

Fig. 3. Research methodological flowchart. 

RESULTS AND DISCUSSION 

I. Supervised Classification Maximum Likelihood 

The study employed MLC techniques to generate LULC 

maps for 1993, 2003, 2013, and 2023. The outcomes of 

these techniques were analyzed and compared. The 

maximum likelihood classification technique involves 

determining the probability that a given pixel is associated 

with a specific class. One benefit of utilizing MLC is its 

reduced time consumption. The study area yielded superior 

outcomes with object-based classification instead of per-

pixel classification. The study involved the selection of three 

distinct classes, namely agriculture area, built-up area, and 

barren area, for the purpose of imagery classification, as 

shown in Fig. 4. The findings showed that in 1993, the 

agriculture area accounted for 10.6 km2 (10%), the built-up 

area accounted for 5.2 km2 (5%), and the barren area 

accounted for 91 km2 (85%). In 2003, a reduction of 4.4 

km2 (4.1%) occurred in the agricultural area due to a 

decrease in rainfall. This resulted in a corresponding 

reduction in the agricultural regions within the study area. 

Conversely, the built-up area increased to 8.4 km2 (7.9%), 

while the barren area expanded to 94 km2 (88%). The 

development of the built-up area was attributed to the 

various developmental policies of the Rabigh city 

government through development projects in Rabigh, 

particularly the construction of housing units.  



Layla Aljehani 

Copyrights @ Roman Science Publications  Vol. 5 No. 4, December, 2023 

International Journal of Applied Engineering and Technology 

 137 

According to the classification outcomes for 2013, the 

agricultural region experienced a reduction of 2.9 km2, 

equivalent to 2.7% of the total area. Conversely, the built-up 

area increased by 11.6 km2, covering 10.9% of the entire 

area. The barren area constituted most of the region, 

covering 92 km2 (86.4% of the total area). According to the 

2023 statistics, the agricultural and built-up areas 

experienced growth of 17.9 km2 (16.7%) and 18.4 km2 

(17.3%), respectively. Conversely, the barren areas 

experienced a decline, decreasing to 70.6 km2 (66%). Table 

2 presents the statistical information for each year. 

Table 2.  

LU/LC classification results for 1993, 2003, 2013, and 2023. 

 

 

 

 

 

Fig. 4. Four LULC maps in different years: A 1993, B 2003, C 2013, 

and D 2023. 
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2. Accuracy Assessment 

The accuracy assessment of image classifications pertaining 

to LULC classifications in the years 1993, 2003, 2013, and 

2023 demonstrated a very good level of classification 

accuracy for all classes. Table 3 presents the overall and 

kappa statistics for the classification images in different 

years. The assessment with the highest level of accuracy was 

linked to the 2013 image, at a percentage of 90%. 

Conversely, the lowest level of accuracy was observed for 

the 1993 image at a rate of 80%. The kappa statistics fell 

within the range of substantial to almost perfect strength of 

agreement. Based on the results for the years selected, the 

substantial strength of agreement range is between 0.61 and 

0.80, while the almost perfect strength of agreement range is 

between 0.81 and 1.00 [40]. In this study, the kappa statistics 

for 1993 and 2003 were within the substantial strength of 

agreement range, while those for 2013 and 2023 were within 

the perfect strength of agreement range. 

Table 3. 

The accuracy assessment of LULC classification in Rabigh city. 

 

3- Markov Transitional Probability Matrix 

The present study examined the dynamics of change within 

three LULC classes by applying a Markov chain analysis. 

The transition matrix of probabilities was used to quantify 

these changes over three distinct periods: 1993–2003, 2003–

2013, and 2013–2023. Table 4 presents the transition matrix 

of probabilities, which exhibits a range of values from 0 to 1. 

The greater the value, the more likely the LULC class will 

shift from horizontal to vertical or vice versa. The 

probabilities of LULC classes persisting are represented by 

the diagonal values in the transition matrix for each period. 

In contrast, the non-diagonal elements indicate the 

probability of a transition between land cover classes during 

the given time frame. The matrix of transition probabilities 

displays the possible trajectories of LULC changes during 

1993–2003, 2003–2013, and 2013–2023. The matrix 

indicates that the probability of barren areas transforming 

into built-up areas in the future has shown an upward trend, 

rising from 4.6% during 1993–2003 to 5.2% during 2003–

2013 and declining to 3.6% in 2013–2023.  

The probability of agricultural areas transitioning into 

built-up areas notably escalated from 1.7% during 1993–

2003 to 5.1% in 2003–2013 and then rose to 8.7% from 

2013 to 2023. Due to the city’s expansion and fast 

population growth, primarily due to Rabigh’s significant 

development initiatives, more and more formerly 

agricultural areas may soon be transformed into built-up 

areas. Also, the swift surge in the population of the urban 

center has resulted in a commensurate upsurge in the need 

for urban amenities and facilities. 

Table 4. 

Transition matrix of probabilities of periods: 1993–2003, 2003–2013, 

and 2013–2023. 

Year LULC Agriculture  Built-up  Barren  

1993–2003 Agriculture  0.1607 0.1710 0.6683 

Built-up  0.0039 0.5310 0.4651 

Barren  0.0690 0.1357 0.7952 

2003–2013 Agriculture  0.2784 0.0515  0.6701 

Built-up  0.0777 0.3968  0.5255 

Barren  0.0299 0.1979  0.7722 

2013–2023 Agriculture  0.5357  0.0879 0.3764 

Built-up  0.1395  0.4941 0.3664 

Barren  0.3068  0.1916 0.5016 

4- The Validation of the Model and the Prediction of Future 

LULC Change 

To forecast LULC changes for the next two decades, the 

existing LULC data from 2013 and 2023 were utilized. 

Using cross-tabulation techniques on these two LULC maps, 

probability statistics for LULC changes in 2033 and 2043 

were generated. The CA–Markov model integrates the 

principles of Markov chain methodology and CA filters. 

Once the Markov transition probability was obtained, the 

CA Markov model utilized the matrix of transition 

probability and probability images to forecast LULC 

changes over a 20-year timeframe, specifically in 2033 and 

2043. The complete number of iterations is determined by a 

number of time steps. In the case of a 20-year model, 

completing the run in 200 iterations is suggested. To 

accurately predict future LU trends, the CA–Markov model 

was initially used to forecast the LU indicated in 2013. 

Subsequently, the model was employed to predict LU 

change in the year 2023 to ascertain the dependability of the 

model. When optimizing the model’s performance, the LU 

change maps were predicted using different iteration 

numbers, specifically the iteration of the number that yielded 

the most favorable outcomes. To validate the model, the 

study compared the projected LU maps for 2013 and 2023 

with the real maps. This comparison was conducted based 

on the kappa index statistic, which allowed for an 

assessment of the model’s validity with regard to quantity 

and location [41, 42]. Fig. 5 demonstrates the relationship 

between the kappa index and the number of iterations. Based 

on the data presented in Fig. 5, the model demonstrated its 

highest level of performance in 50 iterations while 

predicting LU for the year 2023.  
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This optimal performance is indicated by a kappa 

standard of 0.7649, a kappa location of 0.9129, and a kappa 

number of 0.8003. Additionally, the model successfully 

predicted land use in the year 2013. It achieved this 

simulation in 200 iterations, with a kappa standard of 

0.7995, a kappa location of 1.0000, and a kappa number of 

0.8809. The validation results demonstrate good agreement 

between the observed and projected maps. The validation 

step yields the calculation of the optimum transition rules to 

the model, utilizing a predetermined number of iterations. 

These rules were subsequently employed to forecast LULC 

in 2033 and 2043. The future LULC maps for 2033 and 

2043 were simulations based on the successful role 

modeling of the LULC in 2013 and 2023. The future 

patterns of LULC were predicted based on the 2023 LULC 

map as a reference map, transition potential maps, and the 

area of transition matrices from the 2013–2023 period, as 

seen in Figs. 6 and 7. 

 

Fig. 5. Kappa statistics and number of iterations. 

 

Fig. 6. Previous and forecasted LULC change in km2. 

 

 

 

Fig. 7. Predicted LULC maps E 2033 and F 2043. 

According to the simulation findings obtained from the 

CA–Markov model, the built-up area is predicted to 

experience growth from 18.4 km2 in 2023 to around 22.8 

km2 in 2033. The extent of the agriculture area is projected 

to undergo a notable increase, expanding from 17.9 km2 to 

approximately 29.6 km2 within the timeframe spanning from 

2023 to 2033. The extent of the barren area is projected to 

experience a decrease from 70.6 km² in 2023 to about 54.4 

km² by 2033. In a similar vein, the simulation model 

conducted for 2043 projected a notable expansion in the 

built-up area, with an estimated rise from 18.4 km2 in 2023 

to around 24.1 km2 by 2043. The projected growth of the 

agriculture area is anticipated to rise from 17.9 km2 in 2023 

to approximately 33.8 km2 by the year 2043. The extent of 

the barren area is projected to experience a significant 

reduction, decreasing from 70.6 km2 to around 48.8 km2. 
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Notably, the CA–Markov model applied in this study 

successfully simulated and predicted upcoming LULC 

patterns using two maps. This highlights the usefulness of 

the model of CA–Markov in circumstances with limited data 

availability. In the context of urban growth, the alteration of 

LULC is influenced by various factors, including 

biophysical characteristics such as the slope, aspect, and LC, 

as well as socioeconomic variables such as population 

density and distance to the central business district [4]. It is 

essential to consider these factors in addition to LULC 

history when examining the impact of urban expansion on 

LULC change. Therefore, by integrating these factors into 

the CA–Markov model, the understanding of LULC change 

in urban areas is anticipated to be enhanced, thereby 

improving the model’s capacity to predict LULC change. 

CONCLUSIONS 

The current study demonstrates the development of a model 

to forecast the temporal and spatial patterns of LULC in 

Rabigh. Between 1993 and 2023, the categorization of land 

use and land cover experienced persistent and ongoing 

alteration. The Markov chain model has been widely 

recognized as the most suitable and precise approach for 

analyzing and forecasting for twenty-year periods. The study 

used this approach to create predictive LU and LC maps for 

2033 and 2043. More specifically, it attempted to identify, 

replicate, and forecast patterns of growth until the years 

2033 and 2043. The findings project that by 2043, a 33.8 

km2 expansion in agricultural land and a 24.1 km2 expansion 

in built-up areas will occur. These changes are anticipated to 

be accompanied by a reduction of 48.8 km2 in barren areas 

compared to the LULC data from 1993. This study holds 

significant importance for urban planning and decision-

making, particularly concerning future planning endeavors 

for modern cities. Additionally, the study illustrated the 

utility of satellite data in analyzing temporal changes in land 

use and land cover within a specific period. To enhance 

understanding of land use changes and the factors that 

influence them, it is essential to integrate biophysical and 

socioeconomic data into the CA–Markov chain model. 
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