
ISSN: 2633-4828  Vol. 5, No. 3, September 2023  

 

 International Journal of Applied Engineering and Technology 

Copyrights @ Roman Science Publications  Vol. 5, No. 3, September 2023 

   International Journal of Applied Engineering and Technology 

143 

A Graphics Device Driver Implementation 

Compliant with OpenGL SC 2.0.1 Standard 

Specification 
Nakhoon Baek

 
 

School of Computer Science and Engineering, Kyungpook National University, Republic of Korea  

Graduate School of Data Science, Kyungpook National University, Republic of Korea 

Email: nbaek@knu.ac.kr 

Date of Submission: 19
th

 August 2023  Revised: 29
th

 August 2023   Accepted: 5
th

 September 2023 

How to Cite: Baek, N. (2023), A graphics device driver implementation compliant with OpenGL SC 2.0.1 
standard specification, International Journal of Applied Engineering and Technology 5(3), pp. 143-149.  

Abstract - Various 3D graphics outputs are increasingly 

required in the field of safety-critical applications including 

military, avionics, aerospace, and medical applications. In this 

paper, we present a graphics device driver implementation of 

OpenGL SC (Open Graphics Library – Safety Critical) 2.0.1, a 

3D graphics standard specification that reflects the needs of the 

safety-critical field. OpenGL SC 2.0.1 was newly announced in 

2019, and only a few limited number of implementation cases 

have been reported so far. In this paper, to increase its own 

portability, we designed to only use some functions of DRM 

(direct rendering manager) in a general Linux environment, 

while various test results were confirmed targeting specific 

GPUs, in our case, Intel HD630 GPU. The implementation 

results can be used to implement 3D graphics terminals in the 

military and aviation fields.   

Index Terms - Graphics Device Driver, OpenGL SC 2.0.1, 

Safety-Critical Implementation. 

INTRODUCTION 

Recently, almost all computers, tablets, smartphones, and 

embedded devices provide 3D graphics output as one of its 

fundamental features. Among the libraries for 3D graphics 

output, the OpenGL library [1,2,3,4,5,6] is currently the 

most widely used. They are used as standard 3D graphics 

output libraries in supercomputers, workstations, desktops, 

tablets, smartphones, as well as many embedded boards. 

More precisely, with respect to the target devices, the 

OpenGL standard specifications can be classified into three 

different categories: 

● OpenGL for general computers including desktops, 

workstations, and mainframes, 

● OpenGL ES (embedded system) [7,8,9,10,11], 

specialized for mobile phones, tablets, and embedded 

devices, and 

● OpenGL SC (Safety-Critical) [12,13,14,15], 

specialized for military and avionics devices. 

Actually, all these standards are related to each other, as 

shown in Figure 1. Basically, the original OpenGL standards 

are developed first, and then, OpenGL ES standards are 

derived from them. As the next and the most improved step, 

the OpenGL SC standards are derived from OpenGL ES 

standards. According to these development processes, the 

target markets become more specific and narrower, even 

though the applied technologies become more refined. 

Among them, our focus is the OpenGL SC standards, 

which are consistently used for safety-critical applications, 

including military, avionics, medical, and automobile-related 

applications. It was revised to the 1.0.1 standard [13] in 

2009, after the original 1.0 standard [12] was announced in 

2005, for enabling 3D graphics output in the military and 

avionics fields. 

However, these OpenGL SC 1.0 and 1.1 standards were 

designed with the fixed function pipeline techniques, as 

shown in Figure 2, and thus, they had explicit limitations in 

that they could not accommodate the recent programmable 

graphics pipeline features. 

In 2016, the Open GL~SC 2.0 standard [14] with the 

new programmable graphics pipeline features was 

announced. Based on the existing OpenGL ES 2.0 standard 

[9], this standard was refined through removing redundant 

elements which could cause non-Safety-Critical situations 

and adding several advanced extensions. The shader 

language, which is essential for the programmable pipeline, 

has also changed [16,17,18]. 



ISSN: 2633-4828  Vol. 5, No. 3, September 2023  

 

 International Journal of Applied Engineering and Technology 

Copyrights @ Roman Science Publications  Vol. 5, No. 3, September 2023 

   International Journal of Applied Engineering and Technology 

144 

 

Figure 1. OpenGL SC was derived from OpenGL ES and OpenGL 

Currently, the OpenGL SC 2.0 standard is replacing the 

existing 1.0 standard, mainly in the military and avionics 

application markets. The Khronos Group, which supervises 

the whole OpenGL standards, provides certification through 

the OpenGL SC 2.0 conformance test. There are a number of 

products that are currently undergoing the certification 

process, so products that have obtained certification are 

likely to come out soon. 

For safety-critical products especially in the military 

and avionics markets, the OpenGL SC can be the most 

appropriate solution for their 3D graphics output. We 

already developed and commercialized OpenGL SC 1.0 and 

also basic components of OpenGL~SC 2.0 features 

[19,20,21]. 

Additionally, one more important thing to the OpenGL 

SC 2.0 is actually the introduction of the new modified 

OpenGL SC specification of version 2.0.1, in 2019 [15]. In 

this paper, we present a graphical device driver for the 

OpenGL SC 2.0.1 standard specification. Our 

implementation is designed to be used in Linux operating 

systems. As its actual target hardware, Intel HD530 3D 

graphics chip was selected, and it is directly driven using 

Linux DRM (direct rendering manager) features. Design 

steps and implementation details will be followed. 

DESIGN AND IMPLEMENTATION 

The 3D graphics standard of OpenGL SC 2.0 absolutely 

requires the use of the programmable graphics pipeline, as 

shown in Figure 3. Since the release of OpenGL 2.1 in 2006, 

this method has rapidly grown into one of the most 

important de facto industrial standards for 3D graphics. 

According to the development of brand-new computer 

graphics hardware devices, the role of the graphics card (or 

most equivalently, GPU) continuously became more 

important. From the application developer's point of view, it 

is more efficient to access, control, and use these GPUs, 

directly. Therefore, in the case of OpenGL, the OpenGL 

Shader Language (GLSL) is provided as a new 

programming language, which directly controls the GPUs 

[2]. More precisely, modern GPUs provide all of the shader 

language hardware, its middleware environment, and even 

shader language compilers. These full features have already 

been applied since OpenGL 2.1 [3,4,6], OpenGL ES 2.0 

[11,18], and OpenGL SC 2.0 [15]. 



ISSN: 2633-4828  Vol. 5, No. 3, September 2023  

 

 International Journal of Applied Engineering and Technology 

Copyrights @ Roman Science Publications  Vol. 5, No. 3, September 2023 

   International Journal of Applied Engineering and Technology 

145 

 

Figure 2. The fixed-function graphics pipeline used in OpenGL SC 1.0. 

In the case of OpenGL SC, the latest version of 

OpenGL SC 2.0.1 [15] adds an important feature, off-line 

shader compiling. Previous shader compilers are designed to 

perform the on-line compiling, which means on-the-fly 

compiling of shader source codes, during its OpenGL 

application program execution. In this case, we should 

endure the time delays and security issues, due to the on-line 

compilation process. Through adding the off-line compiling 

features, most of these problems are solved, using pre-

compiled execution files. This off-line compiling feature 

was added relatively recently, and only available in the latest 

version of OpenGL SC 2.0.1. In this paper, we have added 

this feature to accomplish our OpenGL SC 2.0.1 compliant 

implementation. 

The entire pipeline was carried out by referring to the 

OpenGL ES 2.0 implementation [22], which have been 

developed by our team, and adding additional functions 

required by the OpenGL SC 2.0.1 standard specification. 

Technically, the most challenging part was providing an 

offline compiler for the OpenGL SC shader language and 

integrating it into the system.  

 

For this purpose, in this paper, as shown in Figure 4 and 

5, a separate off-line compiler file format was defined and 

modified to enable information exchange between the shader 

compiler and the OpenGL SC 2.0.1 graphics device driver. 

In order to provide the off-line compilation features, we 

fully use the existing on-line shader compiler. In other words, 

after compiling with the existing shader compiler, the results 

are intercepted and stored as independent binary images. 

Technically, in these binary images, it is also necessary to 

store additional information, such as which variable a 

particular register is connected to. 

This conceptual design was implemented in our 

previous paper [23], which presented our practical file 

formats, and showed that it worked well. However, in the 

previous paper, it had a limitation in that it was implemented 

as a prototype using the Mesa graphics system [24]. We 

improved this and succeeded in a step-by-step development, 

and finally independently separating them after sufficient 

verifications. Finally, it was newly designed as an 

independent module, targeting the Intel HD 530 chip, which 

is a specific graphics card model in the Linux system, and 

completed in the form of an independent device driver. 



ISSN: 2633-4828  Vol. 5, No. 3, September 2023  

 

 International Journal of Applied Engineering and Technology 

Copyrights @ Roman Science Publications  Vol. 5, No. 3, September 2023 

   International Journal of Applied Engineering and Technology 

146 

 

FIGURE 3. THE PROGRAMMABLE GRAPHICS PIPELINE USED IN OPENGL SC 2.0.1. 

 
FIGURE 4. OUR DESIGN VIEW OF OPENGL SC 2.0.1 SHADER PROGRAM PROCESSING. 

The most problematic point in the development of 3D 

graphics systems is that current graphics systems are 

working on the top of a 2D window system.  

In embedded devices, it can be a major limitation that a 

large 2D graphics window system such as the X window 

system must be implemented first to provide 3D graphics 

functions. 



ISSN: 2633-4828  Vol. 5, No. 3, September 2023  

 

 International Journal of Applied Engineering and Technology 

Copyrights @ Roman Science Publications  Vol. 5, No. 3, September 2023 

   International Journal of Applied Engineering and Technology 

147 

 

Figure 5. The overall architecture of our off-line shader compiler. 

Our system can provide 3D graphics OpenGL SC 

functions directly without a window system by using DRM 

module [25]. It uses a DRM module built into the Linux 

kernel or provided as a separate library to switch to graphics 

mode and provides direct connections from the GPU chips to 

the screen output. The current system provides all API 

function interfaces of OpenGL SC 2.0.1, and the function 

modules operate on Linux-based devices that provide DRM 

(direct rendering manager) modules. Intel HD 530 chip was 

selected as the target graphics chip, and the GPU 

instructions of the corresponding chip were directly 

controlled. 

We chose the Linux operating system for the 

convenience of development. In the Linux systems, kernel-

level modules control the 3D graphics cards and GPUs. 

Since current 3D graphics cards are quite complex, it is 

difficult to control them with a single module. The core 

features include direct rendering manager (DRM) [25,26], 

kernel mode setting (KMS) [27], graphics execution 

manager (GEM) [28], and others. 

First, the DRM module was introduced to directly 

access the frame-buffer memory. In the case of the classical 

2D graphics systems, this frame-buffer access feature was 

sufficient to implement more complex graphics functions. 

However, currently this method alone cannot create a 3D 

graphics system, while this function is still needed. 

Next, if you use DRM, KMS, GEM, and others, 

graphics output is possible even without the support of the 

underlying window systems.  

In the case of OpenGL, it was confirmed that even 3D 

output is possible without a window system. The possibility 

of graphics output using actual DRM has been presented in 

the form of a prototype in our previous paper [23]. Finally, 

we were able to complete the graphic device driver using 

Linux kernel modules. 

The finally developed system provides suitable outputs 

in various test programs. Figure 6 is examples of test screens, 

through combining various functions such as output 

primitives, textures, stencils, and blending, to finally show 

that all functions work well without any problems. 

CONCLUSION 

For 3D graphics output in safety-critical applications, 

including military and avionics application programs, the 

use of safety-critical libraries such as OpenGL SC is 

strongly required. In this paper, we show an example of a 

graphics driver implementation, which complies with the 

recently announced OpenGL SC 2.0.1 standard, through 

directly controlling Intel HD 530 graphics chip on a Linux 

operating system. 

This method minimizes the software and hardware 

resources required for operation through using the kernel-

level DRM module directly, instead of the general 

Windows-based software stack architectures. In addition, 

since it can be operated as long as the DRM interface is 

provided, portability to various target systems including 

embedded environments is enhanced. In near future, our 

system can be used for various embedded systems, even for 

safety-critical applications. 



ISSN: 2633-4828  Vol. 5, No. 3, September 2023  

 

 International Journal of Applied Engineering and Technology 

Copyrights @ Roman Science Publications  Vol. 5, No. 3, September 2023 

   International Journal of Applied Engineering and Technology 

148 

 

FIGURE 6. EXAMPLES OF SCREEN SHOTS FROM OUR IMPLEMENTATION.

ACKNOWLEDGMENT 

This work has supported by Basic Science Research 

Program through the National Research Foundation of Korea 

(NRF) funded by the Ministry of Education (Grand 

No.NRF-2019R1I1A3A01061310). 

This study was supported by the BK21 FOUR project 

(AI-driven Convergence Software Education Research 

Program) funded by the Ministry of Education, School of 

Computer Science and Engineering, Kyungpook National 

University, Korea (4199990214394). 

REFERENCES 

[1] M. Segal and K. Akeley. The OpenGL Graphics System: A 

Specification, Version 1.3. Khronos Group, Aug. 2001. 

[2] M. Segal and K. Akeley, The OpenGL Graphics System: A 

Specification, Version 2.1. Khronos Group, Sep. 2006. 

[3] M. Segal and K. Akeley, The OpenGL Graphics System: A 
Specification, Version 4.6 (Core Profile). Khronos Group, May 2022. 

[4] M. Segal and K. Akeley, The OpenGL Graphics System: A 
Specification, Version 4.6 (Compatibility Profile). Khronos Group, 

May 2022. 

[5] J. Kessenich, The OpenGL Shading Language, Version 1.20. Khronos 

Group, Sep. 2006. 

[6] J. Kessenich, D. Baldwin, and R. Rost, The OpenGL Shading 

Language, Version 4.60.7. Khronos Group, Jul. 2019. 

[7] D. Blythe, OpenGL ES Common/Common-Lite Profile Specification, 

version 1.0.02. Khronos Group, Apr. 2008. 

[8] A. Munshi and J. Leech, OpenGL ES Common/Common-Lite Profile 

Specification, version 1.1.12 (Full Specification). Khronos Group, 

Apr. 2008. 

[9] A. Munshi and J. Leech, OpenGL ES Common Profile Specification, 

version 2.0.25 (Full Specification). Khronos Group, Nov. 2010. 

[10] J. Leech and B. Lipchak, OpenGL ES version 3.0.6. Khronos Group, 

Nov. 2019. 

[11] J. Leech, OpenGL ES version 3.2. Khronos Group, May 2022. 

[12] C. Hall and C. Knaus, OpenGL ES: Safety-Critical Profile 

Specification, version 1.0. Khronos Group, Jun. 2005. 

[13] B. Stockwell, OpenGL SC: Safety-Critical Profile Specification, 

version 1.0.1. Khronos Group, Mar. 2009. 

[14] A. Fabius and S. Viggers, OpenGL SC Version 2.0.0 (Full 

Specification). Khronos Group, Apr. 2016. 

[15] A. Fabius and S. Viggers, OpenGL SC Version 2.0.1 (Full 

Specification). Khronos Group, Jul. 2019. 

[16] R. J. Simpson, The OpenGL ES Shading Language, Version 1.00, 
Revision 17. Khronos Group, May 2009. 



Nakhoon Baek 

Copyrights @ Roman Science Publications  Vol. 5, No. 3, September  2023  

 International Journal of Applied Engineering and Technology 

 

 149 

[17] R. J. Simpson, The OpenGL ES Shading Language, Version 3.00, 

Revision 6. Khronos Group, Jan. 2016. 

[18] R. J. Simpson and J. Kessenich, The OpenGL ES Shading Language, 

Version 3.20.6. Khronos Group, Jul. 2019. 

[19] N. Baek and H. Lee, “OpenGL ES 1.1 implementation based on 

openGL,” Multimedia Tools and Applications, vol. 57, no. 3, pp. 669–

685, 2012. 

[20] N. Baek, “OpenGL SC implementation on the openGL hardware,” 

IEICE Tranactions on Information and Systems, vol. E95-D, no. 10, 
pp. 2598–2592, 2012. 

[21] N. Baek, “Providing safety-critical 3D graphics features on single-

board computers,” BigDAS 2016, 2016. 

[22] N. Baek, “Prototype implementation of the openGL ES 2.0 shading 

language off-line compiler,” Cluster Computing, vol. 22, pp. 943–948, 
2018. 

[23] N. Baek and K. Kim, “Design and implementation of openGL SC 2.0 

rendering pipeline,” Cluster Computing, vol. 22, pp. 931–936, 2019. 

[24] Mesa Team, The Mesa 3D Graphics Library, (retrieved in Sep 2023). 

[Online]. Available: http://www.mesa3d.org/ 

[25] R. E. Faith, The Direct Rendering Manager: Kernel Support for the 

Direct Rendering Infrastructure, 2020 (retrieved in Sep 2023). 

[Online]. Available: http://dri.sourceforge.net/doc/drm low level.html 

[26] J. Fonseca, Direct Rendering Infrastructure: Architecture, 2005 
(retrieved in Sep 2023). [Online]. Available: https://paginas.fe.up.pt/ 

mei04010/dri-architecture.pdf 

[27] Arch Linux, Kernel Mode Setting, 2018 (retrieved in Sep 2023). 
[Online]. Available: https://wiki.archlinux.org/index.php/kernel mode 

setting 

[28] K. Packard and E. Anholt, The Graphics Execution Manager: Part of 

the Direct Rendering Manager, 2008 (retrieved in Sep 2023). [Online]. 

Available: https://lwn.net/Articles/283798/ 

AUTHOR INFORMATION 

Nakhoon Baek, Professor, School of Computer Science and 

Engineering, Kyungpook National University, Daegu, 

Republic of Korea. E-mail: nbaek@knu.ac.kr. 

 
  

 


