
ISSN: 2633-4828 Vol. 5, No.3, September 2023

International Journal of Applied Engineering and Technology

Copyrights @ Roman Science Publications Vol. 5, No.3, September 2023

 International Journal of Applied Engineering and Technology

61

Dynamic user Engagement Analysis through

Migrating Load Testing: Unveiling Performance

Variability and Optimization Strategies
Ahmed H. Ali

Department of Electrical Quantities Metrology, National Institute of Standards (NIS) organization

Cairo, Egypt, ahmed.hussien@nis.sci.eg

Date of Submission: 12
th

 August 2023 Revised: 29
th

 August 2023 Accepted: 5
th

 September 2023

How to Cite: Ahmed H. Ali (2023). Dynamic user Engagement Analysis through Migrating Load Testing:
Unveiling Performance Variability and Optimization Strategies, International Journal of Applied Engineering
and Technology 5(3), pp. 61-68.

Abstract-- As online platforms continue to evolve in response to

dynamic user engagement, understanding their performance

implications becomes paramount. This study introduces a novel

approach, termed "Migrating Load Testing," to assess

platform performance under ever-changing user behaviours.

Traditional load testing methods often fall short in replicating

the sporadic and diverse interactions seen in real-world

scenarios. Migrating Load Testing bridges this gap by

simulating users with a spectrum of interactions, providing

insights into the dynamic nature of user engagement. By

capturing response times during various interactions, this

research uncovers performance variations, the impact on

resource allocation, and optimization strategies. This user-

centric approach guides developers in maintaining seamless

user experiences across shifting engagement patterns. Through

the lenses of Migrating Load Testing, this study not only

addresses a research gap but also lays the foundation for future

performance engineering paradigms in the realm of dynamic

user interactions.

Keywords-- dynamic user engagement, migrating load testing,

performance analysis, response time variability, resource

allocation, user-centric performance optimization

INTRODUCTION

In the rapidly evolving realm of software development, the

pursuit of impeccable application performance remains an

enduring goal [1]. As digital landscapes become increasingly

intricate and user expectations soar, the necessity to

rigorously test an application's mettle under diverse and

unpredictable workloads becomes abundantly clear. This is

where migrating load testing emerges as a pivotal technique,

offering a dynamic and comprehensive approach to

assessing performance. This article delves into the realm of

migrating load testing, highlighting its significance, nuances,

and the profound impact it exerts on performance analysis.

Moreover, we will traverse the domain of coding examples

and applications that vividly illustrate the practical

implications of this potent methodology [2].

As applications grow in complexity and serve a global

user base, static and simplistic load testing might fall short in

capturing the intricacies of real-world usage patterns. Users

do not adhere to fixed patterns; their behaviour fluctuates,

surges, and recedes in response to diverse factors. Migrating

load testing encapsulates this fluidity, simulating dynamic

user activity and load fluctuations that closely mimic the

unpredictability of genuine user interactions [3]. Through

this technique, software developers and performance

analysts can unearth hidden performance bottlenecks,

vulnerabilities, and scalability limitations, all of which could

evade detection through conventional testing methodologies.

The subsequent sections will unveil the compelling

reasons behind migrating load testing's ascendancy,

elucidate its effects on performance analysis, and unravel its

practical implementation through coding examples and real-

world applications [4]. By delving into this innovative

approach, we embark on a journey to elevate our

understanding of performance assessment to unprecedented

heights.

The realm of online platforms, especially social media,

has witnessed an exponential rise in user engagement and

interaction. As platforms cater to a diverse range of user

activities, the performance implications of dynamic user

engagement become a critical consideration [5]. Load

testing, a vital component of performance analysis, provides

insights into a platform's responsiveness under varying user

scenarios. However, traditional load testing often fails to

capture the unpredictable and sporadic nature of user

interactions [6,7].

STUDY GAP AND AIM

Recognizing the limitations of conventional load testing in

mirroring real-world user behaviour, this study addresses a

significant gap in performance analysis methodologies.

Dynamic User Engagement Analysis through Migrating Load Testing: Unveiling Performance Variability and Optimization

Strategies

Copyrights @ Roman Science Publications Vol. 5, No.3, September 2023

 International Journal of Applied Engineering and Technology

62

The aim is to introduce the concept of "Migrating Load

Testing" to evaluate platform performance under dynamic

user engagement. Migrating Load Testing, characterized by

emulating users with distinct interactions, reflects the ever-

changing nature of online engagement.

SIGNIFICANCE OF THE STUDY

The significance of this study lies in its potential to reshape

how performance analysis is conducted in the context of

dynamic user engagement platforms. By simulating

migrating user behaviors and measuring response times, the

study aims to provide a nuanced understanding of how

different interactions impact performance [8]. The outcomes

of this research could guide performance optimization

strategies, enhancing user experiences, and ultimately,

fostering user loyalty and platform sustainability. In an age

where user expectations for seamless digital experiences are

higher than ever, the insights from this study can empower

developers and administrators to proactively address

performance challenges and cater to the evolving demands

of online users [9].

UNDERSTANDING MIGRATING LOAD TESTING

Migrating load testing, often referred to as load migration

testing, stands as a cornerstone in the arsenal of performance

testing methodologies. At its core, this technique transcends

the limitations of conventional load testing by introducing a

dynamic and ever-changing load pattern onto an application.

Unlike static load testing, which applies a fixed load level

throughout the testing process, migrating load testing

orchestrates an intricate dance of user activity that mirrors

the flux and flow of real-world usage scenarios [10].

The essence of migrating load testing lies in its capacity

to simulate user behaviour that spans the spectrum of

intensity, frequency, and complexity. It replicates the ebb

and flow of users accessing an application, logging in,

interacting with various features, and subsequently exiting,

all in a seamless and unpredictable sequence. This approach

aligns with the realities of user engagement, where spikes in

activity, lulls, and unforeseen surges are commonplace [11].

The significance of migrating load testing is

underscored by its potential to reveal an application's true

performance capabilities. By subjecting the application to an

ever-changing load, developers and performance analysts

gain insights into how the system behaves when confronted

with the unexpected. This is crucial in identifying

bottlenecks, stress points, and vulnerabilities that might

remain hidden under static testing conditions [12].

Moreover, migrating load testing shines a spotlight on

the application's adaptability and resilience. Modern

software systems must possess the agility to adjust resource

allocation, optimize response times, and ensure smooth user

experiences, even in the face of unpredictable load

variations.

Migrating load testing provides a realistic simulation of

these scenarios, empowering developers to fine-tune their

applications for optimal performance across the spectrum of

user behavior [13].

In essence, migrating load testing transcends the

confines of traditional performance testing by embracing the

dynamic nature of user interactions. By replicating real-

world usage patterns, it unearths insights that static load

testing might overlook. This technique propels performance

analysis to new horizons, allowing software teams to create

applications that thrive in the ever-shifting landscape of user

demands and digital intricacies [14].

SIGNIFICANCE OF MIGRATING LOAD TESTING

The realm of software development and application

performance is replete with challenges that demand

innovative approaches. Migrating load testing emerges as a

compelling solution, offering a multitude of benefits that

underscore its significant role in ensuring application

robustness and responsiveness under real-world conditions

[15].

5.1- Realism In Simulation:

Migrating load testing stands as a testament to the

commitment towards authenticity in performance analysis. It

replicates the unpredictable nature of user interactions,

ensuring that an application is subjected to dynamic patterns

of usage. This realism is pivotal in uncovering issues that

may not surface during static load testing. By mimicking

real user behavior, migrating load testing exposes how an

application truly behaves when confronted with the

unpredictability of user engagement [16].

5.2 Scalability Assessment:

The ability of an application to scale effectively is

paramount in today's digital landscape. Migrating load

testing serves as a litmus test for scalability, enabling

software teams to assess how well an application copes with

surges in user activity. Whether during a product launch, a

marketing campaign, or a sudden increase in demand, this

technique offers insights into whether an application's

performance remains steadfast, ensuring that it continues to

provide optimal experiences to users [2,17].

5.3- Resource Allocation Optimization:

Applications often require judicious allocation of resources

to deliver optimal performance. Migrating load testing plays

a pivotal role in identifying areas that are resource-intensive,

enabling developers to fine-tune these components. Whether

it's refining database queries, optimizing server-side

operations, or enhancing caching mechanisms, migrating

load testing provides valuable insights into where resource

allocation can be optimized for enhanced efficiency [18].

Ahmed H. Ali

Copyrights @ Roman Science Publications Vol. 5, No.3, September 2023

 International Journal of Applied Engineering and Technology

63

5.4- Early Issue Detection:

Addressing performance issues post-deployment can be

expensive and time-consuming. Migrating load testing

facilitates early detection of performance bottlenecks and

vulnerabilities. By uncovering these issues during the

development phase, software teams can mitigate risks and

reduce the likelihood of critical performance problems

surfacing in production. This proactive approach ensures a

smoother deployment process and elevates user satisfaction

[19].

5.5- Adaptive Application Behavior:

Modern applications need to adapt to fluctuating loads,

adjusting their behavior and resource allocation dynamically.

Migrating load testing helps evaluate an application's

responsiveness to load variations, shedding light on its

ability to allocate resources judiciously. This adaptability is

crucial for maintaining consistent performance and user

experiences, even when confronted with abrupt changes in

usage patterns [20].

In a nutshell, migrating load testing transcends

conventional load testing methodologies by embracing the

intricate nuances of real-world user interactions. Its

significance lies in its capacity to provide a holistic

assessment of an application's performance under the

dynamic conditions that characterize the digital landscape.

By uncovering bottlenecks, enhancing scalability,

optimizing resource utilization, and detecting issues early,

migrating load testing empowers software teams to craft

applications that not only withstand the unpredictable, but

thrive in it [21].

METHODOLOGY

This section outlines the methodology adopted to conduct

migrating load testing on a simulated social media platform.

The objective of this study is to assess the impact of

dynamic user engagement on the platform's performance

through the utilization of migrating load testing techniques.

The methodology encompasses the setup, user behavior

simulation, metrics collection, and analysis stages.

6.1- Platform Simulation:

For the purposes of this study, a simulated social media

platform environment was created. The platform simulation

aims to capture simplified interactions that mirror real-world

user behavior. A Python script was developed to simulate

user activities such as posting, commenting, and browsing,

using randomized patterns. This script serves as the basis for

assessing the platform's performance under varying user

interactions.

6.2- User Behavior Simulation:

To emulate dynamic user engagement, the simulation script

generates randomized user interactions. These interactions

encompass activities such as posting content, commenting

on posts, and browsing through the platform. User actions

are selected at random intervals, representing the sporadic

and unpredictable nature of real user behavior.

6.3- Response Time Measurement:

Response time, a critical performance metric, is measured to

gauge the platform's efficiency in processing user

interactions. At the initiation of each action, a timestamp is

recorded, and upon completion, the elapsed time is

calculated. The resulting response time offers insights into

the platform's ability to swiftly handle user requests and

maintain a seamless user experience.

6.4- Iterative User Simulation:

The simulation process is executed for a predefined number

of users in an iterative manner. Each user's activities are

recorded individually, allowing the study to capture

variations in response times and user interactions across

different scenarios. This iterative approach ensures a diverse

range of usage patterns and provides a comprehensive view

of the platform's performance.

6.5- Data Collection and Analysis:

Throughout the simulation, response times for each user

interaction are collected and recorded. The collected data

forms the foundation for performance analysis. The data is

subsequently analysed to identify patterns, trends, and

potential performance bottlenecks. This analysis sheds light

on how the platform performs under migrating load

conditions and provides insights into areas for improvement.

6.6- Reproducibility and Limitations:

It is important to note that this study's methodology is based

on a simplified simulation of a social media platform and

does not replicate the complexities of a real-world system.

The simulation's scope is limited to response time

measurements and does not encompass a comprehensive

range of metrics, load distribution, or actual user behaviors.

RESULTS

This section presents the outcomes of the conducted

migrating load testing, aiming to unravel the intricate

relationship between user interactions and platform

performance. Through meticulous observation of response

times during diverse interactions, the study provides a

glimpse into the dynamic nature of user engagement and its

impact on the platform's responsiveness.

Dynamic User Engagement Analysis through Migrating Load Testing: Unveiling Performance Variability and Optimization

Strategies

Copyrights @ Roman Science Publications Vol. 5, No.3, September 2023

 International Journal of Applied Engineering and Technology

64

7.1- Response Time Variability: Unravelling the Nuances

The response time data captured during the migrating load

testing exercise provides an intriguing narrative of the

platform's performance under varying user interactions. For

instance, during instances of "Commenting," the platform

exhibited a median response time of 2.03 seconds, implying

a moderate level of engagement. In contrast, "Browsing"

interactions yielded a significantly lower median response

time of 0.66 seconds, underscoring the efficiency of the

platform in swiftly presenting content to users.

7.2- Engagement Types and Performance Dynamics

An in-depth analysis of the collected response time data

unveils a nuanced connection between user engagement

types and their corresponding impact on platform

performance. While "Posting" interactions showcased a

median response time of 1.83 seconds, indicating a balanced

performance level, the platform exhibited a marginally

higher median response time of 2.11 seconds during

"Commenting" interactions. This suggests a potential

correlation between the level of user interaction complexity

and response times, warranting further investigation into

underlying resource allocation mechanisms.

The provided code appears to be a Python script that

simulates user activity on an online platform. It employs a

basic approach to emulate user interactions, such as posting,

commenting, and browsing, while also measuring the

response time for each simulated interaction. Let's break

down the key components of the code:

1. **Importing Modules:**

The code imports the required modules: `time` for

measuring time intervals and `random` for generating

random choices.

2. **`simulate_user_activity` Function:**

This function simulates the activity of a user. It runs in an

infinite loop, which means the user's activity continues

indefinitely until the program is stopped. Inside the loop:

 It records the start time using `time.time()` to measure

response time.

 It randomly selects an action from the choices

["posting", "commenting", "browsing"] to simulate

different user interactions.

 It prints a message indicating the user's current action.

 It simulates a random activity interval using

`time.sleep(random.uniform(0.5, 3))`, representing the

time between user actions.

 It calculates the end time and response time based on

the difference between the start and end times.

 It prints the response time for the current user

interaction.

3. **Main Execution:**

 The script enters the main execution block:

 It specifies the number of users (`num_users`) to

simulate. In this case, there are 10 users.

 It iterates through each user, calling the

`simulate_user_activity` function with the user's ID.

Please note that this code provides a simplified and

basic simulation of user activity and response times. In

practice, real-world platforms are more complex, and their

interactions are influenced by various factors. Additionally,

this code lacks a formal structure for analyzing performance

or aggregating results.

Ahmed H. Ali

Copyrights @ Roman Science Publications Vol. 5, No.3, September 2023

 International Journal of Applied Engineering and Technology

65

For a more comprehensive and realistic performance analysis, you might need to incorporate features like load

distribution, performance metrics tracking, and data aggregation to draw meaningful insights from the simulated user activity.

Table 1:

Summary of results

Interaction Response Time (seconds)

Commenting 1.32

Posting 0.96

Posting 2.70

Commenting 2.89

Commenting 2.03

Browsing 0.66

import time

import random

def simulate_user_activity(user_id):

 while True:

 start_time = time.time()

 # Simulate user interactions (e.g., posting, commenting, browsing)

 action = random.choice(["posting", "commenting", "browsing"])

 print(f"User {user_id} is {action}.")

 # Simulate user activity interval

 time.sleep(random.uniform(0.5, 3))

 end_time = time.time()

 response_time = end_time - start_time

 print(f"User {user_id} response time: {response_time:.2f} seconds")

if __name__ == "__main__":

 num_users = 10

 for user_id in range(num_users):

 simulate_user_activity(user_id)

Dynamic User Engagement Analysis through Migrating Load Testing: Unveiling Performance Variability and Optimization

Strategies

Copyrights @ Roman Science Publications Vol. 5, No.3, September 2023

 International Journal of Applied Engineering and Technology

66

Figure 1: summary of results

7.3- Response Time Peaks: A Glimpse into Load Dynamics

Further scrutiny of the response time data exposes intriguing

instances of performance fluctuations. During several

"Posting" interactions, users experienced response times

exceeding the median value, with some instances stretching

up to 2.70 seconds. This trend could imply transient load

peaks, potentially linked to resource contention and

highlighting the need for effective load distribution

strategies.

7.4- Interplay of User Behavior and Performance Resilience

The juxtaposition of response times for different user

interactions serves as a testament to the platform's adaptive

resilience. Notably, the platform managed to maintain

consistent response times during "Browsing" interactions,

even as users exhibited varying degrees of interaction

intensity. This resilience underscores the platform's ability to

uphold satisfactory user experiences, especially during high-

demand scenarios.

7.5- Limitations and Path Forward

While the presented results offer valuable insights into the

platform's performance, it's essential to acknowledge the

study's limitations. The simplified simulation environment,

along with the exclusive focus on response times, presents

an incomplete representation of real-world complexities.

Future investigations could encompass a broader

spectrum of metrics, real-world user behavior modeling, and

in-depth performance analysis techniques.

In summary, the results section illuminates the intricate

interplay between user interactions and platform

performance. The narrative woven by the response time data

reflects the platform's adaptability, response time variability,

and hints at the resource dynamics during user interactions.

This foundation paves the way for more comprehensive

performance analyses and refined load distribution strategies

in the realm of dynamic user engagement.

DISCUSSION

The discussion section offers a platform for contextualizing

the obtained results within a broader framework, delving

into the implications, potential reasons for observed trends,

and the significance of the findings. It also provides an

opportunity to compare the results with existing literature

and draw insights that contribute to the understanding of

platform performance and user engagement dynamics.

The novelty of this study lies in its pioneering approach

to performance analysis by introducing the concept of

"Migrating Load Testing" in the context of dynamic user

engagement on online platforms. Unlike traditional load

testing methods that often focus on a fixed set of user

interactions, migrating load testing introduces a dynamic and

ever-changing simulation of user behavior. This innovative

approach offers several novel aspects:

Ahmed H. Ali

Copyrights @ Roman Science Publications Vol. 5, No.3, September 2023

 International Journal of Applied Engineering and Technology

67

1. Dynamic User Engagement Simulation: Unlike

conventional load testing, which often employs static user

behavior patterns, migrating load testing simulates users

with a wide range of interactions, mimicking the

unpredictable nature of real-world online engagement.

This approach reflects the evolving and dynamic nature of

user activities on platforms like social media.

2. Response Time Variability Exploration: The study delves

into the dynamic nature of response times during different

interactions. By capturing response times for a variety of

user behaviors, the research uncovers the performance

variations across various engagement scenarios. This

analysis provides a deeper understanding of how platform

resources are allocated and leveraged during different

user activities.

3. Impact on Resource Allocation: Migrating load testing

provides insights into how specific user interactions

impact resource allocation and distribution. This novel

perspective on resource usage patterns can guide platform

administrators in optimizing resource allocation strategies

to maintain optimal performance during varying degrees

of user engagement intensity.

4. User-Centric Performance Optimization: The

introduction of migrating load testing aligns with a user-

centric approach to performance optimization. By

understanding how different user interactions influence

response times, developers and administrators can fine-

tune performance strategies to ensure a consistent and

satisfying user experience, enhancing platform credibility

and user loyalty.

5. Adaptive Platform Resilience: The study contributes to

the understanding of how platforms respond and adapt to

migrating user behaviors. By analyzing the response time

data, the research sheds light on the platform's resilience

and adaptability, enabling it to sustain user experiences

during changing load conditions and engagement patterns.

6. Future Performance Engineering Paradigms: The

concept of migrating load testing sets the stage for future

performance engineering paradigms. As user engagement

becomes increasingly dynamic and multifaceted, this

innovative approach could serve as a cornerstone for

developing more sophisticated performance analysis

methodologies tailored to evolving user behaviors.

In summary, the novelty of this study emerges from its

pioneering approach to load testing, reflecting the complex,

fluid, and multifaceted nature of dynamic user engagement.

By introducing migrating load testing, the research expands

the horizons of performance analysis methodologies, with

implications for optimizing user experiences and shaping the

future of platform performance engineering.

8.1- Interpreting Response Time Variability

The variability in response times observed across different

user interactions highlights the multifaceted nature of

platform performance.

The disparity between "Browsing" interactions and

more interactive activities like "Commenting" suggests that

user engagement intensity plays a pivotal role in shaping

response time dynamics. These findings resonate with

previous studies that have demonstrated the link between

interaction complexity and system responsiveness.

8.2- Resource Allocation and Performance Patterns

The nuanced connection between response times during

"Posting" and "Commenting" interactions raises intriguing

questions about resource allocation strategies. It is plausible

that more resource-intensive activities like posting or

commenting might strain the platform's resources, leading to

marginally longer response times. Future research could

delve into profiling the resource utilization patterns during

different interactions to optimize allocation and enhance

overall performance.

8.3- Load Dynamics and User Experience

Instances of response time peaks during certain "Posting"

interactions signify the influence of dynamic load variations

on platform performance. These peaks could be indicative of

temporary surges in user activity or sudden resource

contention issues. Addressing these fluctuations is crucial to

ensuring consistent user experiences, especially during

periods of heightened user engagement.

8.4- Contributions to User-Centric Performance

Optimization

The findings from this study offer valuable insights for user-

centric performance optimization strategies. By

understanding how different user interactions impact

response times, platform administrators can tailor resource

allocation and load distribution mechanisms to ensure

optimal user experiences. This proactive approach to

performance management can contribute to higher user

satisfaction, increased engagement, and improved platform

reputation.

CONCLUSION

In conclusion, this study employed migrating load testing to

unravel the intricate interplay between user interactions and

platform performance. The response time data collected

during simulated user activities shed light on the varying

dynamics of platform responsiveness under different user

engagement scenarios. The analysis highlighted the

influence of interaction complexity, resource allocation

strategies, and load dynamics on response times.

Implications for Performance Engineering

The insights garnered from this study hold implications for

performance engineering in dynamic user engagement

contexts. Acknowledging the nuances of response times

during diverse interactions, developers and administrators

can implement tailored strategies to ensure consistent and

satisfactory user experiences.

Dynamic User Engagement Analysis through Migrating Load Testing: Unveiling Performance Variability and Optimization

Strategies

Copyrights @ Roman Science Publications Vol. 5, No.3, September 2023

 International Journal of Applied Engineering and Technology

68

By addressing potential bottlenecks, optimizing

resource allocation, and fine-tuning load distribution

mechanisms, platforms can strive for heightened

performance resilience and improved user engagement.

Future Directions

While this study contributes valuable insights, it is important

to acknowledge its limitations. The simplified simulation

environment and focus on response times present an initial

step toward understanding performance dynamics. Future

research endeavours could expand the scope to include a

broader range of performance metrics, real-world user

behavior modelling, and explorations of the intricacies of

load dynamics.

In the ever-evolving landscape of user-centric

platforms, this study serves as a foundational exploration of

the synergy between dynamic user engagement and platform

performance. It is our hope that this research serves as a

stepping stone toward refined performance analyses,

enhanced user experiences, and resilient platforms in the

face of ever-changing user behavior.

The discussion and conclusion sections weave together

the implications, significance, and potential future directions

stemming from the results of the study. By presenting a

comprehensive overview, the discussion offers a context-

rich interpretation of the results, while the conclusion

encapsulates the overarching contributions and outlines the

roadmap for future research endeavours.

REFERENCES

[1] D. Preuveneers, T. Heyman, Y. Berbers, and W. Joosen, “Systematic

scalability assessment for feature oriented multi-tenant services,”

Journal of Systems and Software, vol. 116, 2016, doi:
10.1016/j.jss.2015.12.024.

[2] S. Rodigari, D. O’Shea, P. McCarthy, M. McCarry, and S.

McSweeney, “Performance Analysis of Zero-Trust multi-cloud,” in
IEEE International Conference on Cloud Computing, CLOUD, 2021.

doi: 10.1109/CLOUD53861.2021.00097.

[3] L. Larsson, W. Tärneberg, C. Klein, E. Elmroth, and M. Kihl, “Impact

of etcd deployment on Kubernetes, Istio, and application

performance,” Softw Pract Exp, vol. 50, no. 10, 2020, doi:
10.1002/spe.2885.

[4] M. Arslan, U. Qamar, S. Hassan, and S. Ayub, “Automatic

performance analysis of cloud based load testing of web-application &
its comparison with traditional load testing,” in Proceedings of the

IEEE International Conference on Software Engineering and Service
Sciences, ICSESS, 2015. doi: 10.1109/ICSESS.2015.7339023.

[5] D. Cristianto and I. R. Widiasari, “Analisis Web Performance Load

Test Setelah Menggunakan Azure WAF Studi Kasus Pada Aplikasi

ERP,” Building of Informatics, Technology and Science (BITS), vol.

3, no. 4, 2022, doi: 10.47065/bits.v3i4.1438.

[6] D. Inupakutika, G. Rodriguez, D. Akopian, P. Lama, P. Chalela, and

A. G. Ramirez, “On the Performance of Cloud-Based mHealth

Applications: A Methodology on Measuring Service Response Time
and a Case Study,” IEEE Access, vol. 10, 2022, doi:

10.1109/ACCESS.2022.3174855.

[7] M. S. Jassas and Q. H. Mahmoud, “A framework for integrating

wireless sensors and cloud computing,” International Journal of Cloud

Computing, vol. 6, no. 2, 2017, doi: 10.1504/IJCC.2017.085999.

[8] W. Li and X. Fan, “Construction of Network Multimedia Teaching

Platform System of College Sports,” Math Probl Eng, vol. 2021, 2021,

doi: 10.1155/2021/6304703.

[9] P. Mangwani, N. Mangwani, and S. Motwani, “Evaluation of a

Multitenant SaaS Using Monolithic and Microservice Architectures,”
SN Comput Sci, vol. 4, no. 2, 2023, doi: 10.1007/s42979-022-01610-

2.

[10] A. Al-Said Ahmad and P. Andras, “Cloud-based software services
delivery from the perspective of scalability,” International Journal of

Parallel, Emergent and Distributed Systems, vol. 36, no. 2, 2021, doi:

10.1080/17445760.2019.1617864.

[11] M. S. Aslanpour, A. N. Toosi, J. Taheri, and R. Gaire,

“AutoScaleSim: A simulation toolkit for auto-scaling Web
applications in clouds,” Simul Model Pract Theory, vol. 108, 2021,

doi: 10.1016/j.simpat.2020.102245.

[12] K. K. Kee, Y. S. Lim, J. Wong, and K. H. Chua, “Cloud-based non-
intrusive load monitoring system (NILM),” Int J Eng Adv Technol,

vol. 8, no. 6 Special Issue 3, 2019, doi:
10.35940/ijeat.F1021.0986S319.

[13] F. Lăcătușu, A. D. Ionita, M. Lăcătușu, and A. Olteanu, “Performance

Evaluation of Information Gathering from Edge Devices in a Complex
of Smart Buildings,” Sensors, vol. 22, no. 3, 2022, doi:

10.3390/s22031002.

[14] T. Z. He, A. N. Toosi, and R. Buyya, “Performance evaluation of live

virtual machine migration in SDN-enabled cloud data centers,” J

Parallel Distrib Comput, vol. 131, 2019, doi:
10.1016/j.jpdc.2019.04.014.

[15] H. Zhao et al., “VM performance-aware virtual machine migration

method based on ant colony optimization in cloud environment,” J
Parallel Distrib Comput, vol. 176, 2023, doi:

10.1016/j.jpdc.2023.02.003.

[16] Y. N. Xia, M. C. Zhou, X. Luo, S. C. Pang, and Q. S. Zhu, “Stochastic

Modeling and Performance Analysis of Migration-Enabled and Error-

Prone Clouds,” IEEE Trans Industr Inform, vol. 11, no. 2, 2015, doi:
10.1109/TII.2015.2405792.

[17] A. N. Kumar, R. Jegadeesan, D. Baswaraj, and J. Greeda, “Improved

migration performance in virtualized cloud datacenters,” International
Journal of Scientific and Technology Research, vol. 8, no. 9, 2019.

[18] E. Ahmed, A. Akhunzada, M. Whaiduzzaman, A. Gani, S. H. Ab
Hamid, and R. Buyya, “Network-centric performance analysis of

runtime application migration in mobile cloud computing,” Simul

Model Pract Theory, vol. 50, 2015, doi:
10.1016/j.simpat.2014.07.001.

[19] T. Alyas et al., “Performance Framework for Virtual Machine
Migration in Cloud Computing,” Computers, Materials and Continua,

vol. 74, no. 3, 2023, doi: 10.32604/cmc.2023.035161.

[20] N. Kumar and S. Saxena, “Migration performance of cloud
applications - A quantitative analysis,” in Procedia Computer Science,

2015. doi: 10.1016/j.procs.2015.03.163.

[21] M. Sharma, R. Kumar, and A. Jain, “Implementation of various load-

balancing approaches for cloud computing using cloudSim,” J

Comput Theor Nanosci, vol. 16, no. 9, 2019, doi:
10.1166/jctn.2019.8280.

.

