
ISSN: 2633-4828 Vol. 5 No.2, June 2023

 International Journal of Applied Engineering and Technology

Copyrights @ Roman Science Publications Vol. 5, No.2, June 2023

 International Journal of Applied Engineering and Technology

63

A Innovative Approach in Optimizing the Number

of Neurons for Hidden Layer in Back Propagation

Neural Network Model

Dr. Rakesh Kumar Bhujade
1

Department of IT, Government Polytechnic Daman, Mota Falia, Nani Daman, Daman UT, India, Pin 396210,
E-mail : rakesh.bhujade@gmail.com

Dr. Stuti Asthana
2

Independent Researcher and Analyst, Near Government Degree College, Nani Daman, Daman UT, India, Pin 396210
E-mail : stutiasthana@gmail.com

Date of Submission: 28
th

January 2023 Revised: 11
th

April 2023 Accepted: 20
th

May 2023

Abstract-- The number of neurons in the hidden layers of a back

propagation neural network (BPNN) is a crucial hyper parameter that

can have a significant impact on the performance of the BPNN model.

There are different approaches to determining the appropriate number

of neurons for each hidden layer.

One common rules of thumb is generally used till now. In this

method, architect need to use trial and error method, where one start

with a small number of neurons in the hidden layer and gradually

increase it until one see little improvement in performance[6].

However, this can be a time-consuming process, especially if the neural

network have multiple hidden layers.

There are also more advanced techniques, such as the Bayesian

optimization or genetic algorithms, that can help automate the process

of selecting the appropriate number of neurons for each hidden layer.

Ultimately, the best approach depends on the specific problem we are

trying to solve and the available resources and time.

Keywords and phrases-- Neural Network, Hidden Layer, Neurons,

BPNN.

INTRODUCTIONS

A neural network is a type of machine learning algorithm

that is loosely modelled after the structure and function of

the human brain. It consists of interconnected processing

nodes, called neurons, that work together to learn and

recognize patterns in data.

The basic building block of a neural network is a single

neuron, which takes in input data, performs a calculation on

that data, and produces an output. In a neural network,

multiple neurons are organized into layers, with each layer

passing output to the next layer until a final output is

produced[4].

There are several types of neural networks, including

feed forward neural networks, convolutional neural

networks, and recurrent neural networks. Feed forward

neural networks are the simplest and most common type,

consisting of an input layer, one or more hidden layers, and

an output layer[2]. Convolutional neural networks are used

for image and video analysis, while recurrent neural

networks are used for sequence data such as speech or text.

Neural networks are trained using a process called back

propagation, where the network is presented with a set of

labeled training data, and the weights of the neurons are

adjusted to minimize the difference between the predicted

output and the actual output[1]. Once the network is trained,

it can be used to make predictions on new, unseen data.

Neural networks have been successfully applied to a

wide range of applications, including image and speech

recognition, natural language processing, and financial

forecasting.

DIFFERENT LAYERS IN NEURAL NETWORK

Input layer: The input layer is the first layer of a neural

network and is responsible for receiving the input data for

processing. It consists of a set of input neurons, where each

neuron corresponds to a feature or attribute of the input data.

The number of neurons in the input layer is determined

by the size of the input data. For example, if the input data

consists of 100 grayscale images, each of size 28x28 pixels,

then the input layer would have 28x28=784 neurons.

The input layer does not perform any computations on

the input data but simply passes it on to the next layer, which

is typically a hidden layer. Each neuron in the input layer is

connected to every neuron in the next layer through a set of

weights, which are adjusted during the training process to

optimize the performance of the network.

It is important to pre-process the input data before

feeding it into the input layer. Pre-processing steps may

include normalization, scaling, or feature extraction,

depending on the nature of the data and the requirements of

the neural network[3].

In summary, the input layer is the first layer of a neural

network that receives the input data and passes it on to the

next layer for further processing.

A Innovative Approach in Optimizing the Number of Neurons for Hidden Layer in Back Propagation Neural Network Model

Copyrights @ Roman Science Publications Vol. 5, No.2, June 2023

 International Journal of Applied Engineering and Technology
64

The number of neurons in the input layer is determined

by the size of the input data, and pre-processing of the input

data is typically necessary before feeding it into the network.

Output layer: The output layer is the final layer of a neural

network and is responsible for producing the network's

output based on the input data and the learned weights. The

output layer consists of a set of output neurons, where each

neuron corresponds to a particular output or class label.

The number of neurons in the output layer depends on

the type of problem being solved. For example, if the neural

network is being used for binary classification, then the

output layer would have one neuron that produces a binary

output (e.g., 0 or 1)[5]. If the network is being used for

multi-class classification, then the output layer would have

multiple neurons, where each neuron corresponds to a

particular class label.

The output layer typically applies a final activation

function to produce the output values. The choice of

activation function depends on the type of problem being

solved. For example, for binary classification problems, the

output layer may use a sigmoid activation function, while for

multi-class classification problems, the output layer may use

a softmax activation function.

During the training process, the weights in the network

are adjusted to minimize the difference between the

predicted output and the actual output. Once the network is

trained, it can be used to make predictions on new, unseen

data by passing the input data through the network and

obtaining the output from the output layer[12].

Hidden layer: The hidden layer is a layer in a neural

network that lies between the input layer and the output

layer. It is called the "hidden" layer because the

computations performed by the neurons in this layer are not

visible from outside the network.

The number of hidden layers and the number of neurons

in each hidden layer are important hyper parameters that can

greatly affect the performance of the neural network[10].

Generally, neural networks with more hidden layers and

neurons can learn more complex patterns in the data but may

also be more prone to overfitting.

The neurons in the hidden layer perform a weighted

sum of the inputs received from the previous layer, apply an

activation function to the sum, and produce an output value

that is passed on to the next layer. There are many different

types of activation functions that can be used in the hidden

layer, including the sigmoid, ReLU (rectified linear unit),

and tanh functions.

During the training process, the weights in the network

are adjusted to minimize the difference between the

predicted output and the actual output[8].

This is done through a process called back propagation,

where the error at the output layer is propagated backwards

through the network, and the weights are adjusted based on

the error gradient.

The architecture of the hidden layers and the choice of

activation functions are important factors in designing a

neural network that can effectively model complex

relationships in the data. The optimal choice of these hyper

parameters can be determined through experimentation and

tuning.

DIFFERENT LAYERS IN NEURAL NETWORK

There have been several approaches proposed in the
literature for approximating the number of hidden layer
neurons in multiple hidden layer Backpropagation Neural
Network (BPNN) architecture. Some of these approaches
are:

The Heuristic Approach: This approach suggests that the

number of hidden layer neurons should be somewhere

between the number of input neurons and the number of

output neurons. This approach is simple and easy to use, but

it may not always lead to optimal results[9].

The Pruning Approach: This approach involves training a

BPNN with a large number of hidden layer neurons and then

removing unnecessary neurons to achieve a smaller and

more efficient network. This approach can be time-

consuming and may require a lot of trial and error.

The Cross-Validation Approach: This approach involves

dividing the available data into training and validation sets,

and then testing the network's performance with different

numbers of hidden layer neurons. The number of hidden

layer neurons that result in the best performance on the

validation set is then selected.

The Information Criterion Approach: This approach

involves using statistical criteria such as the Akaike

Information Criterion (AIC) or the Bayesian Information

Criterion (BIC) to select the optimal number of hidden layer

neurons. The AIC and BIC are measures of the quality of a

model relative to its complexity, and they can be used to

select the number of hidden layer neurons that provide the

best trade-off between model fit and complexity.

Overall, these approaches have their advantages and

disadvantages, and the choice of the best approach may

depend on the specific problem and dataset being used.

There is no one-size-fits-all "best" way to calculate the

approximate number of hidden layer neurons in a multiple

hidden layer Backpropagation Neural Network (BPNN)

architecture[7].

Dr. Rakesh Kumar Bhujade and Dr. Stuti Asthana

Copyrights @ Roman Science Publications Vol. 5, No.2, June 2023

 International Journal of Applied Engineering and Technology
65

General architecture of a Backpropagation Neural Network

USE OF THREE HIDDEN LAYERS INSTEAD OF FOUR HIDDEN

LAYERS

There have been several approaches proposed in the

literature for approximating the number of hidden layer

neurons in multiple hidden layer Backpropagation Neural

Network (BPNN) architecture. Some of these approaches

are:

Four hidden layers can certainly be used in a

Backpropagation Neural Network (BPNN) architecture, but

whether or not to use four hidden layers depends on the

problem and the available data. Here are some reasons why

four hidden layers may not be used:

Overfitting: Overfitting: Using too many hidden layers can

lead to overfitting, where the BPNN fits the training data too

closely and performs poorly on new, unseen data. Four

hidden layers can lead to an overly complex network that is

prone to overfitting.

Computational Complexity: Each hidden layer adds

computational complexity to the BPNN, increasing the time

required to train and test the network. Using four hidden

layers can be computationally expensive, especially for large

datasets.

Data Availability:Using four hidden layers requires a larger

amount of data to properly train and validate the network. If

there is not enough data available, using four hidden layers

may not be justified.

Simplicity:In some cases, simpler models may perform just

as well or better than more complex models. Using four

hidden layers may not be necessary for some problems, and

a simpler network with fewer hidden layers may be

sufficient.

Overall, the decision to use four hidden layers in a

BPNN architecture should be based on careful consideration

of the problem, the available data, and the trade-offs

between complexity and performance. It is important to keep

in mind that the number of hidden layers is just one of many

hyper parameters that can be tuned to improve the

performance of a BPNN architecture.

BPNN ALGORITHM FOR THREE HIDDEN LAYERS

The back propagation neural network (BPNN) algorithm can
be used for training neural networks with multiple hidden
layers, including three hidden layers. Here are the steps to
train a BPNN with three hidden layers:

Initialize the network: First, you need to set up the

architecture of the neural network, including the number of

neurons in each layer and the activation function used. For a

three-hidden-layer network, you'll need to specify the

number of neurons in each hidden layer, as well as the input

and output layers[11]. You can use any activation function

that suits your problem domain, such as the sigmoid function

or the ReLU function.

Feed forward: Once the network architecture is set up, you

can feed the input data through the network to compute the

output. This involves calculating the dot product between the

input data and the weights of the first hidden layer, then

passing the result through the activation function to obtain

the output of the first hidden layer. This process is repeated

for each subsequent hidden layer until the output layer is

reached.

Compute error: After the network produces its output, you

can compute the error between the predicted output and the

actual output. This can be done using a loss function such as

mean squared error or cross-entropy.

Backpropagation: The backpropagation algorithm is used to

update the weights of the network to minimize the error. The

algorithm works by propagating the error backwards through

the network, starting from the output layer and moving

towards the input layer. The weights are updated using

gradient descent, which involves computing the gradient of

the loss function with respect to the weights and adjusting

the weights in the opposite direction of the gradient.

Repeat: Steps 2-4 are repeated for each training example in

the dataset. The weights are updated after each training

example, and the process is repeated for multiple epochs

until the error converges or reaches a desired threshold.

Test: Once the network is trained, you can test it on new data

to see how well it generalizes to unseen examples. This

involves feeding the input data through the network and

comparing the predicted output to the actual output.

By following these steps, you can train a BPNN with

three hidden layers to perform a variety of tasks, such as

image recognition, speech recognition, or natural language

processing.

A back propagation neural network (BPNN) with three

hidden layers can be represented mathematically as follows:

Let X be the input to the neural network, and Y be the

output. Let H1, H2, and H3 be the hidden layers, and let f1,

f2, and f3 be the activation functions for each hidden layer.

A Innovative Approach in Optimizing the Number of Neurons for Hidden Layer in Back Propagation Neural Network Model

Copyrights @ Roman Science Publications Vol. 5, No.2, June 2023

 International Journal of Applied Engineering and Technology
66

Let W1, W2, W3, and W4 be the weight matrices

connecting the layers, and let b1, b2, b3, and b4 be the bias

vectors for each layer.

The output of the first hidden layer, H1, can be

calculated as follows:

H1 = f1(X.W1 + b1)

The output of the second hidden layer, H2, can be

calculated as follows:

H2 = f2(H1.W2 + b2)

The output of the third hidden layer, H3, can be

calculated as follows:

H3 = f3(H2.W3 + b3)

Finally, the output of the neural network, Y, can be

calculated as follows:

Y = H3.W4 + b4

During the training process, the weights and biases are

adjusted using the back propagation algorithm to minimize

the error between the predicted output and the actual output.

This involves computing the gradient of the error with

respect to each weight and bias and using that gradient to

update the parameters in the opposite direction of the

gradient. This process is repeated iteratively until the error is

minimized.

CONCLUSION

Having too many hidden layers can also lead to

overfitting, where the model performs well on the training

data but poorly on new, unseen data. In practice, the optimal

number of hidden layers for a neural network depends on the

specific task and the amount of data available. For some

problems, a simple model with only one hidden layer may be

sufficient, while for others, a deeper network with three or

more hidden layers may be necessary. In general, a good

approach is to start with a simple model and gradually

increase its complexity until the desired performance is

achieved. This can be done by adding more hidden layers,

increasing the number of neurons in each layer, or

experimenting with different activation functions or

regularization techniques. Ultimately, the best way to

determine the optimal number of hidden layers for a specific

problem is to experiment with different architectures and

evaluate their performance on a validation set.

REFERENCES

[1] Zhang, W., Chen, Z., & Yan, S. (2017). A novel method for
optimizing the number of hidden neurons in MLP neural networks

using quantum-behaved particle swarm optimization. Applied Soft

Computing, 57, 408-419.

[2] KiwonYeom (2021). Path Planning for Autonomous Driving of

Mobile Robots using Deep Neural Network based Model Predictive
Control, International Journal of Emerging Technology and Advanced

Engineering, E-ISSN 2250-2459, ISO 9001:2008 Certified Journal,

Volume 11, Issue 11, November 2021.

[3] Zhang, X., & Guo, X. (2020). Optimization of the number of hidden

neurons in feedforward neural networks using genetic algorithm and

Levenberg–Marquardt algorithm. Neurocomputing, 407, 147-154.

[4] Lu, X., Wang, S., & Wang, G. (2020). A new approach for optimizing

the number of hidden neurons in a neural network based on improved
artificial bee colony algorithm. Applied Intelligence, 50(10), 3605-

3617.

[5] Wang, X., Cai, Z., & Tang, Y. (2020). Optimizing the number of
neurons in the hidden layer of a neural network using improved

particle swarm optimization. Journal of Ambient Intelligence and

Humanized Computing, 11(8), 3351-3360.

[6] Xu, Y., & Yu, H. (2020). An improved algorithm for optimizing the

number of hidden layer neurons in feedforward neural networks.
Neurocomputing, 405, 316-325.

[7] Zhang, Y., Peng, H., & Wang, Z. (2018). An efficient method for
optimizing the number of hidden neurons in multilayer perceptron

neural networks using gravitational search algorithm. Neural

Computing and Applications, 29(7), 497-507.

[8] Dr. Rakesh Kumar Bhujade, Dr. Stuti Asthana, “An Extensive

Comparative Analysis on Various Efficient Techniques for Image

Super-Resolution”, The International Journal of Emerging

Technology and Advanced Engineering (ISSN 2250–2459(Online),

Volume12, Issue 11, November 2022, 153-158

[9] Dr. Rakesh Kumar Bhujade, Dr. Stuti Asthana, “An Novel Approach

on the Number of Hidden Nodes Optimizing in Artificial Neural

Network”, International Journal of Applied Engineering &Technology
4(2), Vol. 4, No.2, September, 2022, pp.106-109.

[10] Amnesh Goel, Rakesh Kumar Bhujade “A Functional Review,

Analysis and Comparison of Position Permutation Based Image
Encryption Techniques”, International Journal of Emerging

Technology and Advanced Engineering, Volume 10, Issue 07, July

2020, (ISSN 2250-2459) pp 97-99.

[11] Yang Wei, Ivy Kim D. Machica, Cristina E. Dumdumaya, Jan Carlo

T. Arroyo, AllemarJhone P. Delima (2022), Liveness Detection Based
on Improved Convolutional Neural Network for Face Recognition

Security. International Journal of Emerging Technology and

Advanced Engineering, E-ISSN 2250-2459, ISO 9001:2008 Certified
Journal,Volume 12, Issue 8, August 2022 pp 45-53.

[12] Zhai, C., & Hu, S. (2018). An effective method for determining the

optimal number of neurons in the hidden layer of feedforward neural
networks using a hybrid whale optimization algorithm. Neural

Computing and Applications, 29(3), 761-776.

