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Abstract-- The number of neurons in the hidden layers of a back 

propagation neural network (BPNN) is a crucial hyper parameter that 

can have a significant impact on the performance of the BPNN model. 

There are different approaches to determining the appropriate number 

of neurons for each hidden layer. 

One common rules of thumb is generally used till now. In this 

method, architect need to use trial and error method, where one start 

with a small number of neurons in the hidden layer and gradually 

increase it until one see little improvement in performance[6]. 

However, this can be a time-consuming process, especially if the neural 

network have multiple hidden layers. 

There are also more advanced techniques, such as the Bayesian 

optimization or genetic algorithms, that can help automate the process 

of selecting the appropriate number of neurons for each hidden layer. 

Ultimately, the best approach depends on the specific problem we are 

trying to solve and the available resources and time. 

Keywords and phrases-- Neural Network, Hidden Layer, Neurons, 

BPNN. 

INTRODUCTIONS 

A neural network is a type of machine learning algorithm 

that is loosely modelled after the structure and function of 

the human brain. It consists of interconnected processing 

nodes, called neurons, that work together to learn and 

recognize patterns in data. 

The basic building block of a neural network is a single 

neuron, which takes in input data, performs a calculation on 

that data, and produces an output. In a neural network, 

multiple neurons are organized into layers, with each layer 

passing output to the next layer until a final output is 

produced[4]. 

There are several types of neural networks, including 

feed forward neural networks, convolutional neural 

networks, and recurrent neural networks. Feed forward 

neural networks are the simplest and most common type, 

consisting of an input layer, one or more hidden layers, and 

an output layer[2]. Convolutional neural networks are used 

for image and video analysis, while recurrent neural 

networks are used for sequence data such as speech or text. 

 

 

Neural networks are trained using a process called back 

propagation, where the network is presented with a set of 

labeled training data, and the weights of the neurons are 

adjusted to minimize the difference between the predicted 

output and the actual output[1]. Once the network is trained, 

it can be used to make predictions on new, unseen data. 

Neural networks have been successfully applied to a 

wide range of applications, including image and speech 

recognition, natural language processing, and financial 

forecasting. 

DIFFERENT LAYERS IN NEURAL NETWORK 

Input layer: The input layer is the first layer of a neural 

network and is responsible for receiving the input data for 

processing. It consists of a set of input neurons, where each 

neuron corresponds to a feature or attribute of the input data. 

The number of neurons in the input layer is determined 

by the size of the input data. For example, if the input data 

consists of 100 grayscale images, each of size 28x28 pixels, 

then the input layer would have 28x28=784 neurons. 

The input layer does not perform any computations on 

the input data but simply passes it on to the next layer, which 

is typically a hidden layer. Each neuron in the input layer is 

connected to every neuron in the next layer through a set of 

weights, which are adjusted during the training process to 

optimize the performance of the network. 

It is important to pre-process the input data before 

feeding it into the input layer. Pre-processing steps may 

include normalization, scaling, or feature extraction, 

depending on the nature of the data and the requirements of 

the neural network[3]. 

In summary, the input layer is the first layer of a neural 

network that receives the input data and passes it on to the 

next layer for further processing.  
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The number of neurons in the input layer is determined 

by the size of the input data, and pre-processing of the input 

data is typically necessary before feeding it into the network. 

Output layer: The output layer is the final layer of a neural 

network and is    responsible for producing the network's 

output based on the input data and the learned weights. The 

output layer consists of a set of output neurons, where each 

neuron corresponds to a particular output or class label. 

The number of neurons in the output layer depends on 

the type of problem being solved. For example, if the neural 

network is being used for binary classification, then the 

output layer would have one neuron that produces a binary 

output (e.g., 0 or 1)[5]. If the network is being used for 

multi-class classification, then the output layer would have 

multiple neurons, where each neuron corresponds to a 

particular class label. 

The output layer typically applies a final activation 

function to produce the output values. The choice of 

activation function depends on the type of problem being 

solved. For example, for binary classification problems, the 

output layer may use a sigmoid activation function, while for 

multi-class classification problems, the output layer may use 

a softmax activation function. 

During the training process, the weights in the network 

are adjusted to minimize the difference between the 

predicted output and the actual output. Once the network is 

trained, it can be used to make predictions on new, unseen 

data by passing the input data through the network and 

obtaining the output from the output layer[12]. 

Hidden layer:   The hidden layer is a layer in a neural 

network that lies between the input layer and the output 

layer. It is called the "hidden" layer because the 

computations performed by the neurons in this layer are not 

visible from outside the network. 

The number of hidden layers and the number of neurons 

in each hidden layer are important hyper parameters that can 

greatly affect the performance of the neural network[10]. 

Generally, neural networks with more hidden layers and 

neurons can learn more complex patterns in the data but may 

also be more prone to overfitting. 

The neurons in the hidden layer perform a weighted 

sum of the inputs received from the previous layer, apply an 

activation function to the sum, and produce an output value 

that is passed on to the next layer. There are many different 

types of activation functions that can be used in the hidden 

layer, including the sigmoid, ReLU (rectified linear unit), 

and tanh functions. 

During the training process, the weights in the network 

are adjusted to minimize the difference between the 

predicted output and the actual output[8].  

 

 

 

 

 

This is done through a process called back propagation, 

where the error at the output layer is propagated backwards 

through the network, and the weights are adjusted based on 

the error gradient. 

The architecture of the hidden layers and the choice of 

activation functions are important factors in designing a 

neural network that can effectively model complex 

relationships in the data. The optimal choice of these hyper 

parameters can be determined through experimentation and 

tuning. 

DIFFERENT LAYERS IN NEURAL NETWORK 

There have been several approaches proposed in the 
literature for approximating the number of hidden layer 
neurons in multiple hidden layer Backpropagation Neural 
Network (BPNN) architecture. Some of these approaches 
are: 

The Heuristic Approach: This approach suggests that the 

number of hidden layer neurons should be somewhere 

between the number of input neurons and the number of 

output neurons. This approach is simple and easy to use, but 

it may not always lead to optimal results[9]. 

The Pruning Approach: This approach involves training a 

BPNN with a large number of hidden layer neurons and then 

removing unnecessary neurons to achieve a smaller and 

more efficient network. This approach can be time-

consuming and may require a lot of trial and error. 

The Cross-Validation Approach: This approach involves 

dividing the available data into training and validation sets, 

and then testing the network's performance with different 

numbers of hidden layer neurons. The number of hidden 

layer neurons that result in the best performance on the 

validation set is then selected. 

The Information Criterion Approach: This approach 

involves using statistical criteria such as the Akaike 

Information Criterion (AIC) or the Bayesian Information 

Criterion (BIC) to select the optimal number of hidden layer 

neurons. The AIC and BIC are measures of the quality of a 

model relative to its complexity, and they can be used to 

select the number of hidden layer neurons that provide the 

best trade-off between model fit and complexity. 

Overall, these approaches have their advantages and 

disadvantages, and the choice of the best approach may 

depend on the specific problem and dataset being used. 

There is no one-size-fits-all "best" way to calculate the 

approximate number of hidden layer neurons in a multiple 

hidden layer Backpropagation Neural Network (BPNN) 

architecture[7]. 
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General architecture of a Backpropagation Neural Network 

USE OF THREE HIDDEN LAYERS INSTEAD OF FOUR HIDDEN 

LAYERS 

There have been several approaches proposed in the 

literature for approximating the number of hidden layer 

neurons in multiple hidden layer Backpropagation Neural 

Network (BPNN) architecture. Some of these approaches 

are: 

Four hidden layers can certainly be used in a 

Backpropagation Neural Network (BPNN) architecture, but 

whether or not to use four hidden layers depends on the 

problem and the available data. Here are some reasons why 

four hidden layers may not be used: 

Overfitting: Overfitting: Using too many hidden layers can 

lead to overfitting, where the BPNN fits the training data too 

closely and performs poorly on new, unseen data. Four 

hidden layers can lead to an overly complex network that is 

prone to overfitting. 

Computational Complexity: Each hidden layer adds 

computational complexity to the BPNN, increasing the time 

required to train and test the network. Using four hidden 

layers can be computationally expensive, especially for large 

datasets. 

Data Availability:Using four hidden layers requires a larger 

amount of data to properly train and validate the network. If 

there is not enough data available, using four hidden layers 

may not be justified. 

Simplicity:In some cases, simpler models may perform just 

as well or better than more complex models. Using four 

hidden layers may not be necessary for some problems, and 

a simpler network with fewer hidden layers may be 

sufficient. 

Overall, the decision to use four hidden layers in a 

BPNN architecture should be based on careful consideration 

of the problem, the available data, and the trade-offs 

between complexity and performance. It is important to keep 

in mind that the number of hidden layers is just one of many 

hyper parameters that can be tuned to improve the 

performance of a BPNN architecture. 

 

 

BPNN ALGORITHM FOR THREE HIDDEN LAYERS 

The back propagation neural network (BPNN) algorithm can 
be used for training neural networks with multiple hidden 
layers, including three hidden layers. Here are the steps to 
train a BPNN with three hidden layers: 

Initialize the network: First, you need to set up the 

architecture of the neural network, including the number of 

neurons in each layer and the activation function used. For a 

three-hidden-layer network, you'll need to specify the 

number of neurons in each hidden layer, as well as the input 

and output layers[11]. You can use any activation function 

that suits your problem domain, such as the sigmoid function 

or the ReLU function. 

Feed forward: Once the network architecture is set up, you 

can feed the input data through the network to compute the 

output. This involves calculating the dot product between the 

input data and the weights of the first hidden layer, then 

passing the result through the activation function to obtain 

the output of the first hidden layer. This process is repeated 

for each subsequent hidden layer until the output layer is 

reached. 

Compute error: After the network produces its output, you 

can compute the error between the predicted output and the 

actual output. This can be done using a loss function such as 

mean squared error or cross-entropy. 

Backpropagation: The backpropagation algorithm is used to 

update the weights of the network to minimize the error. The 

algorithm works by propagating the error backwards through 

the network, starting from the output layer and moving 

towards the input layer. The weights are updated using 

gradient descent, which involves computing the gradient of 

the loss function with respect to the weights and adjusting 

the weights in the opposite direction of the gradient. 

Repeat: Steps 2-4 are repeated for each training example in 

the dataset. The weights are updated after each training 

example, and the process is repeated for multiple epochs 

until the error converges or reaches a desired threshold. 

Test: Once the network is trained, you can test it on new data 

to see how well it generalizes to unseen examples. This 

involves feeding the input data through the network and 

comparing the predicted output to the actual output. 

By following these steps, you can train a BPNN with 

three hidden layers to perform a variety of tasks, such as 

image recognition, speech recognition, or natural language 

processing. 

A back propagation neural network (BPNN) with three 

hidden layers can be represented mathematically as follows: 

Let X be the input to the neural network, and Y be the 

output. Let H1, H2, and H3 be the hidden layers, and let f1, 

f2, and f3 be the activation functions for each hidden layer.  
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Let W1, W2, W3, and W4 be the weight matrices 

connecting the layers, and let b1, b2, b3, and b4 be the bias 

vectors for each layer. 

The output of the first hidden layer, H1, can be 

calculated as follows: 

H1 = f1(X.W1 + b1) 

The output of the second hidden layer, H2, can be 

calculated as follows: 

H2 = f2(H1.W2 + b2) 

The output of the third hidden layer, H3, can be 

calculated as follows: 

H3 = f3(H2.W3 + b3) 

Finally, the output of the neural network, Y, can be 

calculated as follows: 

Y = H3.W4 + b4 

During the training process, the weights and biases are 

adjusted using the back propagation algorithm to minimize 

the error between the predicted output and the actual output. 

This involves computing the gradient of the error with 

respect to each weight and bias and using that gradient to 

update the parameters in the opposite direction of the 

gradient. This process is repeated iteratively until the error is 

minimized. 

CONCLUSION 

Having too many hidden layers can also lead to 

overfitting, where the model performs well on the training 

data but poorly on new, unseen data. In practice, the optimal 

number of hidden layers for a neural network depends on the 

specific task and the amount of data available. For some 

problems, a simple model with only one hidden layer may be 

sufficient, while for others, a deeper network with three or 

more hidden layers may be necessary. In general, a good 

approach is to start with a simple model and gradually 

increase its complexity until the desired performance is 

achieved. This can be done by adding more hidden layers, 

increasing the number of neurons in each layer, or 

experimenting with different activation functions or 

regularization techniques. Ultimately, the best way to 

determine the optimal number of hidden layers for a specific 

problem is to experiment with different architectures and 

evaluate their performance on a validation set. 
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