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Abstract - In general representation, a type-2 fuzzy set is 

defined as being composed of all its embedded type-1 

fuzzy sets (ET1-FSs) which can be non-convex, sub-

normal, and/or discontinuous. However, interval type-2 

fuzzy sets (IT2-FSs) are constructed by blurring a 

baseline type-1 membership function form in many 

applications, and thus, uncertainties are actually 

modeled by using only ET1-FSs which preserve the 

similar meaningful functional form. Therefore, the 

derived results can be too generic in such cases when all 

ET1-FSs are included in type-2 fuzzy computations. In 

this study, a new constrained representation of IT2-FSs 

is proposed for the above mentioned formation. In this 

representation, IT2-FSs are defined as being composed 

of only convex, normal and continuous ET1-FSs by using 

linguistic hedges. This constrained representation 

provides ease of computation and more precise results in 

interval type-2 fuzzy computations. The proposed 

constrained representation is applied to the centroid 

computation which is the most important uncertainty 

measure of IT2-FSs and also an important task in 

interval type-2 fuzzy logic systems (IT2-FLSs). It is 

shown that the centroid of the proposed constrained IT2-

FS is calculated in closed form without the need of any 

iterative algorithm. In this way, the computational 

burden of the centroid type reduction process is 

removed. The effectiveness of the proposed constrained 

representation is shown through an illustrative example.   

 

Index Terms - Centroid type reduction, constrained type-2 

fuzzy set, footprint of uncertainty, linguistic hedges, 

representation theorem. 

INTRODUCTION 

Type-2 fuzzy sets (T2-FSs) have more capability for 

handling uncertainties than the conventional type-1 fuzzy 

sets (T1-FSs) [1,2]. Interval type-2 fuzzy sets (IT2-FSs) are 

a subset of T2-FSs and their effectiveness is shown in many 

type-2 fuzzy logic system (T2-FLS) applications [3,4]. 

There are various ways to represent IT2-FSs [1]. In 

Mendel-John Representation Theorem [5], the footprint of 

uncertainty (FOU) of an IT2-FS is represented as the 

combination of all its embedded type-1 fuzzy sets (ET1-

FSs). Since there is no constraint on ET1-FSs; non-convex, 

sub-normal, and/or discontinuous ET1-FSs which may not 

correspond to real uncertainty situation on a FS are 

considered in type-2 fuzzy logic computations.   

There are several ways for the formation of T2-FSs in 

literature [6-8]. One method which is mostly used is to take 
a baseline type-1 membership function (T1-MF) form and 

model the uncertainty (FOU) by varying its parameters. This 

is a natural way for the human perception when modeling 

uncertainty on a linguistic term [1]. For example, a Gaussian 

IT2-FS is formed by using Gaussian baseline T1-MF with 

uncertain standard deviation or mean when the linguistic 

term is described according to data obtained by polling a 

group of experts without certain agreement. Similarly, a 

triangular IT2-FS is formed by using experimentally derived 

triangular T1-MF distribution of the described linguistic 

term. Therefore, in such cases, it is actually assumed that all 

ET1-FSs of the IT2-FS are in the form of the chosen 
baseline T1-MF with varying parameters and thus, preserve 

the similar semantic meaning of the baseline T1-FS. 

However, the derived results can be too generic based on the 

conventional unconstrained representation of IT2-FSs in 

such cases since all ET1-FSs are considered in the 

computations regardless of their forms. In order to illustrate 

this situation, consider an IT2-FS A  given in Figure 1 

where the FOU is formed by varying parameters of the 
baseline T1-MF. The ET1-FSs shown in Figure 1a are 

convex, normal and continuous FSs that preserve the similar 

meaningful functional form. On the other hand, the ET1-FS 

shown in Figure 1b is non-convex, sub-normal, and 

discontinuous. This ET1-FS is mathematically possible but 

meaningless and thus, it can cause inappropriate results in 

T2-FS computations [9]. For example, ET1-FSs which give 

minimum centroids of A  based on unconstrained 

representation and the actual uncertainty situation are shown 

in Figure 1c as ucA  and cA , respectively. 
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 As it is seen from Figure 1c, the ET1-FS 
ucA  is 

discontinuous and thus, hard to be interpreted with respect to 

the baseline meaning of the FS A . On the other hand, 
cA  

can easily be interpreted since it preserves the meaningful 

triangular form. Moreover, ucc  the centroid of ucA  is smaller 

than cc  the centroid of cA  and thus, ucc  contains the 

uncertainties which are not related to actual uncertainty 

situation. 

Although the actual uncertainty situation can be 

described more properly by considering only meaningful 

ET1-FSs in the above mentioned cases, in literature, a 

limited number of studies has been presented for the 

constrained T2-FSs [9-13]. In [10], the concept of 

constrained embedded membership function (E-MF) is 

proposed for T2-FSs formed by taking baseline T1-MF form 

and allowing a parameter to vary. In this paper, it is shown 
that constraining ET1-FSs can make computations easier and 

the results narrower in T2-FLSs. Especially in the type 

reduction (TR) process, the centroid result computed by 

using constrained E-MFs is strictly narrower and also more 

descriptive of the actual situation than the centroid result 

calculated in the conventional unconstrained case since 

infeasible E-MFs are eliminated from consideration. 

Similarly in [9], the concept of constrained T2-FS is 

introduced by using an alternative constraining mechanism. 

A constrained T2-FS is constructed by altering the position 

of a baseline T1-FS on the x-axis. Therefore, all ET1-FSs of 

a constrained T2-FS are in the same form which represents 
the chosen baseline T1-FS. However, this type of formation 

of constrained T2-FSs reduces uncertainty modeling 

capabilities of T2-FSs due to using only ET1-FSs in exactly 

the same form where only their positions are altered. In 

addition, although the importance of constraining ET1-FSs 

is investigated in detail, the TR of proposed constrained T2-

FSs is not investigated in this study. In [11], a Constrained 

Representation Theorem is proposed for IT2-FSs by using 

only normal and convex ET1-FSs. Additionally, this 

constrained representation theorem is applied to the 

calculation of the constrained centroid of IT2-FSs. However; 
although the convexity and normality of ET1-FSs are 

preserved, other important properties of ET1-FSs such as 

meaningfulness, interpretability, and continuity are not 

considered in this representation. 

 

FIGURE 1 

ILLUSTRATION OF A) THE MEANINGFUL ET1-FSS AND B) THE MEANINGLESS 

ET1-FS C) THE CONSTRAINED AND UNCONSTRAINED ET1-FSS GIVING THE 

MINIMUM CENTROID OF A  

In this study, a new constrained representation of IT2-
FSs is proposed by utilizing the linguistic hedge (LH) 

concept. One of the important properties of LHs is to 

preserve the main properties of a FS to which they are 

applied such as convexity, normality and continuity on the 

resulting FS. Based on this property of LHs, IT2-FSs which 

are formed by blurring a baseline type-1 membership 

function form are represented as the union of ET1-FSs 

which are obtained by applying LHs to a baseline T1-FS. In 

this manner, it is provided that an IT2-FS is composed of 

only convex, normal and continuous ET1-FSs representing 
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the similar semantic meaning of the baseline T1-FS as it 

actually is. Constraining an IT2-FS in this way describes the 

actual situation more properly. This constrained 

representation provides ease of computations and more 

precise results in interval type-2 fuzzy computations. 
Although there are various types of membership function 

forms and LH definitions in literature [13-17], the triangular 

membership functions and the classical LH definitions 

proposed by Zadeh [17] are used in this study. The centroid 

computation of the proposed constrained IT2-FS is also 

investigated. As an important result, since only constrained 

ET1-FSs are used, ET1-FSs which give the minimum and 

maximum centroids of an IT2-FS are determined a priori 

without any calculation. Thus, the centroid of the IT2-FS is 

calculated in closed form without the need for any iterative 

algorithm. In this way, the computational burden of the TR 

process is removed. The effectiveness of the proposed 
constrained representation is shown through an illustrative 

example. 

The organization the paper is as follows: Preliminaries are 

presented in Section 2. The proposed constrained 

representation is presented in Section 3. In Section 4, the 

centroid computation of the proposed constrained IT2-FS is 

investigated. In section 5, an illustrative example is given for 

the proposed constrained representation. Finally, in section 

6, conclusions are outlined. 

PRELIMINARIES 

I. Interval Type-2 Fuzzy Sets 

An IT2-FS A  is defined by an IT2-MF as [1] 

 
[0,1] [0,1]

1 , 1

x xx X u J x X u J

A x u u x
     

 
   

  
          (1) 

The FOU of A  can be defined as the combination of all 

primary memberships [5] 

      , : 0,1x x

x X

FOU A J x u u J


       (2) 

As shown in Figure 2, two T1-MFs limit FOU of A . The 

upper bound of  FOU A  is named as Upper MF (UMF), 

and represented by  
A

x . The lower bound of  FOU A  

is called as Lower MF (LMF), and represented by  
A

x . 

Their definitions are given as  

  ( )        
A

x FOU A x X       (3) 

  ( )        
A

x FOU A x X      (4) 

Using the LMF and UMF definitions,  FOU A  is given as 

follows  

     ,
A A

x X

FOU A x x 


   
  

(5) 

 

FIGURE 2  

IT2-MF 

II. Embedded T1-FSs 

The infinite number of T1-FSs can be defined in FOU 

of a T2-FS A  [5]. Any defined T1-FS is named as an 

embedded T1-FS of A . For a discrete universe of discourse 

 1 2, , , NX x x x  and discrete 
xJ , an ET1-FS 

eA  has N 

elements. 

1

N

e i i

i

A u x


              0,1i xu J    (6) 

Example ET1-FSs are shown in Figure 1. 

FOU of Ã can be represented as the combination of its 

all ET1-FSs according to Mendel-John Representation 

Theorem [5] as  

 
1

An

j

e

j

FOU A A


    (7) 

Here 
1

N

A i

i

n M


  is the number of ET1-FSs with respect to 

the discretization level iM  of 
ixJ .  In this general 

representation, since there is no constraint on ET1-FSs, non-

convex, sub-normal, and/or discontinuous ET1-FSs which 

may cause inappropriate results are also included in the 

computations as shown in Figure 1b. Additionally, due to the 

number of discretization, the number of ET1-FSs increases 

astronomically. For example, if X and xJ  are discretized 

into 100 units, the number of ET1-FSs becomes 100100 

which is not easy to be evaluated. 

III. Linguistic Hedges 

The LHs are particular linguistic terms such as very, 

absolutely, more or less, which are used to change the 

meaning of FSs by modifying the shape of their membership 

functions. LH operations can be summarized within two 

groups; concentration and dilation [17]. 
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The concentration hedge operation of A, 
   con A

h x , is 

denoted as  

     Acon A
h x x


           1    (8)          

where   determines the strength of the concentration. For 

the concentration type hedge operation, various related 

hedge operators can be defined such as absolutely ( 4  ), 

very ( 2  ), much more ( 1.75  ), more ( 1.5  ), plus 

( 1.25  ). 

  The dilation hedge operation of A, 
   dil A

h x , is 

denoted as follows         

     Adil A
h x x


           0 1     (9)          

Similarly, some related dilation type hedge operators can be 

denoted as minus ( 0.75  ), more or less ( 0.5  ), 

slightly ( 0.25  ). 

In Figure 3, the effects of two of well-known modifiers, 

“very” from the concentration type and “more or less” from 

the dilation type LHs are demonstrated on the triangular FS 
A. 

It is clearly seen that when the LH “more or less” is 

applied to the FS, the grades of membership increase and the 

meaning of the FS is weakened. On the other hand, the LH 

“very” decreases the grades of membership and strengthens 

the meaning of the FS. 

 
FIGURE 3 

THE EFFECTS OF “VERY” AND “MORE OR LESS” LINGUISTIC HEDGES ON THE 

FUZZY SET A. 

IV. Centroid of an IT2-FS 

Since there is no uncertainty on the MF of a T1-FS, a 

T1-FS has only a single centroid value. On the other hand, 

the centroid of an IT2-FS denotes an interval value (interval 

T1-FS), because the centroid of an IT2-FS consists of the 
collection of the centroids of its all ET1-FSs [1].  

The centroid,  C A , is denoted as  

       ,
e

e l r

A

C A c A c A c A


  
 

  (10) 

Here represents a union operator and the minimum 

centroid and the maximum centroid of A  are denoted as 

   min
e

l e
A

c A c A


    (11) 

   max
e

r e
A

c A c A


    (12) 

lc  and rc  can be calculated as follows [20] 

 
   

   

R

A A

R

r R

A A

R

x x dx x x dx

c A

x dx x dx

 

 















 

 

   (13) 

 
   

   

L

A A

L

l L

A A

L

x x dx x x dx

c A

x dx x dx

 

 















 

 

   (14) 

Here L and R represent the switch points. These switch 

points must be known in order to calculate (13) and (14). 

These points are generally computed by utilizing iterative 

algorithms [1,19,20] since the closed form formulation of 

the centroid computation is available for only special cases. 

Among these iterative algorithms, Karnik-Mendel algorithm 

is the most popular one [20]. 

THE PROPOSED CONSTRAINED REPRESENTATION OF IT2-

FSS 

The uncertainty on membership degrees of a FS directly 

denotes the uncertainty on the meaning of the FS. LHs 

strengthen or weaken the meaning of the FS by modifying 

its membership function. Therefore, this semantic 

uncertainty of a FS can be modeled by using LHs. For 

instance, the uncertainty on the meaning of the FS “tall” can 

easily be modeled by using LHs as the modifications on its 

baseline meaning such as “more or less tall”, “more tall”, 

“slightly tall”, etc.  

In many applications, IT2-FSs are formed by taking a 
baseline type-1 membership function form and the 

uncertainty (FOU) is modeled by varying its parameters. The 

one of the important properties of LHs is that useful 

properties of the FS to which they are applied such as 

convexity, normality and continuity are preserved on the 

resulting FS. Therefore, in this study, a new constrained 

representation of IT2-FSs of which all ET1-FSs are convex, 

normal and continuous is presented based on this important 

property of LHs. Although there are various types of 

membership function forms and LH definition approaches in 

literature [13-17], triangular form membership functions and 
the classical LH definitions proposed by Zadeh [17] are 

considered in this study. Other types of membership function 

forms and LH definitions can easily be adapted to the 

proposed constrained representation of IT2-FSs. 
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I. The Proposed Constrained Representation 

An IT2-FS A  can be represented as the combination of 
only convex, normal and continuous ET1-FSs which are 

formed by applying LHs to the baseline T1-FS A as given in 

Figure 4. By using this constrained representation idea, a 

constrained IT2-FS 
cA  is defined as  

 

  
    0,1

1 ,

   1

x

A x

c
x X u J

A
x X h x J

A x u

h x x




 

  



 
  

 

 
     (15) 

Here,  A x  is the MF of the baseline T1-FS A  and h 

denotes the LH operator as follows   

 h x x ,   0,4       (16) 

 
FIGURE 4  

THE CONSTRAINED IT2-FS cA   0.5 2,  
c c

A AA A
      

All constrained ET1-FSs ceA  in the constrained IT2-FS 
cA  

can be given as  

    ce A AA h x x x x


      (17) 

Here    , 0,4    . Thus, the FOU of 
cA  can be 

defined as the union of all ceA  ET1-FSs as  

   ( ) ,c ce A Ax X
FOU A A x x

 
 


  
 

 (18) 

The LMF and UMF of 
cA  can be defined as  

 ( ) ( )=     
c

c AA
x FOU A x x X


         (19) 

 ( ) ( ) =    
c

c AA
x FOU A x x X


         (20) 

Considering the formulation of the proposed constrained 

representation, it is easily derived that if there is no 

uncertainty on the membership function, that is, 1  , the 

LMF and UMF become equal, 
cc

AA
  , and the IT2-FS 

turns to the baseline T1-FS as in the conventional 

unconstrained case.  

CENTROID OF IT2-FSS 

Using constrained IT2-FSs results in fewer 

computations in centroid computations when compared with 

the unconstrained case since fewer ET1-FSs are evaluated 

[9-12]. As an important result of the proposed constrained 

representation, the centroid of the proposed constrained IT2-
FSs is calculated in closed form without the need of any 

iterative algorithms.  

Without loss of generality, let us consider the IT2-FSs 
1A  

and 
2A  shown in Figure 5a and Figure 5b, respectively, 

which are formed by using baseline T1-FSs 1A  and 2A  

based on the proposed constrained representation. These FSs 

can be considered as the right and the left linear pieces of a 

triangular IT2-FS. 

  
FIGURE 5 

THE CONSTRAINED IT2-FSS a) 1A  AND b) 2A  

The membership functions of the baseline T1-FSs 1A  and 

2A  can be given as  

 
iA i ix a x b   ,    1 2, ,x x x  1,2.i        (21) 

So, the MFs of all ET1-FSs 
ei

A  in the IT2-FS 
iA  are defined 

as  

    i

ie
A i ix a x b


   ,    ,i i i      (22) 

Then, the centroids of ET1-FSs of 
1A  and 

2A  are calculated 

as follows 

 
  

  

 

 

2 2

1 1

2 2

1 1

i i

i

e

i i

i

x x

A i i

x x

i x x

A i i

x x

x x dx x a x b dx

c A

x dx a x b dx

 

 







 



 

 

   (23) 

Here, the integral definitions are calculated as in (24) and 

(25) 

 

    

  

2

1

2ln

2 2 2

2
     

1 2

i

i i i

x

i i

x
a x b

i i i i i i

i i i

x a x b dx

a x b a x a x b e

a






 





  


 


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    

  

1ln

1 1 1

2 1 2

i i ia x b

i i i i i i

i i i

a x b a x a x b e

a




 


  


 

     (24) 

 

 
   

 

2

1

1 1

2 1

1

i i

i

x

i i i i

i i

i ix

a x b a x b
a x b dx

a

 





 
  

 
  (25) 

The boundary values of membership functions at 
1x  and 

2x ; 

that is,  1 1iA i ix a x b    and  2 2iA i ix a x b   , are 

known for both IT2-FSs. Therefore, (24) and (25) are 

simplified for 
1A  by substituting  

1 1 1 1 1 0A x a x b     and 

 2 2iA i ix a x b    as follows  

 
 

  

2

1

1

1 1 2 1 2 1

1 1 2

1 1 11 2

x

x

a x a x b
x a x b dx

a

 

 

 
 

        (26) 

and 

 
 

2

1

1

1 1

1 1

1

1

x

x

a x b dx
a




 

   (27) 

Similarly, (24) and (25) are simplified for 
2A  by substituting 

 
2 1 2 1 2 1A x a x b     and  

2 2 2 2 2 0A x a x b     as 

follows 

 
 

  

2

2

1

2 2 1 2 1 2

2 2 2

2 2 21 2

x

x

a x a x b
x a x b dx

a

 

 

  
 

   (28) 

and 

 
 

2

2

1

2 2

2 2

1

1

x

x

a x b dx
a






 

  (29) 

Thus, after certain rearrangements, the centroid 

definitions for 
1e

A  and 
2e

A  are obtained as follows 

 
 

 

 

 

2

1

1

2

1

1

1 1

1 1 2 1 2 1

1

1 1

1 1

2e

x

x

x

x

x a x b dx
a x a x b

c A
a

a x b dx










 

 








  (30) 

 

 
 

 

 

 

2

2

1

2

2

1

2 2

2 2 1 2 1 2

2

2 2

2 2

2e

x

x

x

x

x a x b dx
a x a x b

c A
a

a x b dx










 

 








 (31) 

In order to calculate i  LH values which provide the 

extremum points of the centroid of iA , the derivatives of 

(30) and (31) with respect to i  should be evaluated 

 

 
 

1 1 2 1

2

1 1 1 2

e
dc A a x b

d a 





   (32) 

 
 

2 2 1 2

2

2 2 2 2

e
dc A a x b

d a 





   (33) 

By substituting  
1 2 1 2 1 1A x a x b     and 

 
2 1 2 1 2 1A x a x b     into (32) and (33) respectively, the 

following derivative equation is obtained  

 
 

2

1

2

ei

i i i

dc A

d a 



   (34) 

As it is seen from (34), since  , 0i i i    , (30) and 

(31) are strictly monotonically decreasing or increasing 

functions depending on the sign of 
ia . Since 

1 0a   for 1A , 

(32) becomes 
 1

1

0
e

dc A

d
  and the centroid function 

becomes a strictly monotonically increasing function. On the 

other hand, the centroid function of 2A  is a strictly 

monotonically decreasing function since 
 2

2

0
e

dc A

d
  due to 

2 0a  . Thus, the lc  and rc  of 
iA  are easily calculated with 

respect to the corresponding boundary values of 

 ,i i i   . In this way, the ET1-FSs 
1e

A  and 1e
A   giving 

the minimum centroid and the maximum centroid of 
1A  are 

easily be determined by using 
1 1   and 

1 1   

respectively as shown in Figure 5a. Similarly, the ET1-FSs 

2e
A   and 2e

A  giving the minimum centroid and the 

maximum centroid of 
2A  are easily be determined by using 

2 2   and  2 2    respectively as shown in Figure 5b. 

Now let us take into consideration the triangular IT2-FS 

A  shown in Figure 6 and formed by using a baseline T1-

FSs A based on the proposed constrained representation. The 

membership functions of the baseline T1-FS A is given as 

follows 

 
1

1 1 1 2

2 2 2 3

3

    0             if   
        if   
       if   

    0             if   

A

x x
a x b x x x

x
a x b x x x

x x




   

    
 

    (35) 

So, the MFs of all ET1-FSs eA  in the IT2-FS A  are defined 

as  

   
 

1

2

1

1 1 1 2

2 2 2 3

3

    0               if   

    if   

   if   
    0               if   

eA

x x

a x b x x x
x

a x b x x x
x x






   

 
  



   (36)  

where  ,i i i   ,  1,2.i   

ET1-FSs 
eA  and 

eA giving the minimum and 

maximum centroids of A  are determined a priori by using 
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corresponding boundary values of i  without the need of 

any iterative algorithm as follows 

   
 

1

2

1

1 1 1 2

2 2 2 3

3

    0               if   

    if   

   if   
    0               if   

eA

x x

a x b x x x
x

a x b x x x
x x






   

 
  



    (37)  

and 

   
 

1

2

1

1 1 1 2

2 2 2 3

3

    0               if   

    if   

   if   
    0               if   

eA

x x

a x b x x x
x

a x b x x x
x x






   

 
  



    (38)  

eA  and 
eA  are shown in Figure 6. Then, the minimum 

centroid and the maximum centroid of A  are easily 

computed as  

 
   

   

32

1 2

1 2

32

1 2

1 2

1 1 2 2

1 1 2 2

xx

x x

e xx

x x

x a x b dx x a x b dx

c A

a x b dx a x b dx

 

 

  



  

 

 

   (39) 

 
   

   

32

1 2

1 2

32

1 2

1 2

1 1 2 2

1 1 2 2

xx

x x

e xx

x x

x a x b dx x a x b dx

c A

a x b dx a x b dx

 

 

  



  

 

 

   (40) 

 
FIGURE 6  

THE CONSTRAINED IT2-FS A  AND ITS ET1-FS eA  AND eA  

It is important to note that since only convex, normal 

and continuous ET1-FSs are considered, the constrained 

centroid result is included in the unconstrained centroid 

result computed based on the Mendel-John Representation 

which considers all ET1-FSs without any constraint. 

 

ILLUSTRATIVE EXAMPLE 

Let us consider a fuzzy rule inference example where 

the antecedent and consequent FSs of the rule are formed by 

blurring a baseline type-1 membership function form. Then, 

the comparison of the inference results derived based on 

John-Mendel representation [5], Wu’s constrained 

representation [11] and the proposed constrained 

representation are presented. When the unconstrained 

representation is considered, centroid TR is performed by 

using iterative KM algorithm [20]. In the case of considering 
Wu’s constrained representation, the iterative constrained 

TR algorithm is used where only convex, normal (if 

possible) and but also discontinuous ET1-FSs are 

considered. On the other hand, for the proposed constrained 

representation, the centroid TR result is calculated in closed 

form without the need of any iterative algorithm since the 

ET1-FSs giving the minimum and maximum centroids of the 

IT2-FS are known a priori. 1000N   is chosen for the 

number of the discretization points.   

Consider an IT2-FS A  illustrated in Figure 7 which is 

formed by applying LH operators to a baseline triangular 

T1-MF of a FS A. The baseline T1-MF is defined as  

 

      0              if    4
0.25 1        if   4 8

0.25 3      if   8 12
      0              if    12

A

x
x x

x
x x

x




   

    
 

     (41) 

and the LMF and UMF of A  are given as  

 
2.5

( )= AA
x x         (42) 

 
0.4

( ) AA
x x     (43) 

Assume that A  is a rule consequent FS and the rule 

firing interval is  0.7,0.85f  . In this case, the resulting 

IT2-FS B  is obtained as given in Figure 7. Since B  is 

symmetric, the minimum and maximum centroid of B  are 

also symmetric with respect to the center of B . Therefore, 

only the results for the minimum centroid are presented in 

the figures.   

 
FIGURE 7  

THE IT2-FS A  AND THE INFERENCE RESULT IT2-FS B  

If the centroid of B  is computed based on the John-

Mendel representation by using KM algorithm, the result is 

obtained as  ( ) 7.007,  8.993KMC B  . In this unconstrained 

case, the ET1-FS e KMA   giving the minimum centroid of B  
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is shown in Figure 8. The calculated ET1-FS 
e KMA 

 is in 

non-convex and discontinuous form in the unconstrained 

case as it is seen from Figure 8. Therefore, it is hard to 

interpret the meaning of this FS with respect to the baseline 

meaning of the FS A . 

 
FIGURE 8  

THE RESULTING ET1-FSS OBTAINED BY USING KM, WU’S AND THE 

PROPOSED CONSTRAINED TR APPROACHES 

 

If the constrained TR algorithm based on Wu’s 

constrained representation is utilized for the centroid TR of 

B , the result is computed as  ( ) 7.009,  8.991WuC B  . In 

this constrained case, the ET1-FS 
e WuA 

 giving the 

minimum centroid of B  is shown in Figure 8. As an 

expected result, since only convex ET1-FSs are considered, 
Wu’s constrained TR algorithm gives the narrower interval 

result then KM algorithm, that is, ( ) ( )Wu KMC B C B . 

However, the obtained ET1-FS 
e WuA 

 is discontinuous and 

thus, hard to be interpreted with respect to the baseline 

meaning of the FS A .  

When the proposed constrained representation is 

considered for the centroid of B , the ET1-FS 
eA  giving the 

minimum centroid of A  is determined directly as follows 

   
 

0.4

2.5

      0                  if    4

0.25 1       if   4 8

0.25 3    if   8 12
      0                  if    12

eA

x

x x
x

x x
x




   

 
   



 (44) 

eA  is shown in Figure 8. Then, the ET1-FS 
e UluA 

 giving 

the minimum centroid of B  is easily determined depending 

on the firing interval  0.7,0.85f   on 
eA  as shown in 

Figure 8. Therefore, the centroid result is calculated directly 

as  ( ) 7.027,  8.973UluC B   without the need of any 

iterative algorithm. The obtained ET1-FS e UluA   is convex 

and continuous and thus, easy to be interpreted with respect 

to the baseline meaning of the FS A . 
As it is seen from the results, the narrower centroid 

result is obtained by using the proposed constrained 

representation, that is, ( ) ( ) ( )Ulu Wu KMC B C B C B  . The 

reason of this result is that the actual situation is described 

more properly based on the proposed constrained 

representation than Wu’s constrained representation. 

Because the continuity and interpretability properties of 

ET1-FSs are also considered additionally in the proposed 

constrained representation whereas only the convexity 

property of ET1-FSs are considered in Wu’s constrained 

representation. Therefore, the more precise and appropriate 
results are derived based on the proposed constrained 

representation than the other representations if it is know 

that how the IT2-FS is formed. 

CONCLUSION 

A new constrained representation is proposed in this 

study for IT2-FSs which are formed by blurring a baseline 

type-1 membership function form. In this representation, 
such IT2-FSs are represented as the union of only convex, 

normal and continuous ET1-FSs as they actually are. These 

ET1-FSs are formed by applying LHs to a baseline T1-FS. 

Due to the nature of LH concept, ET1-FSs of an IT2-FS are 

constrained not only mathematically but also semantically. 

In this way, the similar semantic meaning which is 

consistent with the baseline T1-FS is provided for all ET1-

FSs. Therefore, the proposed constrained representation 

provides a proper and clear connection between T1-FSs and 

IT2-FSs in this certain context.  

By using proposed constrained representation, the 

centroid of a constrained IT2-FS is calculated in closed form 
without the need of any iteration. Thus, the computational 

burden of TR process is removed. The effectiveness of the 

proposed constrained representation on TR process is shown 

through an illustrative example. The results show that 

broader inference interval results are obtained based on the 

unconstrained representation where the convexity, normality 

and continuity of ET1-FSs are not considered. On the other 

hand, more precise and meaningful interval results are 

obtained by using proposed constrained representation since 

this representation describes the actual situation more 

properly. 
Various types of IT2-FSs can be represented in a 

constrained form by using different LH definitions and 

baseline type-1 membership function forms in the proposed 

representation. Additionally, many theoretical results for the 

constrained IT2-FSs can easily be derived based on the 

proposed representation as they are done based on the 

unconstrained representation for IT2-FSs. 
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