
ISSN: 2633-4828 Vol. 4, No.2, September, 2022

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Inc. Vol.4, No.2, September, 2022

 International Journal of Applied Engineering & Technology

110

A Machine Learning-Based Dynamic Method for

Detecting Vulnerabilities in Smart Contracts
Jasvant Mandloi1, Pratosh Bansal2

Department of Information Technology, Institute of Engineering and Technology, Devi Ahilya Vishwavidyalaya,

Indore, India.

jasvant28284@gmail.com, pratosh@hotmail.com

Date of Submission: 21st July 2022 Revised: 14th September 2022 Accepted: 06th Oct 2022

How to Cite: Jasvant Mandloi et.al.,(2022). A Machine Learning-Based Dynamic Method for Detecting Vulnerabilities in

Smart Contracts. International Journal of Applied Engineering &Technology 4(2), pp.110-118.

Abstract - Real-world application development through Smart

Contracts on the Ethereum Blockchain platform is one of the

emerging technologies. It also has much vulnerability, and

reentrancy is among the most popular ones. In our work, we

have reviewed the tools based on ML for vulnerability

detection in Ethereum smart contracts. Based on that, we

proposed a framework that can dynamically monitor threats

based on the blockchain platform's transaction meta-data and

balance data. It does not require any changes or updates to the

existing system and does not require expertise to implement.

This framework will extract features for machine learning

classifier models from the transaction data and identify the

transaction as agreeable or unfavorable. It will help to identify

the reentrancy threat as well as the cause of it and help the

developer to trace it from where the attack is generated. In the

ML classifier for the framework, random forest and decision

tree are used. The cumulative performance of both is 98

percent on 540 transactions.

Index Terms - Smart Contract, Reentrancy, Vulnerability,

Attacks, Transaction, Ethereum

INTRODUCTION

A blockchain is a public ledger that manages user assets. A

smart contract contains the rules for transferring digital

assets stored in the ledger. The exchanges happen inside

blockchain transactions that are constantly stored. As a

result, smart contracts may be used in various applications,

including financial and governance [1]. Currently, in May
2022, Ethereum has a valuation of over $130 billion, and it

is in the second position after Bitcoin in the world [2]. Smart

contracts on Ethereum allow users and others to

communicate by invoking functions in their contracts.

Ethereum smart contracts are usually written in Solidity, a

language very much like JavaScript. In that execution, the

cost is calculated with the unit known as gas, which is

required to carry out the activities on a smart contract. Gas

costs are denominated in the Ether unit, Ethereum's native

currency [3].

Challenges to ensuring the proper behavior of the

contract arising from a new technique to construct smart

contracts. It makes the code susceptible to security breaches

that can be used by other account holders in the Ethereum

network.

Recently, many attacks have been performed on the
Ethereum network, causing millions of Ether to be lost. The

most famous attack is DAO (Decentralized Autonomous

Organization), performed using the reentrancy vulnerability.

The outcome of this incident will result in the loss of 3.5

million ETH, equivalent to 50 million USD [4].

The reentrancy attack involves repeatedly calling the

same function or group of functions before the calling is

finished. In such an integrated invocation scenario, smart

contracts may behave in a different way than the expected

one. It helps the attacker use this flaw to transfer the fund's

ETH from the victim's account to another. Reentrancy is one
of the most severe vulnerability categories in the Ethereum

smart contracts. In the present scenario, approaches for

detecting reentrancy flaws are based on investigating the

financial asset exchanges and control flows in smart

contracts using extensive code analysis with bespoke

criteria. However, in the real world, there are very few

opportunities to exploit such attacks at the transaction level.

We have tried to perform it in different ways.

Extraction of Ethereum's Raw Data

Fig. 1 depicts the typical Ethereum transaction execution

process from Block N to the EVM through a blockchain

peer. We may acquire three forms of blockchain raw data:

block, receipt, and trace. In our work through Trace, features

for the ML model can be derived [5].

Our framework is designed to analyze the transactions

on the smart contract and, based on them, analyze the
malicious transactions. A framework for identifying

reentrancy flaws in Ethereum smart contracts. The

blockchain system's transaction meta-data and account data

A Machine Learning-Based Dynamic Method for Detecting Vulnerabilities in Smart Contracts

Copyrights @ Roman Science Publications Inc. Vol.4, No.2, September, 2022

 International Journal of Applied Engineering & Technology

 111

would be the only data sources for this architecture. It

employs a machine learning model to identify transactions

as benign or hazardous based on attributes extracted from

transaction data. In the framework, the random forest and

decision tree models are used. They have 97% accuracy for

the 100 transactions. Our work is organized in the paper as

follows: Section II details smart contracts and reentrancy

attacks. After that, Section III will cover related work to our

work. Section IV outlines our framework process and

approach to executing it.
Our experimental setup and results with comparison are

in sections V and VI. In in the last section, VII is concluded

with future work.

Figure 1: Ethereum Row Data Collection Scenario

In the first step at the Ethereum blockchain level, we
monitor transactions in real-time. Figure 3 displays an

example transactional trace from which we collected

information for the classification model. Such an inspection

eliminates the need for a thorough analysis of the smart

contracts themselves and enables us to apply our idea
immediately on the Block chained client-side without

affecting the smart contracts or the client-side.

After that, on the monitored transaction metadata, we

apply machine learning techniques. It eliminates the

requirement to create (potentially faulty) rules and paves the

road for future vulnerability detection and correction.

BACKGROUND

Ethereum Smart Contract

Figure 2: An illustration of a transaction receipt taken from the

Ethereum blockchain

Ethereum-based smart contracts are autonomous,

decentralized blockchain-based programs that specify the

contract terms between market participants, doing away with

the need for third parties to act as trusted brokers and

arbitrators.

These compact applications developed in the Ethereum

bytecode are represented in a particular format [6]. The

bytecode is the outcome of the compiled code in a language

such as, I.e.; The code is executed step by step on the virtual

machine, one instruction at a time. The reason is that each

instruction has a value that can be measured in the form of

gas; the caller of the smart contract has to pay for it. The

virtual machine's responsibility is to manage instruction
outcomes and their impact in the form of cost on each asset

on the blockchain network. There is always the possibility of

errors in the entire process, from sudo code to byte code.

Potential vulnerabilities may occur, and reentry is one of the

possible attacks that could occur [7].

Reentrancy Vulnerability Attack,

One of the characteristics of smart contracts is their

capacity to call external contract codes, and they have the

power to deliver digital money for transactions to external

user addresses. Calls like these to outside contracts might

lead to reentrancy. In Ethereum, ether can be exchanged

between two parties. When a contract receives a message

including ether but has no data, and no function is specified,

an anonymous default function, the fall-back function, is

called. In this case, a contract invited by calling another
account can specify how much gas the called party is

permitted to spend. If the target account is in the form of a

contract, it will be executed and will be able to use the gas

budget that has been allotted. In such a scenario, if the

contract is vicious and the gas budget is high enough, the

caller can be called back as a reentrant call. If, for instance,

the caller's functionality is not re-entrant due to failing to

update the internal state holding balance information, the

attacker can use this vulnerability to siphon money from the

susceptible contract. [8].

Reentrancy attack on a single function

The oldest known instance of this problem had

procedures that may have been invoked more than once

before the first invocation was finished. This could lead to

harmful interactions between the function's different

invocations [9].

Jasvant Mandloi and Pratosh Bansal

Copyrights @ Roman Science Publications Inc. Vol.4, No.2, September, 2022

 International Journal of Applied Engineering & Technology

112

Figure 3 An illustration of a transaction how to avoid reentancy Attack

in Ethereum blockchain

The user's fund is not set to 0 until the end of the

function, so the second (and subsequent) invocations will
continue to succeed and withdraw the amount. In the above

case, the best way to avoid this attack is to ensure that you

don't call an external function until you've completed all the

necessary internal tasks.

Figure 4: Reentry Attack Avoidance

Cross-function Reentrancy

An attacker may also be able to carry out a similar

assault by combining two functions into the same state.

Figure 5: Cross-site reentrancy attack

When the attacker's code is performed on the external

call to withdraw funds, they call transfer (). They can

transfer the tokens even though they have already received

the withdrawal since their balance value has not yet been

reset to zero. In addition, the DAO attack made use of this

issue.

One way to avoid reentrancy is through solidity function

modifiers, which might be used to make checks before

handing control over to the fallback function of another

contract. Before providing ether to the interacting contract, it

examines and updates its status.

Figure 6 Framework to detect the reentrancy attack

RELATED WORK

For vulnerability analysis, there are primarily four different

types of methodologies: static and dynamic code, systematic

specification and validation, and other chunks also [10].

At the program or code analysis level to detect the

potential vulnerability, detection can be performed mainly

through static and dynamic analysis. In the first one, the

source code is analysed without running it, and in the second
one, the code is analyzed based on the program's behaviour

in the running state.

The main advantage of the first one is that it can detect

flaws in the code at the exact position, and it's done by

skilled software assurance developers that know the code

inside and out. Also, repairs may be completed more

quickly, especially if automated techniques are employed.

But it also has some major disadvantages: it is time-

consuming if done manually, and automated tools are not

there to support all programming languages. These

automated tools produce false-positive and false-negative

results. There are not enough trained personnel to
thoroughly conduct static code analysis. Another

disadvantage is that it does not find vulnerabilities

introduced in the runtime environment. On the other hand,

dynamic analysis works on the real-time system and detects

flaws in the code during runtime. It sometimes might not be

effective in locating the necessary inputs to bring about this.

Dynamic analysis has a certain advantage like automated

tools give flexibility in what to search for and find

vulnerabilities in a runtime context. It also enables the study

of programs for which you lack access to the source code,

which works with any program.
In the present scenario, 75% of the tools are static, and

23 % are dynamic analysis tools. Only 2% of the tools are

hybrid [11].

A Machine Learning-Based Dynamic Method for Detecting Vulnerabilities in Smart Contracts

Copyrights @ Roman Science Publications Inc. Vol.4, No.2, September, 2022

 International Journal of Applied Engineering & Technology

 113

Table-I

The most commonly used static tools for smart contracts are [06], [11],

[12], [13], and [14].

Tools

EVM

Byte

Code

(as

Input)

Solidit

y Code

as

Input

Suppo

rt both
Platform

Analysis

Approach

Echidna N N N Haskel Fuzz testing

FEther N Y N Coq
Symbolic

Execution

ESCORT Y N Y -
Machine

learning

Ether(S-

GRAM)
Y N Y Python

Machine

learning

GasTap N Y N Python
Symbolic

Execution

GASOL Y Y Y -

Code

Instrumentati

on

Pakala N Y N Python
Symbolic

Execution

SAFEV

M
Y Y Y Python

Constraint

Solving,

Symbolic

Execution

SIF N Y N C++

Code

Instrumentati

on

Slither N Y N Python

Constraint

Solving, Code

Transformatio

n

Smartbug

s
N Y N Python

Machine

learning

Smartche

ck
N Y N Java

Code

Transformatio

n

SmartEm

bed
N Y N

JavaScrip

t

Code

Transformatio

n, Code

Instrumentati

on

VeriSmar

t
N Y N Ocaml

Code

Instrumentati

on

Solidifier N Y N -
Formal

Verification

E-EVM Y N N Python
Symbolic

Execution

Erays Y N N Python

Code

Transformatio

n

Mythril Y N N Python

Constraint

Solving,

Symbolic

Execution

Octopus Y N N Python

Symbolic

Execution,

Fuzz Testing

Osiris Y N N Python
Symbolic

Execution

Oyenet Y N N Python
Symbolic

Execution

Securify Y N N Java
Abstract

interpretation

Vandal Y N N Python
Symbolic

Execution

Table-II

The most commonly used dynamic tools for smart contracts are [06],

[11], [12], [13], and [14].

Tools

EVM

Byte

Code (as

Input)

Solidity

Code as

Input

Support

both

Platfor

m

Analysis

Approac

h

Contra

ctLarva
N Y

N
Haskell

and

Tex

Code

Instrume

ntation

Ethlint N Y
N Java

Script

Code

Instrume

ntation

Harvey N Y
N

-
Fuzz

testing

Modco

n
N Y

N JavaSc

ript

Model-

Based

Testing

Solitor N Y
N

Java

Code

Instrume

ntation

Contra

ctGuar

d

Y N
N Java

Script

Machine

Learning

EthBM

C
Y N

N
Rust

Symbolic

Executio

n

Etherol

ic
Y N

N
Rust

Fuzz

testing,

Taint

analysis

EVMF

uzz
Y N

N
Python

Fuzz

testing

Mantic

ore
Y N

N
Python

Symbolic

Executio

n

EASY

FLOW
Y Y Y Go

Taint

Analysis

ReGua

rd
Y Y Y Python

Fuzz

testing

In recent times, the public has been more concerned

about the security of smart contracts, and some progress has

been made by using machine learning techniques to find

contract vulnerabilities. Some popular tools for using ML

for reentrancy are very few available in the present scenario

in static, dynamic, and hybrid, i.e., Contract Guard, Smart

Bugs, ESCORT, and Ether(S-GRAM).

Jasvant Mandloi and Pratosh Bansal

Copyrights @ Roman Science Publications Inc. Vol.4, No.2, September, 2022

 International Journal of Applied Engineering & Technology

114

Some work was done earlier using machine learning for

vulnerability detection in that the first one found was

SMARTBUGS in the year 2020; it is developed in an open-

source style on a publicly accessible platform, with the

framework being built in Python. It supports a variety of

tools for evaluating smart contracts developed on a

blockchain platform. The command-line interpreter, tool

configuration, tool docker images, dataset, and

SMARTBUGS runner make up the first four components of

the complete framework. For user interaction,
SMARTBUGS supports both the web interface and the

command-line interface [12]. It’s a tool for dynamic analysis

created using JavaScript in 2019. It implements the notion of

an anomaly-based intrusion detection system. Its

fundamental job is to alarm the smart contract administrators

whenever they notice any suspicious behavior and roll the

smart contract back to its prior secure state,

ContractGuard[13]. Next to our work is ESCORT [06], a

static analysis tool published in the year 2022. Deep Neural

Network-based methods are used in the vulnerability

detection framework for Ethereum blockchain smart
contracts. It has expandable and simple features as it works

on lightweight transfer learning on unobservable security

problems. The ESCORT framework has two major

components. The first component extracts the semantics and

characteristics of the Ethereum-based smart contract, and

followed by the second one, which consists of many branch

structures, and accepts input given by the 1st component’s

features. This multiple branch structure will look at

individual security threats. Another one is Ether (S-GRAM).

It is a framework that has features like security with

semantic awareness. It was developed based on the S-Gram
artifact and was created in Python in 2018. It has two

operation steps to detect vulnerabilities: build the model and

then check the security. It blends the N-gram language

model with compact static semantic labeling to acquire

patterns in the data of contract tokens. So it captures high-

level semantics to foretell future vulnerabilities [15]. One

more framework, Slither, built on static analysis, provides

detailed information on Ethereum smart contracts. Its basic

operation involves converting Solidity smart contracts into

an intermediary state known as Slith IR. To make analysis

implementation easier while protecting semantic data that

can be lost during the conversion of Solidity to byte code,
Slith IR employs an (SSA) Static Single Assignment Form

and a reduced instruction set. It was used to apply widely-

used program analysis techniques, including data flow and

taint tracking. The framework has four major use cases:

automatic vulnerability discovery, automatic code

optimization opportunity detection, enhancement of the

user's knowledge of the contracts, and help with code review

[16]. Another framework that will support the mutation of

more than one transaction is by detecting basic exploitation

via an oracle that keeps track of each smart contract

instance's balance, doing away with the necessity for certain
software patterns to find vulnerabilities[17].

There is a lot of scope for applying ML for vulnerability

detection in smart contracts. Our work is the way to utilize

ML in finding problematic execution patterns in smart

contracts, with an emphasis on reentrancy.

METHODOLOGY

The dynamic framework detects and discovers reentrancy

problems in deployed smart contracts without requiring their

source code. This framework needs to consider dynamic

behavior, and dynamic response is retrieved using metadata

specifying how contracts interact. This monitoring is based
on the present application programming interface of the

unmodified Ethereum blockchain client (API).

Steps to Implement It

Step 1. Input: The dataset, Smart Contracts dataset, is

implemented as input. The dataset is collected from a dataset
repository.

Step 2. Data selection: In this step, we can select the input
data using the panda package[18][19].

Step 3. Preprocessing: The collected input data is subjected
to preprocessing.

In the preprocessing step,

● It can handle the missing data.

● It can perform label encoding.

Step 4: Data Splitting: The preprocessed data is split into
training and testing sets for decision-making.

● Train data set is used to evaluate the model.

● Test data set is used to predict the model.

Step 5. Classification: In this step, we can implement the

different machine learning classification algorithms, such as

● Random Forest (RF) Algorithm

● Decision Tree (DT) Algorithm

Step 6. Output: In this step, we can detect the vulnerability

using classification algorithms.

The framework consists of two parts.

1. The scanner keeps track of blockchain transactions.

2. The pointer, which distinguishes between benign

and malevolent behavior.

Table-III:

The Pointer ML model uses features collected by the scanner.

Features Monitoring Mechanism

Gas_Usage of

Transaction
Event Subscription

One fund distinction Probing

Differences between the
two funds

Probing

Avg Call_Stack_depth Probing

A Machine Learning-Based Dynamic Method for Detecting Vulnerabilities in Smart Contracts

Copyrights @ Roman Science Publications Inc. Vol.4, No.2, September, 2022

 International Journal of Applied Engineering & Technology

 115

Before the deployment of our technique to identify

fraudulent production transactions, it is trained on a training

set and a variety of classifiers against which the scanner can

be customized.

Scanner:-

The scanner connects with the Ethereum blockchain client to

collect data on specified transactions. It connects to and

queries the Ethereum network using the most recent version

of web3.py[18], the interface provided to interact with

Ethereum.

The following data was gathered via the scanner:

Subscription to events that the Ethereum client sends out.

 When a transaction is returned to an account, these

events are released. We use pending transactions in our

job for any new transactions pertaining to the accounts

we are keeping an eye on.

Probing the blockchain regularly until the desired data is

obtained.

 It is appropriate to obtain details regarding a previously

mined transaction or determine the contract status

following an event.

Pointer:

The system's detector is the element that distinguishes

between risky and safe transactions. A component of the

machine learning model is taught as the monitor sends in

data and analyzes and sanitizes the data it receives.

Feature Extracted

The table [3] lists the extracted features and how they were

monitored.

The difference between a contract's funds before and
following a transaction is what is meant by the feature

known as the contract fund difference. The functionality

contract fund differences may just be swapped out for any

other asset the contracts are transferring to satisfy the needs

of the specific use case.

The only feature directly extracted from the transaction

trace is the average call stack depth. The value of this feature

won't be significantly altered by calling a standard function

inside a contract. External calls made iteratively will

dramatically change this number, though. This is frequently

true for the reentry vulnerability, in which the offender

contract continues to run by repeatedly calling a specific
function in the recipient.

It makes sense that this characteristic would be a strong

indicator that the transaction is detrimental. An attacker can

easily evade detection by restricting the number of

recursions. Furthermore, to reduce modeling bias and make

it harder for the detector to identify hazardous transactions,

we agreed to attempt to arbitrarily reduce its average call

stack depth for those transaction data. As was already stated,

gas is used during the blockchain execution of contract code.

A contract's specific actions as part of a transaction

determine how much gas is used. We utilize this gas usage

to comprehensively describe the operation because a major

attack on a susceptible contract may display a particular

execution pattern.

Classifier

We trained and evaluated the following models in our

scanner to determine which was the best.
To be added:

● Random Forest (RF)

● Decision Tree (DT)

Each of our models was created with the latest Pandas-

Pythonata Analysis Library[19].

Framework application with a Smart Contract:

Consider creating an application and then putting it into

use in the smart contract on Ethereum. The developers of

smart contracts may protect their smart contracts using our
framework. They set up this framework on their personal

computer and communicate with the Ethereum network to

monitor the status of their executed contract. The framework

will gather and process the transactions' information as they

are sent to the monitored smart contract. The machine

learning model is then taught to classify transactions as

beneficial or detrimental, which later can be used to give

feedback to the programmer or as part of a system for

managing vulnerable contracts and safety information. That

can also alert administrators to users or stop the usage of a

susceptible contract.

EXPERIMENTAL SETUP

For our tests, we selected 25 open-source contracts that carry

out a certain operation, which we refer to as "service

contracts" in this document. These contracts were initially

utilized in[20,21], and the source code is available on

Etherscan. It employs 20 smart contracts to access and make

use of the features. In those service contracts (13 robust

contracts and 13 vulnerable contracts) and user contracts (11

friendly contracts and 9 suspicious contracts). A user

contract may be benign or malevolent, and a service contract

might be secure (unexploitable) or have a weakness. The

service contract's vulnerability can only be discovered if a
malevolent user and a weak service contract are combined.

For the experiment, we kept track of 540 sequences of

numerous transactions, 290 of them were safe, and 250 of

them were hazardous. Before the experiment began, each of

these transactions had a manual label applied, making them

suitable for training/testing classification and prediction. At

this stage, we give our classifier labeled transaction data that

is stored offline; during production, unlabeled online data

may be used. Among the 540 transactions, 140 were chosen

from among 25 open-source service contracts, wherein 20

new user contract versions were added.

Jasvant Mandloi and Pratosh Bansal

Copyrights @ Roman Science Publications Inc. Vol.4, No.2, September, 2022

 International Journal of Applied Engineering & Technology

116

Two pairs of contract templates are utilized (four

contracts), the remaining 400 transactions are produced

randomly, including both harmful and benign transactions.

To produce these arbitrary transactions, the service and the

user enter into contracts that fuzz their conduct to represent a

range of behaviors in actual occurrences. A sophisticated

internal calculation may be involved with a specific call

stack depth or gas use. This is another justification for

having unpredictable behavior (fuzzing) in service and user

contracts. It can make an attack more difficult to spot. We
would like to include this behavior in our data to get a less

skewed classifier in the detector. As a result, these

transactions are created in a way that avoids the majority of

the cases. As an illustration, we add a random loop with a

50% chance into the weak contract template to fudge the gas

use, i.e., lines 12-18 Figure 7. Every time the counter is

used, more gas is used. To make it more difficult, we

additionally randomize the user's overall payment amount
and the frequency of attacks employing reentrancy.

● Because every contact between a service and its users

has the potential to be beneficial or detrimental. The

following scenarios might happen.

● The user contract attempts to take advantage of a

reentrancy vulnerability (that might or might not be

present in the service contract) but fails. A few of the
following outcomes will result from this.

○ The Ethereum run-time environment reverses the

transaction's effects on the target contract state. The

Ethereum monitoring API does not make public these

failed (reverted) transactions and, as a result, are not

considered in our study.

○ The transaction is not reversed; rather, it retains its
intended initial impact: favourable exchange.

As was previously said, data that the scanner has

gathered will be passed to the detector for categorization.

With the help of the data mentioned above, we trained and

validated the detector models. We employed stratified 10-

fold cross-validated training and test sets for each model to

obtain consistent and dependable findings. The entire

experiment (such as the cross-validation) was run ten times
for every number in the plots, and the average performance

was calculated.

Figure-7 Smart contract's source code, which was utilized to produce

arbitrary damaging transactions for the test.

RESULT & DISCUSSION

We develop and evaluate two distinct classifiers and contrast

them based on accuracy, F1 score, recall, and average false

positive and false negative rates (FPR and FNR).

In our work, the decision tree gets the highest accuracy
of 98.88. The FNR is responsible for the majority of the

models' inaccuracies. In other words, a large proportion of

hazardous transactions are classified as benign by the

detector (even using RF). In contrast, our framework's low

FPR makes it helpful as a monitoring tool in situations in

which the price of false positives is large, such as during

testing or while pausing troublesome contracts in production

for manual processing. The overall behavior of the models

and performance evaluated based on accuracy , F1 score and

Recall decision tree classifier is performing better(Fig-9).

Figure-8 Using two alternative classification models, the average false

positive and false negative rates for identifying susceptible transactions

were calculated.

A Machine Learning-Based Dynamic Method for Detecting Vulnerabilities in Smart Contracts

Copyrights @ Roman Science Publications Inc. Vol.4, No.2, September, 2022

 International Journal of Applied Engineering & Technology

 117

The contract sets we utilized to generate random

transactions attempt to conceal their behaviour, as was

previously noted. This step was taken to create a more

accurate model and reduce bias[Fig-10,11].

Figure-9 For Vulnerable Transactions with Two Different

Classification models for Average Accuracy, F1 Score, and Recall.

In the heat map of confusion matrix performance of the

classifier is checked by the variation of the test values and

accuracy of the predication is almost same.

Figure-10 Overall Heatmap of Confusion Matrix for Random

Figure-11 Overall Heatmap of Confusion Matrix for Decision Tree

Based on the TP and FP rate parameters also evaluated

and performance of Decision tree is found to be more

accurate as compared to the random forest.

Figure-12 Performance Graph of Decision Tree on TP & FP rate

Figure-13 Performance Graph of Random Forest on TP & FP rate

Figure-14 Overall Performance Graph for the Random Forest and

Decision Tree

CONCLUSION & FUTURE WORK

In our work, we have reviewed all the possible tools

available for vulnerability detection for smart contracts on

Ethereum Blockchain and found very less number of tools

there utilizing machine learning. In this paper, we also

introduce the framework that a dynamic threat detection

system for Ethereum smart contracts. Our methodology

finds vulnerable smart contracts by categorizing damaging

Jasvant Mandloi and Pratosh Bansal

Copyrights @ Roman Science Publications Inc. Vol.4, No.2, September, 2022

 International Journal of Applied Engineering & Technology

118

transactions inside a blockchain using machine learning over

transactional information. We recorded 98 percent accuracy

on the dataset with 540 transactions.

To further enhance this framework in the future, add

functionality that may manufacture labeled transactions and

establish both benign and malignant user contracts. For more

accuracy in the results, investigate to identify more features

for the machine learning model for better detection. To

improve our scanner's functionality and assess more

vulnerability, we will also investigate evaluating sequences
of many transactions and applying multiple kinds of

machine learning to the data.

REFERENCES

[1] Luu, L., Chu, D.-H. H., Olickel, H., Saxena, P., & Hobor, A. (2016).

Making smart contracts smarter. Proceedings of the ACM Conference

on Computer and Communications Security,24-28 October, 254–269.

https://doi.org/10.1145/2976749.2978309

[2] Cryptocurrency Prices, Charts And Market Capitalizations | Coin

Market Cap. (n.d.). Retrieved April 30, 2022, from

https://coinmarketcap.com/

[3] Home | ethereum.org. (n.d.). Retrieved May 2, 2022, from

https://ethereum.org/en/

[4] “DASP - TOP 10.” https://dasp.co/ (accessed May 15, 2022).

[5] Zheng, P., Zheng, Z., & Dai, H.-N. (n.d.). X Block-ETH: Extracting

and Exploring Blockchain Data From Ethereum. Retrieved June 7,

2022, from http://xblock.pro/dataset

[6] O. Lutz et al., “ESCORT: Ethereum Smart Contracts Vulnerability

Detection using Deep Neural Network and Transfer Learning;

ESCORT: Ethereum Smart Contracts Vulnerability Detection using

Deep Neural Network and Transfer Learning.”

[7] Basilio, J., 2021. Fitting Heavy Tail Distributions With Mixture

Models. Stochastic Modelling and Computational Sciences, 1(1),

pp.53-68.

[8] C. Dannen, “Introducing Ethereum and solidity: Foundations of

cryptocurrency and blockchain programming for beginners,” Introd.

Ethereum Solidity Found. Cryptocurrency Blockchain Program.

Beginners, pp. 1–185, Jan. 2017, doi: 10.1007/978-1-4842-2535-

6/COVER.

[9] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su, “Contract

Ward: Automated Vulnerability Detection Models for Ethereum

Smart Contracts,” IEEE Trans. Netw. Sci. Eng., vol. 8, no. 2, pp.

1133–1144, Jan. 2020, doi: 10.1109/TNSE.2020.2968505.

[10] “Reentrancy - Ethereum Smart Contract Best Practices.”

https://consensys.github.io/smart-contract-best-

practices/attacks/reentrancy/ (accessed Jun. 11, 2022).

[11] Rameder, H., di Angelo, M., & Salzer, G. (2022). Review of

Automated Vulnerability Analysis of Smart Contracts on Ethereum.

Frontiers in Blockchain, 0, 2.

https://doi.org/10.3389/FBLOC.2022.814977

[12] Kushwaha, S. S., Joshi, S., Singh, D., Kaur, M., & Lee, H. N. (2022).

Ethereum Smart Contract Analysis Tools: A Systematic Review.

IEEE Access. https://doi.org/10.1109/ACCESS.2022.3169902

[13] J. F. Ferreira, P. Cruz, T. Durieux, and R. Abreu, ‘‘Smart Bugs: A

framework to analyze solidity smart contracts,’’ in Proc. 35th

IEEE/ACM Int. Conf. Automated Softw. Eng., Dec. 2020, pp. 1349–

1352, doi: 10.1145/3324884.3415298

[14] Zhao, X. and Gilber, K., 2021. Estimating the Variance of Waiting

Time in the Delivery of Health Care Services. International Journal

Data Modelling and Knowledge Management, 6(2).

[15] X. Wang, J. He, Z. Xie, G. Zhao, and S.-C. Cheung, ‘‘Contract Guard:

Defend Ethereum smart contract with embedded intrusion detection,’’

Chin. J. Netw. Inf. Secur., vol. 6, no. 2, pp. 35–55, 2020, doi:

10.1109/TSC.2019.2949561.

[16] E. Albert, J. Correas, P. Gordillo, G. Román-Díez, and A. Rubio,

‘‘GASOL: as analysis and optimization for Ethereum smart

contracts,’’ in Tools and Algorithms for the Construction and

Analysis of Systems (Lecture Notes in Computer Science), vol.

12079, A. Biere and D. Parker, Eds. Cham, Switzerland: Springer,

2020, doi: 10.1007/978-3- 030-45237-7_7

[17] H. Liu, C. Liu, W. Zhao, Y. Jiang, and J. Sun, ‘‘S-gram: Towards

semantic aware security auditing for Ethereum smart contracts,’’ in

Proc. 33rd ACM/IEEE Int. Conf. Automated Softw. Eng., Sep. 2018,

pp. 814–819, doi: 10.1145/3238147.3240728.

[18] Feist, J., Grieco, G., & Groce, A. (2019). Slither: A Static Analysis

Framework For Smart Contracts.

https://doi.org/10.1109/WETSEB.2019.00008

[19] Wang, H., Liu, Y., Li, Y., Lin, S.-W., Artho, C., Ma, L., & Liu, Y.

(n.d.). Oracle-Supported Dynamic Exploit Generation for Smart

Contracts.

[20] GitHub - ethereum/web3.py: A python interface for interacting with

the Ethereum blockchain and ecosystem. (n.d.). Retrieved June 28,

2022, from https://github.com/ethereum/web3.py

[21] Yazici, H., 2020. Knowledge Sharing Antecedents in Buyer-Seller

Chains. Chinese Journal of Decision Sciences, 2(1).

[22] “pandas - Python Data Analysis Library.” https://pandas.pydata.org/

(accessed Jun. 24, 2022).

[23] Ethereum (ETH) Blockchain Explorer. (n.d.). Retrieved June 30,

2022, from https://etherscan.io/

[24] Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., Deng, Z., & Zhong,

Y. (n.d.). Vul Dee Pecker: A Deep Learning-Based System for

Vulnerability Detection. https://doi.org/10.14722/ndss.2018.23158

[25] Sri Handika Utami et.al., 2022. Fintech Lending in Indonesia: A

Sentiment Analysis, Topic Modelling, and Social Network Analysis

using Twitter Data. International Journal of Applied Engineering and

Technology , 4(1)

https://github.com/ethereum/web3.py

	In the first step at the Ethereum blockchain level, we monitor transactions in real-time. Figure 3 displays an example transactional trace from which we collected information for the classification model. Such an inspection eliminates the need for a t...
	After that, on the monitored transaction metadata, we apply machine learning techniques. It eliminates the requirement to create (potentially faulty) rules and paves the road for future vulnerability detection and correction.

