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Abstract - Real-world application development through Smart 

Contracts on the Ethereum Blockchain platform is one of the 

emerging technologies. It also has much vulnerability, and 

reentrancy is among the most popular ones. In our work, we 

have reviewed the tools based on ML for vulnerability 

detection in Ethereum smart contracts. Based on that,   we 

proposed a framework that can dynamically monitor threats 

based on the blockchain platform's transaction meta-data and 

balance data. It does not require any changes or updates to the 

existing system and does not require expertise to implement. 

This framework will extract features for machine learning 

classifier models from the transaction data and identify the 

transaction as agreeable or unfavorable. It will help to identify 

the reentrancy threat as well as the cause of it and help the 

developer to trace it from where the attack is generated. In the 

ML classifier for the framework, random forest and decision 

tree are used. The cumulative performance of both is 98 

percent on 540 transactions. 

Index Terms - Smart Contract, Reentrancy, Vulnerability, 

Attacks, Transaction, Ethereum 

INTRODUCTION 

A blockchain is a public ledger that manages user assets. A 

smart contract contains the rules for transferring digital 

assets stored in the ledger. The exchanges happen inside 

blockchain transactions that are constantly stored. As a 

result, smart contracts may be used in various applications, 

including financial and governance [1]. Currently, in May 
2022, Ethereum has a valuation of over $130 billion, and it 

is in the second position after Bitcoin in the world [2]. Smart 

contracts on Ethereum allow users and others to 

communicate by invoking functions in their contracts. 

Ethereum smart contracts are usually written in Solidity, a 

language very much like JavaScript. In that execution, the 

cost is calculated with the unit known as gas, which is 

required to carry out the activities on a smart contract. Gas 

costs are denominated in the Ether unit, Ethereum's native 

currency [3]. 

Challenges to ensuring the proper behavior of the 

contract arising from a new technique to construct smart 

contracts. It makes the code susceptible to security breaches 

that can be used by other account holders in the Ethereum 

network.  

Recently, many attacks have been performed on the 
Ethereum network, causing millions of Ether to be lost. The 

most famous attack is DAO (Decentralized Autonomous 

Organization), performed using the reentrancy vulnerability. 

The outcome of this incident will result in the loss of 3.5 

million ETH, equivalent to 50 million USD [4].  

The reentrancy attack involves repeatedly calling the 

same function or group of functions before the calling is 

finished. In such an integrated invocation scenario, smart 

contracts may behave in a different way than the expected 

one. It helps the attacker use this flaw to transfer the fund's 

ETH from the victim's account to another. Reentrancy is one 
of the most severe vulnerability categories in the Ethereum 

smart contracts. In the present scenario, approaches for 

detecting reentrancy flaws are based on investigating the 

financial asset exchanges and control flows in smart 

contracts using extensive code analysis with bespoke 

criteria. However, in the real world, there are very few 

opportunities to exploit such attacks at the transaction level. 

We have tried to perform it in different ways. 

Extraction of Ethereum's Raw Data 

Fig. 1 depicts the typical Ethereum transaction execution 

process from Block N to the EVM through a blockchain 

peer. We may acquire three forms of blockchain raw data: 

block, receipt, and trace. In our work through Trace, features 

for the ML model can be derived [5]. 

Our framework is designed to analyze the transactions 

on the smart contract and, based on them, analyze the 
malicious transactions. A framework for identifying 

reentrancy flaws in Ethereum smart contracts. The 

blockchain system's transaction meta-data and account data 
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would be the only data sources for this architecture. It 

employs a machine learning model to identify transactions 

as benign or hazardous based on attributes extracted from 

transaction data. In the framework, the random forest and 

decision tree models are used. They have 97% accuracy for 

the 100 transactions. Our work is organized in the paper as 

follows: Section II details smart contracts and reentrancy 

attacks. After that, Section III will cover related work to our 

work. Section IV outlines our framework process and 

approach to executing it.  
Our experimental setup and results with comparison are 

in sections V and VI. In in the last section, VII is concluded 

with future work. 

 

Figure 1: Ethereum Row Data Collection Scenario  

In the first step at the Ethereum blockchain level, we 
monitor transactions in real-time. Figure 3 displays an 

example transactional trace from which we collected 

information for the classification model. Such an inspection 

eliminates the need for a thorough analysis of the smart 

contracts themselves and enables us to apply our idea 
immediately on the Block chained client-side without 

affecting the smart contracts or the client-side. 

After that, on the monitored transaction metadata, we 

apply machine learning techniques. It eliminates the 

requirement to create (potentially faulty) rules and paves the 

road for future vulnerability detection and correction. 

 

 

 

 

BACKGROUND 

Ethereum Smart Contract 

Figure 2: An illustration of a transaction receipt taken from the 

Ethereum blockchain 

Ethereum-based smart contracts are autonomous, 

decentralized blockchain-based programs that specify the 

contract terms between market participants, doing away with 

the need for third parties to act as trusted brokers and 

arbitrators.  
 

 

 

These compact applications developed in the Ethereum 

bytecode are represented in a particular format [6].  The 

bytecode is the outcome of the compiled code in a language 

such as, I.e.; The code is executed step by step on the virtual 

machine, one instruction at a time. The reason is that each 

instruction has a value that can be measured in the form of 

gas; the caller of the smart contract has to pay for it. The 

virtual machine's responsibility is to manage instruction 
outcomes and their impact in the form of cost on each asset 

on the blockchain network. There is always the possibility of 

errors in the entire process, from sudo code to byte code. 

Potential vulnerabilities may occur, and reentry is one of the 

possible attacks that could occur [7]. 

Reentrancy Vulnerability Attack, 

One of the characteristics of smart contracts is their 

capacity to call external contract codes, and they have the 

power to deliver digital money for transactions to external 

user addresses. Calls like these to outside contracts might 

lead to reentrancy. In Ethereum, ether can be exchanged 

between two parties. When a contract receives a message 

including ether but has no data, and no function is specified, 

an anonymous default function, the fall-back function, is 

called. In this case, a contract invited by calling another 
account can specify how much gas the called party is 

permitted to spend. If the target account is in the form of a 

contract, it will be executed and will be able to use the gas 

budget that has been allotted. In such a scenario, if the 

contract is vicious and the gas budget is high enough, the 

caller can be called back as a reentrant call. If, for instance, 

the caller's functionality is not re-entrant due to failing to 

update the internal state holding balance information, the 

attacker can use this vulnerability to siphon money from the 

susceptible contract. [8]. 

Reentrancy attack on a single function 

The oldest known instance of this problem had 

procedures that may have been invoked more than once 

before the first invocation was finished. This could lead to 

harmful interactions between the function's different 

invocations [9]. 
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Figure 3 An illustration of a transaction how to avoid reentancy Attack 

in Ethereum blockchain 

 

 

The user's fund is not set to 0 until the end of the 

function, so the second (and subsequent) invocations will 
continue to succeed and withdraw the amount. In the above 

case, the best way to avoid this attack is to ensure that you 

don't call an external function until you've completed all the 

necessary internal tasks. 

 

Figure 4: Reentry Attack Avoidance 

Cross-function Reentrancy 

An attacker may also be able to carry out a similar 

assault by combining two functions into the same state. 

 

Figure 5: Cross-site reentrancy attack 

When the attacker's code is performed on the external 

call to withdraw funds, they call transfer (). They can 

transfer the tokens even though they have already received 

the withdrawal since their balance value has not yet been 

reset to zero. In addition, the DAO attack made use of this 

issue. 

One way to avoid reentrancy is through solidity function 

modifiers, which might be used to make checks before 

handing control over to the fallback function of another 

contract. Before providing ether to the interacting contract, it 

examines and updates its status. 

 

 

Figure 6 Framework to detect the reentrancy attack 

RELATED WORK 

For vulnerability analysis, there are primarily four different 

types of methodologies: static and dynamic code, systematic 

specification and validation, and other chunks also [10]. 

At the program or code analysis level to detect the 

potential vulnerability, detection can be performed mainly 

through static and dynamic analysis. In the first one, the 

source code is analysed without running it, and in the second 
one, the code is analyzed based on the program's behaviour 

in the running state. 

The main advantage of the first one is that it can detect 

flaws in the code at the exact position, and it's done by 

skilled software assurance developers that know the code 

inside and out. Also, repairs may be completed more 

quickly, especially if automated techniques are employed. 

But it also has some major disadvantages: it is time-

consuming if done manually, and automated tools are not 

there to support all programming languages. These 

automated tools produce false-positive and false-negative 

results. There are not enough trained personnel to 
thoroughly conduct static code analysis. Another 

disadvantage is that it does not find vulnerabilities 

introduced in the runtime environment. On the other hand, 

dynamic analysis works on the real-time system and detects 

flaws in the code during runtime. It sometimes might not be 

effective in locating the necessary inputs to bring about this. 

Dynamic analysis has a certain advantage like automated 

tools give flexibility in what to search for and find 

vulnerabilities in a runtime context. It also enables the study 

of programs for which you lack access to the source code, 

which works with any program. 
In the present scenario, 75% of the tools are static, and 

23 % are dynamic analysis tools. Only 2% of the tools are 

hybrid [11]. 
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Table-I 

The most commonly used static tools for smart contracts are [06], [11], 

[12], [13], and [14]. 

Tools 

EVM 

Byte 

Code 

(as 

Input) 

Solidit

y Code 

as 

Input 

Suppo

rt both 
Platform 

Analysis 

Approach 

Echidna N N N Haskel Fuzz testing 

FEther N Y N Coq 
Symbolic 

Execution 

ESCORT Y N Y - 
Machine 

learning 

Ether(S-

GRAM) 
Y N Y Python 

Machine 

learning 

GasTap N Y N Python 
Symbolic 

Execution 

GASOL Y Y Y - 

Code 

Instrumentati

on 

Pakala N Y N Python 
Symbolic 

Execution 

SAFEV

M 
Y Y Y Python 

Constraint 

Solving, 

Symbolic 

Execution 

SIF N Y N C++ 

Code 

Instrumentati

on 

Slither N Y N Python 

Constraint 

Solving, Code 

Transformatio

n 

Smartbug

s 
N Y N Python 

Machine 

learning 

Smartche

ck 
N Y N Java 

Code 

Transformatio

n 

SmartEm

bed 
N Y N 

JavaScrip

t 

Code 

Transformatio

n, Code 

Instrumentati

on  

VeriSmar

t 
N Y N Ocaml 

Code 

Instrumentati

on 

Solidifier N Y N - 
Formal 

Verification 

E-EVM Y N N Python 
Symbolic 

Execution 

Erays Y N N Python 

Code 

Transformatio

n 

Mythril Y N N Python 

Constraint 

Solving, 

Symbolic 

Execution 

Octopus Y N N Python 

Symbolic 

Execution, 

Fuzz Testing 

Osiris Y N N Python 
Symbolic 

Execution 

Oyenet Y N N Python 
Symbolic 

Execution 

Securify Y N N Java 
Abstract 

interpretation 

Vandal Y N N Python 
Symbolic 

Execution 

 

 

Table-II  

The most commonly used dynamic tools for smart contracts are [06], 

[11], [12], [13], and [14]. 

Tools 

EVM 

Byte 

Code (as 

Input) 

Solidity 

Code as 

Input 

Support 

both 

Platfor

m 

Analysis 

Approac

h 

Contra

ctLarva 
N Y 

N 
Haskell 

and 

Tex 

Code 

Instrume

ntation 

Ethlint N Y 
N Java 

Script 

Code 

Instrume

ntation 

Harvey N Y 
N 

- 
Fuzz 

testing 

Modco

n 
N Y 

N JavaSc

ript 

Model-

Based 

Testing 

Solitor N Y 
N 

Java 

Code 

Instrume

ntation 

Contra

ctGuar

d 

Y N 
N Java 

Script 

Machine 

Learning 

EthBM

C 
Y N 

N 
Rust 

Symbolic 

Executio

n 

Etherol

ic 
Y N 

N 
Rust 

Fuzz 

testing, 

Taint 

analysis 

EVMF

uzz 
Y N 

N 
Python 

Fuzz 

testing 

Mantic

ore 
Y N 

N 
Python 

Symbolic 

Executio

n 

EASY

FLOW 
Y Y Y Go 

Taint 

Analysis 

ReGua

rd 
Y Y Y Python 

Fuzz 

testing 

In recent times, the public has been more concerned 

about the security of smart contracts, and some progress has 

been made by using machine learning techniques to find 

contract vulnerabilities. Some popular tools for using ML 

for reentrancy are very few available in the present scenario 

in static, dynamic, and hybrid, i.e., Contract Guard, Smart 

Bugs, ESCORT, and Ether(S-GRAM).  
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Some work was done earlier using machine learning for 

vulnerability detection in that the first one found was 

SMARTBUGS in the year 2020; it is developed in an open-

source style on a publicly accessible platform, with the 

framework being built in Python. It supports a variety of 

tools for evaluating smart contracts developed on a 

blockchain platform. The command-line interpreter, tool 

configuration, tool docker images, dataset, and 

SMARTBUGS runner make up the first four components of 

the complete framework. For user interaction, 
SMARTBUGS supports both the web interface and the 

command-line interface [12]. It’s a tool for dynamic analysis 

created using JavaScript in 2019. It implements the notion of 

an anomaly-based intrusion detection system. Its 

fundamental job is to alarm the smart contract administrators 

whenever they notice any suspicious behavior and roll the 

smart contract back to its prior secure state, 

ContractGuard[13]. Next to our work is ESCORT [06], a 

static analysis tool published in the year 2022. Deep Neural 

Network-based methods are used in the vulnerability 

detection framework for Ethereum blockchain smart 
contracts. It has expandable and simple features as it works 

on lightweight transfer learning on unobservable security 

problems. The ESCORT framework has two major 

components.  The first component extracts the semantics and 

characteristics of the Ethereum-based smart contract, and 

followed by the second one, which consists of many branch 

structures, and accepts input given by the 1st component’s 

features. This multiple branch structure will look at 

individual security threats. Another one is Ether (S-GRAM). 

It is a framework that has features like security with 

semantic awareness. It was developed based on the S-Gram 
artifact and was created in Python in 2018. It has two 

operation steps to detect vulnerabilities: build the model and 

then check the security. It blends the N-gram language 

model with compact static semantic labeling to acquire 

patterns in the data of contract tokens. So it captures high-

level semantics to foretell future vulnerabilities [15]. One 

more framework, Slither, built on static analysis, provides 

detailed information on Ethereum smart contracts. Its basic 

operation involves converting Solidity smart contracts into 

an intermediary state known as Slith IR. To make analysis 

implementation easier while protecting semantic data that 

can be lost during the conversion of Solidity to byte code, 
Slith IR employs an (SSA) Static Single Assignment Form 

and a reduced instruction set. It was used to apply widely-

used program analysis techniques, including data flow and 

taint tracking. The framework has four major use cases: 

automatic vulnerability discovery, automatic code 

optimization opportunity detection, enhancement of the 

user's knowledge of the contracts, and help with code review 

[16]. Another framework that will support the mutation of 

more than one transaction is by detecting basic exploitation 

via an oracle that keeps track of each smart contract 

instance's balance, doing away with the necessity for certain 
software patterns to find vulnerabilities[17].  

There is a lot of scope for applying ML for vulnerability 

detection in smart contracts. Our work is the way to utilize 

ML in finding problematic execution patterns in smart 

contracts, with an emphasis on reentrancy. 

METHODOLOGY 

The dynamic framework detects and discovers reentrancy 

problems in deployed smart contracts without requiring their 

source code. This framework needs to consider dynamic 

behavior, and dynamic response is retrieved using metadata 

specifying how contracts interact. This monitoring is based 
on the present application programming interface of the 

unmodified Ethereum blockchain client (API). 

Steps to Implement It 

Step 1. Input: The dataset, Smart Contracts dataset, is 

implemented as input. The dataset is collected from a dataset 
repository. 

Step 2. Data selection: In this step, we can select the input 
data using the panda package[18][19]. 

Step 3. Preprocessing: The collected input data is subjected 
to preprocessing. 

In the preprocessing step, 

● It can handle the missing data.  

● It can perform label encoding. 

Step 4: Data Splitting: The preprocessed data is split into 
training and testing sets for decision-making. 

● Train data set is used to evaluate the model. 

● Test data set is used to predict the model. 

Step 5. Classification: In this step, we can implement the 

different machine learning classification algorithms, such as 

● Random Forest (RF) Algorithm  

● Decision Tree (DT) Algorithm  

Step 6. Output: In this step, we can detect the vulnerability 

using classification algorithms. 

The framework consists of two parts. 

1. The scanner keeps track of blockchain transactions. 

2. The pointer, which distinguishes between benign 

and malevolent behavior.  

Table-III:  

The Pointer ML model uses features collected by the scanner. 

Features Monitoring Mechanism 

Gas_Usage of 

Transaction 
Event Subscription 

One fund distinction Probing 

Differences between the 
two funds 

Probing 

Avg Call_Stack_depth Probing 
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Before the deployment of our technique to identify 

fraudulent production transactions, it is trained on a training 

set and a variety of classifiers against which the scanner can 

be customized. 

Scanner:- 

The scanner connects with the Ethereum blockchain client to 

collect data on specified transactions. It connects to and 

queries the Ethereum network using the most recent version 

of web3.py[18], the interface provided to interact with 

Ethereum.  

The following data was gathered via the scanner: 

Subscription to events that the Ethereum client sends out. 

 When a transaction is returned to an account, these 

events are released. We use pending transactions in our 

job for any new transactions pertaining to the accounts 

we are keeping an eye on. 

Probing the blockchain regularly until the desired data is 

obtained. 

 It is appropriate to obtain details regarding a previously 

mined transaction or determine the contract status 

following an event. 

Pointer: 

The system's detector is the element that distinguishes 

between risky and safe transactions. A component of the 

machine learning model is taught as the monitor sends in 

data and analyzes and sanitizes the data it receives. 

Feature Extracted 

The table [3] lists the extracted features and how they were 

monitored. 

The difference between a contract's funds before and 
following a transaction is what is meant by the feature 

known as the contract fund difference. The functionality 

contract fund differences may just be swapped out for any 

other asset the contracts are transferring to satisfy the needs 

of the specific use case. 

The only feature directly extracted from the transaction 

trace is the average call stack depth. The value of this feature 

won't be significantly altered by calling a standard function 

inside a contract. External calls made iteratively will 

dramatically change this number, though. This is frequently 

true for the reentry vulnerability, in which the offender 

contract continues to run by repeatedly calling a specific 
function in the recipient. 

It makes sense that this characteristic would be a strong 

indicator that the transaction is detrimental. An attacker can 

easily evade detection by restricting the number of 

recursions. Furthermore, to reduce modeling bias and make 

it harder for the detector to identify hazardous transactions, 

we agreed to attempt to arbitrarily reduce its average call 

stack depth for those transaction data. As was already stated, 

gas is used during the blockchain execution of contract code.  

A contract's specific actions as part of a transaction 

determine how much gas is used. We utilize this gas usage 

to comprehensively describe the operation because a major 

attack on a susceptible contract may display a particular 

execution pattern. 

Classifier 

We trained and evaluated the following models in our 

scanner to determine which was the best. 
To be added:  

● Random Forest (RF) 

● Decision Tree (DT) 

Each of our models was created with the latest Pandas-

Pythonata Analysis Library[19]. 

Framework application with a Smart Contract: 

Consider creating an application and then putting it into 

use in the smart contract on Ethereum. The developers of 

smart contracts may protect their smart contracts using our 
framework. They set up this framework on their personal 

computer and communicate with the Ethereum network to 

monitor the status of their executed contract. The framework 

will gather and process the transactions' information as they 

are sent to the monitored smart contract. The machine 

learning model is then taught to classify transactions as 

beneficial or detrimental, which later can be used to give 

feedback to the programmer or as part of a system for 

managing vulnerable contracts and safety information. That 

can also alert administrators to users or stop the usage of a 

susceptible contract. 

EXPERIMENTAL SETUP 

For our tests, we selected 25 open-source contracts that carry 

out a certain operation, which we refer to as "service 

contracts" in this document. These contracts were initially 

utilized in[20,21], and the source code is available on 

Etherscan. It employs 20 smart contracts to access and make 

use of the features. In those service contracts (13 robust 

contracts and 13 vulnerable contracts) and user contracts (11 

friendly contracts and 9 suspicious contracts). A user 

contract may be benign or malevolent, and a service contract 

might be secure (unexploitable) or have a weakness. The 

service contract's vulnerability can only be discovered if a 
malevolent user and a weak service contract are combined. 

For the experiment, we kept track of 540 sequences of 

numerous transactions, 290 of them were safe, and 250 of 

them were hazardous. Before the experiment began, each of 

these transactions had a manual label applied, making them 

suitable for training/testing classification and prediction. At 

this stage, we give our classifier labeled transaction data that 

is stored offline; during production, unlabeled online data 

may be used. Among the 540 transactions, 140 were chosen 

from among 25 open-source service contracts, wherein 20 

new user contract versions were added.  
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Two pairs of contract templates are utilized (four 

contracts), the remaining 400 transactions are produced 

randomly, including both harmful and benign transactions. 

To produce these arbitrary transactions, the service and the 

user enter into contracts that fuzz their conduct to represent a 

range of behaviors in actual occurrences. A sophisticated 

internal calculation may be involved with a specific call 

stack depth or gas use. This is another justification for 

having unpredictable behavior (fuzzing) in service and user 

contracts. It can make an attack more difficult to spot. We 
would like to include this behavior in our data to get a less 

skewed classifier in the detector. As a result, these 

transactions are created in a way that avoids the majority of 

the cases. As an illustration, we add a random loop with a 

50% chance into the weak contract template to fudge the gas 

use, i.e., lines 12-18 Figure 7. Every time the counter is 

used, more gas is used. To make it more difficult, we 

additionally randomize the user's overall payment amount 
and the frequency of attacks employing reentrancy. 

● Because every contact between a service and its users 

has the potential to be beneficial or detrimental. The 

following scenarios might happen. 

● The user contract attempts to take advantage of a 

reentrancy vulnerability (that might or might not be 

present in the service contract) but fails. A few of the 
following outcomes will result from this. 

○ The Ethereum run-time environment reverses the 

transaction's effects on the target contract state. The 

Ethereum monitoring API does not make public these 

failed (reverted) transactions and, as a result, are not 

considered in our study. 

○ The transaction is not reversed; rather, it retains its 
intended initial impact: favourable exchange. 

As was previously said, data that the scanner has 

gathered will be passed to the detector for categorization. 

With the help of the data mentioned above, we trained and 

validated the detector models. We employed stratified 10-

fold cross-validated training and test sets for each model to 

obtain consistent and dependable findings. The entire 

experiment (such as the cross-validation) was run ten times 
for every number in the plots, and the average performance 

was calculated. 

 

Figure-7 Smart contract's source code, which was utilized to produce 

arbitrary damaging transactions for the test. 

RESULT & DISCUSSION 

We develop and evaluate two distinct classifiers and contrast 

them based on accuracy, F1 score, recall, and average false 

positive and false negative rates (FPR and FNR). 

In our work, the decision tree gets the highest accuracy 
of 98.88. The FNR is responsible for the majority of the 

models' inaccuracies. In other words, a large proportion of 

hazardous transactions are classified as benign by the 

detector (even using RF). In contrast, our framework's low 

FPR makes it helpful as a monitoring tool in situations in 

which the price of false positives is large, such as during 

testing or while pausing troublesome contracts in production 

for manual processing. The overall behavior of the models 

and performance evaluated based on accuracy , F1 score and 

Recall decision tree classifier is performing better(Fig-9). 

 

 

 

 

 

 

 
 
  

Figure-8 Using two alternative classification models, the average false 

positive and false negative rates for identifying susceptible transactions 

were calculated. 
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The contract sets we utilized to generate random 

transactions attempt to conceal their behaviour, as was 

previously noted. This step was taken to create a more 

accurate model and reduce bias[Fig-10,11]. 

 

Figure-9 For Vulnerable Transactions with Two Different 

Classification models for Average Accuracy, F1 Score, and Recall. 

In the heat map of confusion matrix performance of the 

classifier is checked by the variation of the test values and 

accuracy of the predication is almost same. 

 
Figure-10 Overall Heatmap of Confusion Matrix for Random 

 

Figure-11  Overall Heatmap of Confusion Matrix for Decision Tree 

Based on the TP and FP rate parameters also evaluated 

and performance of Decision tree is found to be more 

accurate as compared to the random forest. 

 

Figure-12 Performance Graph of Decision Tree on TP & FP rate 

 
Figure-13 Performance Graph of Random Forest on TP & FP rate 

 

Figure-14 Overall Performance Graph for the Random Forest and 

Decision Tree 

CONCLUSION & FUTURE WORK 

In our work, we have reviewed all the possible tools 

available for vulnerability detection for smart contracts on 

Ethereum Blockchain and found very less number of tools 

there utilizing machine learning. In this paper, we also 

introduce the framework that a dynamic threat detection 

system for Ethereum smart contracts. Our methodology 

finds vulnerable smart contracts by categorizing damaging 



Jasvant Mandloi and  Pratosh Bansal 

Copyrights @ Roman Science Publications Inc.                                                                    Vol.4, No.2, September, 2022  

    International Journal of Applied Engineering & Technology 

118 

transactions inside a blockchain using machine learning over 

transactional information. We recorded 98 percent accuracy 

on the dataset with 540 transactions. 

To further enhance this framework in the future, add 

functionality that may manufacture labeled transactions and 

establish both benign and malignant user contracts. For more 

accuracy in the results, investigate to identify more features 

for the machine learning model for better detection. To 

improve our scanner's functionality and assess more 

vulnerability, we will also investigate evaluating sequences 
of many transactions and applying multiple kinds of 

machine learning to the data. 
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