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7-YAMABE SOLITON ON 3-DIMENSIONAL a-PARA
KENMOTSU MANIFOLD
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ABSTRACT. The aim of the current paper is to concentrate a few proper-
ties of 3-dimensional a-Para Kenmotsu manifold whose metric is n-Yamabe
solitons. We have concentrated here some specific curvature conditions of
3-dimensional a-Para Kenmotsu manifold admitting n-Yamabe solitons.

1. Introduction

In 1972, Kenmotsu [4] presented Kenmotsu manifolds and the geometry of al-
most Kenmotsu manifolds have been explored in numerous perspectives [1]-[3]. A
large portion of the outcomes contained in [1]-[2] can be well established to the
class of almost a-Kenmotsu manifolds, where « is a non-zero real number [3]. The
curvature identities for different classes of almost paracontact metric manifold-
s were obtained in [6]. A class of a-para Kenmotsu manifolds and is noted as
(o — pkm), were studied by K. Srivastava and S. K. Srivastava [5].

Hamilton introduced the notion of Yamabe flow [8], in which the metric on a
Riemannian manifold is deformed by evolving according to

1o}
79t = —rg(t),9(0) = g0, (1.1)
where r is the scalar curvature of the manifold M.
In 2-dimension, the Yamabe flow (Y f) is identical to the Ricci flow (character-

5,
ized by gg(t) = —2S5¢(t), where S signifies the Ricci tensor). A Yamabe soliton

is signified as (Y'S) [7] and is compare to self-comparative arrangement of the
(Y f), is characterized on a Riemannian or pseudo-Riemannian manifold (M, g) by
a vector field fulfilling the condition,

SLvg = (=), (12)

where Ly g indicates the Lie subordinate of the metric g along the vector field V,
r is the scalar curvature and A is a constant. In addition a (Y'S) is supposed to
steady, shrinking and expanding if A = 0, A < 0 and A > 0 respectively. (Y'.S) on
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a three-dimensional Sasakian manifold was concentrated by Sharma [11].
Presently, we characterize the idea of n-Yamabe soliton (n — (Y'.5)) as:

1
sLvg=(r—=XNg—mmen, (1.3)
where Ly g is the Lie derivative of the vector field with metric g and A\, p are

constants. Additionally if g = 0, the above condition lessens to (1.2) thus the
n-(Y'S) becomes (Y'5).

2. Preliminaries

A differentiable manifold M of dimension (2n + 1) is said to have an almost
paracontact (¢, &, n)-structure if it admits an (1,1) tensor field ¢, a unique vector
field &, 1-form 7 such that:

for any vector fields X, Y on M?2"*!. The manifold M?"+! equipped with an
almost paracontact structure (¢,&,n) is called almost paracontact manifold. In
addition, if an almost paracontact manifold admits a pseudo-Riemannian metric
satisfying:

9(oUy, ¢Uz) = —g(Ur, Uz) + n(Ur)n(Uz), (2.2)
—9(¢Uy,Uz) = g(Uy, ¢U2), (2.3)
n(Ur) = g(Us,§), (2.4)

for any vector fields X, Y on M?"*! then (¢,&,n, g), is called an almost paracon-
tact metric structure and the manifold M2 *! equipped with an almost paracon-
tact metric structure is called an almost paracontact metric manifold. Further in
addition, if the structure (¢, £, n, g), satisfies

dn(X,Y) = g(X, ¢Y)

for any vector fields X, Y on M?"*t!. Then the manifold is called paracontact
metric manifold and the corresponding structure (¢,&,n,g) is called a paracon-
tact structure with the associated metric g. In a (o — pkm)s, the accompanying
outcomes hold [5]:

(Vu,mUz = a{g(Ur,Uz) — n(U1)n(Uz)}, (2.5)
(Vu,0)Uz = ofg(¢pUy, Us)€ — n(Usz) 90U }, (2.6)
Vi, § = a{Ur — n(Uh)E},

R(Uy,Uz)Us = (f + 2042) [9(Uz,Us)Uy — g(Uy, Us3)Us]

2
~ (5 +302) [9(U2, Us)n(U) = g(Us, Us)n(Ua) ¢
+ (5 +302) (U2 = n(U2) U] (Us), (2:8)
S U2) = (5 +02) (U1, U2) = (5 + 302 n(Uin(Ua).  (29)
Leg(Ur, Uz) = 2ag(Us, Us) — 2an(Ur)n(Uz), (2.10)
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for all vector fields Uy, Us, Uz and W € x(M), where r is the scalar curvature of
the manifold and ¢ is pseudo-metric.

3. n-(Y'S) on (a — pkm)s
Let M be a (a — pkm)s. Contemplate the n-(Y'S) on M as:

S (Leg) (UL, Ua) = (r — N)g(Us, Us) — pn(U)n (D), (31)
for all vector fields Uy, Uz on M. Additionaly from (2.10) and (3.1), it generates
(r=XA—a)g(Us,Uz) = (. — a)n(U1)n(U2). (3:2)

Consider Uy = ¢ in the followed condition with make use of (2.1),it obtains
(r=A—=pn(U) = 0. (3-3)

On account of n(Uy) # 0, it gives

r=A+pu (3.4)
Presently, both together A, p are constants, hence r is also constant.
It is expressing as:

Corollary 3.1. If a (o — pkm)s M admits an n-(Y'S) (g,§), & being the Reeb
vector field of M, then the scalar curvature is constant.

In view of (3.4), if u = 0, it becomes r = A and so (3.1) obtains L¢g = 0.
Therefore, £ is a Killing vector field and we called M is a Killing (a — pkm)s.
Then we have

Corollary 3.2. If a (o — pkm)s M admits a (Y'S) (g,€), & being the Reeb vector
field of M, then the manifold is a Killing (o — pkm)s.

Presently, from (2.9) and (3.4), we get,

(0. 00) = (252 +0?) o0, 0) — (252 4 502 @), (39)

for all vector fields Uy, Us on M. Thus, it follows that

Corollary 3.3. If a (¢ —pkm)s M admits a n-(Y'S) (g,€), € being the Reeb vector
field of M, then the manifold becomes n-FEinstein manifold.
It cognizant,
(Vu,8)(Us,Us3) = Vy, S(Usa,Us) — S(Vy, Uz, Us) — S(Y,Vy,Us). (3.6)

for all vector fields Uy, Us, Us on M and V is the Levi-Civita connection associated
with g. Presently, supplanting the expansion of S from (3.5), we get,

(Vu,8)(Uz,Us) = — Aty + 30| [n(Us)(Vu,m)Us + n(Uz)(Vu,n)Us].  (3.7)
2

for all vector fields Uy, Us, Us on M. Presently, allow the manifold be Ricci sym-
metric i.e V.S = 0. Next from (3.7), we have

F;“ + 302] [1(Us)(Vu,m)Uz + n(Uz) (Ve m)Us] = 0. (3.8)
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for all vector fields Uy, Uy, Us on M. Setting Z = £ in the followed condition and
make use of (2.5) and (2.1), it yields

{/\42_“ + 3a2] [—ag(oUi, ¢Us)] = 0, (3.9)

for all vector fields Uy, Us,Us on M. Subsequently, we have
A+ pu=—6a2 (3.10)
Thus, we have

Theorem 3.4. Let a (o — pkm)s M admits an n-(Y'S) (g,€), & being the Reeb
vector field of M. If the manifold is Ricci symmetric, then X\ + p = —6a2, where
A, b, v are constants.

Presently, in the event that the Ricci tensor S is n-recurrent, at that point we
possess

VS=n®S:. (3.11)
It suggests
(Vu,9)(U2,Us) = n(U1)S(Us, Us), (3.12)
for all vector fields Uy, Us, Us on M. As well employing (3.7), we compel

-2 30| O T + 0O (ToUa] = n@)S W, ). (313)

for all vector fields Uy, Uy, Us on M. Employing (2.5), then followed equation come
to be

- {A—;u + 3a2] {n(Us)la(g(Ut, Uz) — n(U1)n(U2))]
+1(Us)[e(g(Uy, Us) — n(U)n(Us)]} = n(U1)S(Us, Us) (3.14)

Now taking Us = £,Us = £ and make use of (2.1) and (3.5), the above equation
come to be, 2an(U;) = 0. Since n(Uy) # 0, for all U; on M. we have,

a=0. (3.15)
This leads the accompanying

Theorem 3.5. Let a (o« — pkm)s M admits an n-(Y'S) (g,£), € being the Reeb
vector field of M. If the Ricci tensor S is n-recurrent, then a = 0.

Presently, if the manifold is Ricci symmetric and the Ricci tensor S is 7-
recurrent, then employing (3.15) in (3.10) then (3.4) becomes r = 0, we have
the following:

Proposition 3.6. Let a (a —pkm)s M admits an n-(Y'S) (g,€), & being the Reeb
vector field of M. If the manifold is Ricci symmetric and the Ricci tensor S is
n-recurrent, then the manifold becomes flat.

Make V' be pointwise collinear with & i.e., V = b, where b is a function on M.
Next, the equation (1.3) yields,

(Loeg) (U1, Uz) = 2(r — N\)g(U1, Uz) — 2un(Ur)n(Uz), (3.16)
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for all vector fields Uy, Us, Us on M. Employing the property of Lie derivative and
Levi-Civita connection, we have,
bg(Vu, &, Uz) + (Urb)n(Uz) + bg(Vu, &, Ur) + (U2b)n(Ur)
=2(r — N)g(Ur, Uz) = 2un(Ur)n(Uz) (3.17)
Make use of (2.7) and (2.3), the followed equation reduces to,
2bafg(Ur, Uz) — n(Un)n(U2)] + (Urb)n(Uz) + (U2b)n(Us)
= 2(r — A\)g(Ur, Uz) — 2un(Ur)n(Us) (3.18)
Setting Uy = ¢ in the followed equation and employing (2.1) and (2.4), we obtain
Urb + (€b)n(Us) = 2(r — A)n(Us) — 2un(Uy) (3.19)
Again setting Uy = &, we get

Eb=r—A—pu (3.20)
Then, using (3.20), the equation (3.19) becomes,
Uib = (r — A — p)n(Ur) (3.21)
Employing exterior differentiation in (3.21), we receive,
(r=A—p)dn=0 (3.22)
In view of dn # 0 [13] ,the followed equation generates
r=A+p (3.23)
Using (3.23), the equation (3.21) gets,
Xb =0, (3.24)

which implies that b is constant. Hence, we have the following theorem:

Theorem 3.7. Let M be a (o — pkm)s admitting an n-(Y'S) (g,V), V being a
vector field on M. If V is pointwise collinear with &, then V is a constant multiple
of &, where & being the Reeb vector field of M.

Employing (3.23), the equation (1.3) yields,

(Lvg)(Ut,Us) = 2u[g(Ur, Uz) — n(Ur)n(Us)], (3.25)
for all vector fields Uy, Us,Us on M. We develop,

Theorem 3.8. Let M be a (o« — pkm)s admitting an n-(Y'S) (g,V), V being a
vector field on M which is pointwise collinear with £, where £ being the Reeb vector
field of M. Then, V is a Killing vector field iff the soliton reduces to a (Y'S).

From the equation (3.5), it becomes,

A+ A+
QU = (2 £y oz2> Uy — (2 £y 3a2> n(U1)§, (3.26)
for all vector fields U; on M and ). We have,
(VeQ)Ur = VeQU — Q(VeUy), (3.27)
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for all vector fields U; on M Next employing (3.26), the equation (3.27) becomes,

Ve = - (252 +302) (Ventige (3.28)
Using (2.5)
(VeQ)Ur =0, (3.29)

for all vector fields U; on M. Therefore @ is parallel along £. Once again from
(3.7),we accomplish,

(VeS)(01,Ua) = - (252 4 30%) ) (Ven)th + (0 (Ven)ti. - (3:30)

for all vector fields Uy, U on M. Using (2.5) in the followed equation, we make
out,

(VeS) (T, Us) = 0, (3.31)
for all vector fields U;,Us on M. since S is parallel along &. So, we state the
following theorem:

Theorem 3.9. Let M be a (o — pkm)s admitting an n-(Y'S) (g,£), £ being the
Reeb vector field of M. Then Q and S are parallel along &, where Q) is the Ricci
operator, defined by S(Uy,Us) = g(QUy,Us) and S is the Ricci tensor of M.

4. Curvature properties on (o — pkm)s; admitting 7-(Y'S)

The projective curvature tensor P of type (1,3) in 3-manifolds M is defined by
1
P(Uy,Us)Us = R(Uy, Us)Us — §[S(U2, Us)Uy — S(Uy, Us)Us), (4.1)
for all vector fields Uy, Uy, Us on M (See [12]). Imposing Us = £ in the followed
equation also make use of (2.8) and (2.9), we obtain
P(Uy,Us)é = —a?[n(Us)Uy — n(U1)Usz] — @?[=n(U2)Us +n(Un)Us],  (4.2)

which implies that,
P(U,,Ux)E =0. (4.3)

So, we state the following theorem:

Theorem 4.1. If M is a (o — pkm)s admitting n-(Y'S) (g,&), & being the Reeb
vector field on M, then M is {-projectively flat.

The concircular curvature tensor C' of type (1,3) in 3-manifold [9] is given by
~ T
C (U1, U2)Us = R(U1, U2)Us = ¢[g(U2, Us)Us = g(Us, Us)U2], (4.4)

for any vector fields Uy, Us,Us on M. Setting Uz = £ in the followed equation
further make use of (2.4) and (2.8), it yields
r

C(U1, Us)Us = —a®[n(Uz)Uy — n(U1)Us] — g [(U2)Ur = n(U1)Ue]; (4.5)
Now using (3.4), we get
Cwn U2 = | ~a® = 252 wavs ~ w1, (4.6)
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This implies that C‘(Ul7 Us)¢ = 0, if and only if A+ = —6a2. It can be expressed
as

Theorem 4.2. A (o — pkm)s admitting n-(Y'S) (g,§), & being the Reeb vector
field on M is &-concircularly flat iff X + pn = —6a2.

Presently, if the Ricci tensor S is n-recurrent and applying (3.15) in (4.5), we
obtain,

Corollary 4.3. Let M be a (o« — pkm)s admitting n-(Y'S) (g,€), £ being the Reeb
vector field on M. If the manifold is &-concircularly flat and the Ricci tensor is
n-recurrent, then the manifold M becomes flat.

The Weyl-conformal curvature tensor W of type (1,3) in 3-manifold M is rep-
resented by

W(Uy,Us)Us =R(Uy,Us)Us — [S(Ua, Us)Ur — S(Uz, Us)Us
= 9(U2,U3)QUy — g(U1, U3)QU2]
+ 5 [9(U2,Us)Us = 9(U1, U)Us), (4.7)

for any vector fields Uy, Us,Us on M (See [12]). Fixing Us = £ in the followed
equation as well as employing (2.4),(2.8),(3.5) and (3.26). we get,

WU = (254) )t + n(0 -2 (254w
= (M) mwas - v (48)
Thus, we get
W(U1, U2)§ = (A4 p)[n(U2)Ur — n(Ur)n(Us2)E], (4.9)

which implies that W (U;,Uz) = 0 iff A+ p = 0. Hence, it gives the following
theorem:

Theorem 4.4. A (o — pkm)s admitting n-(Y'S) (g,§), & being the Reeb vector
field on M is &-Weyl-conformally flat iff A+ p = 0.

The Pseudo-projective curvature tensor P of type (1,3) in 3-manifold M is
defined by [10]

P(U17U2)U3 = aR(Ul, UQ)U?, + b[S(UQ, U3)U1 - S(Ul,Ug)Uz]

- (4.10)
= 3(5 +0)g(U2,U3)Us — g(Uy, Us)Ue],

for any vector fields Uy, Us,Us on M and a,b are constants. Taking Us = £ in the
followed equation as well as playing (2.4),(2.9), (3.4), (3.5) and (3.26), the followed
equation proceeds,

P(UL,U2)¢ = |—aa® — 20 — ”T“ (5+ b)} (Un)Uy — (U] (4.11)
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_ A

This implies that P(Uy, Us)é = 0 if and only if aa? + 2a2b + % (% n b) —0.
_ A

At that point by explaining, we get P(Uy,Us)¢ = 0 iff (a + 2b) {ag + ‘gﬂ} =0.

i.e., either a 4+ 2b =0 or A + . = —6a2. So, we can state the following:

Theorem 4.5. A (a — pkm)s admitting n-(Y'S) (g,&), & being the Reeb vector

field on M is &-Pseudo-projectively flat iff a +2b =0 or A 4+ u = —6a>.

Presently, on the off chance that the Ricci tensor S is n-recurrent at that point
utilizing (3.15) in (4.11), we produce,

_ a+2b
6

P(U,,Up)§ = ) (A + ) [n(U2)Uy —n(Ur)Uz]. (4.12)

Consequently utilizing (3.4) in (4.12), we obtain,

Corollary 4.6. Let a (a« —pkm)s admitting n-(Y'S) (g,&), € being the Reeb vector
field on M. If the manifold is £-Pseudo-projectively flat and the Ricci tensor is
n-recurrent, then the manifold M becomes flat, provided a + 2b # 0.

We have,
R(&,Uy) - S = S(R(&,U1)Us, Uz) + S(Ua, R(§, U1)Us), (4.13)

for any vector fields Uy, Us,Us on M.
Presently, let the manifold be &-semi symmetric, i.e., R(§,U7) - S = 0.
Next, from (4.13), we compel

S(R(&,Ur)Us, Us) + S(Uz, R(§, U1)Us) = 0. (4.14)
for any vector fields Uy, Us, U3 on M. Utilizing (2.8), supplanting the declaration

of S from (3.5) and clarifying, we concur,

o (252 b€, Un(U) + o(01,Ua)a(a) = 20(U0)n(Uain(Ua)] =0 (8.15)

Taking Us = £ in the followed equation and utilizing (2.1) and (2.4), we obtain

o (A1) lo02,02) ~ @) =, (1.16)

for any vector fields Uy, Us on M.
Using (2.2), the followed equation becomes.

A+
a? (2“) [g(6Us, 6Us)] = 0, (4.17)
for any vector fields Uy, Us, U3 on M. Therefore, we have
A
o? <‘2L“> =0 (4.18)

Then, either a? = 0 or A + 1 = 0. Hence, we have the following theorem:

Theorem 4.7. If a (a — pkm)s admitting n-(Y'S) (g,&), € being the Reeb vector
field on M is £-semi symmetric, then either o =0 or A+ p = 0.
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