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Abstract. The aim of the current paper is to concentrate a few proper-

ties of 3-dimensional α-Para Kenmotsu manifold whose metric is η-Yamabe
solitons. We have concentrated here some specific curvature conditions of

3-dimensional α-Para Kenmotsu manifold admitting η-Yamabe solitons.

1. Introduction

In 1972, Kenmotsu [4] presented Kenmotsu manifolds and the geometry of al-
most Kenmotsu manifolds have been explored in numerous perspectives [1]-[3]. A
large portion of the outcomes contained in [1]-[2] can be well established to the
class of almost α-Kenmotsu manifolds, where α is a non-zero real number [3]. The
curvature identities for different classes of almost paracontact metric manifold-
s were obtained in [6]. A class of α-para Kenmotsu manifolds and is noted as
(α− pkm), were studied by K. Srivastava and S. K. Srivastava [5].

Hamilton introduced the notion of Yamabe flow [8], in which the metric on a
Riemannian manifold is deformed by evolving according to

∂

∂t
g(t) = −rg(t), g(0) = g0, (1.1)

where r is the scalar curvature of the manifold M .
In 2-dimension, the Yamabe flow (Y f) is identical to the Ricci flow (character-

ized by
∂

∂t
g(t) = −2Sg(t), where S signifies the Ricci tensor). A Yamabe soliton

is signified as (Y S) [7] and is compare to self-comparative arrangement of the
(Y f), is characterized on a Riemannian or pseudo-Riemannian manifold (M, g) by
a vector field fulfilling the condition,

1

2
LV g = (r − λ)g, (1.2)

where LV g indicates the Lie subordinate of the metric g along the vector field V ,
r is the scalar curvature and λ is a constant. In addition a (Y S) is supposed to
steady, shrinking and expanding if λ = 0, λ < 0 and λ > 0 respectively. (Y S) on
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a three-dimensional Sasakian manifold was concentrated by Sharma [11].
Presently, we characterize the idea of η-Yamabe soliton (η − (Y S)) as:

1

2
LV g = (r − λ)g − µη ⊗ η, (1.3)

where LV g is the Lie derivative of the vector field with metric g and λ, µ are
constants. Additionally if µ = 0, the above condition lessens to (1.2) thus the
η-(Y S) becomes (Y S).

2. Preliminaries

A differentiable manifold M of dimension (2n + 1) is said to have an almost
paracontact (φ, ξ, η)-structure if it admits an (1,1) tensor field φ, a unique vector
field ξ, 1-form η such that:

φ2 = I − η ⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0 (2.1)

for any vector fields X, Y on M2n+1. The manifold M2n+1 equipped with an
almost paracontact structure (φ, ξ, η) is called almost paracontact manifold. In
addition, if an almost paracontact manifold admits a pseudo-Riemannian metric
satisfying:

g(φU1, φU2) = −g(U1, U2) + η(U1)η(U2), (2.2)

−g(φU1, U2) = g(U1, φU2), (2.3)

η(U1) = g(U1, ξ), (2.4)

for any vector fields X, Y on M2n+1, then (φ, ξ, η, g), is called an almost paracon-
tact metric structure and the manifold M2n+1 equipped with an almost paracon-
tact metric structure is called an almost paracontact metric manifold. Further in
addition, if the structure (φ, ξ, η, g), satisfies

dη(X,Y ) = g(X,φY )

for any vector fields X, Y on M2n+1. Then the manifold is called paracontact
metric manifold and the corresponding structure (φ, ξ, η, g) is called a paracon-
tact structure with the associated metric g. In a (α − pkm)3, the accompanying
outcomes hold [5]:

(∇U1
η)U2 = α{g(U1, U2)− η(U1)η(U2)}, (2.5)

(∇U1
φ)U2 = α{g(φU1, U2)ξ − η(U2)φU1}, (2.6)

∇U1ξ = α{U1 − η(U1)ξ}, (2.7)

R(U1, U2)U3 =
(r

2
+ 2α2

)
[g(U2, U3)U1 − g(U1, U3)U2]

−
(r

2
+ 3α2

)
[g(U2, U3)η(U1)− g(U1, U3)η(U2)]ξ

+
(r

2
+ 3α2

)
[η(U1)U2 − η(U2)U1]η(U3), (2.8)

S(U1, U2) =
(r

2
+ α2

)
g(U1, U2)−

(r
2

+ 3α2
)
η(U1)η(U2). (2.9)

Lξg(U1, U2) = 2αg(U1, U2)− 2αη(U1)η(U2), (2.10)
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for all vector fields U1, U2, U3 and W ∈ χ(M), where r is the scalar curvature of
the manifold and g is pseudo-metric.

3. η-(Y S) on (α− pkm)3

Let M be a (α− pkm)3. Contemplate the η-(Y S) on M as:

1

2
(Lξg)(U1, U2) = (r − λ)g(U1, U2)− µη(U1)η(U2), (3.1)

for all vector fields U1, U2 on M . Additionaly from (2.10) and (3.1), it generates

(r − λ− α)g(U1, U2) = (µ− α)η(U1)η(U2). (3.2)

Consider U2 = ξ in the followed condition with make use of (2.1),it obtains

(r − λ− µ)η(U1) = 0. (3.3)

On account of η(U1) 6= 0, it gives

r = λ+ µ (3.4)

Presently, both together λ, µ are constants, hence r is also constant.
It is expressing as:

Corollary 3.1. If a (α − pkm)3 M admits an η-(Y S) (g, ξ), ξ being the Reeb
vector field of M , then the scalar curvature is constant.

In view of (3.4), if µ = 0, it becomes r = λ and so (3.1) obtains Lξg = 0.
Therefore, ξ is a Killing vector field and we called M is a Killing (α− pkm)3.
Then we have

Corollary 3.2. If a (α− pkm)3 M admits a (Y S) (g, ξ), ξ being the Reeb vector
field of M , then the manifold is a Killing (α− pkm)3.

Presently, from (2.9) and (3.4), we get,

S(U1, U2) =

(
λ+ µ

2
+ α2

)
g(U1, U2)−

(
λ+ µ

2
+ 3α2

)
η(U1)η(U2), (3.5)

for all vector fields U1, U2 on M . Thus, it follows that

Corollary 3.3. If a (α−pkm)3 M admits a η-(Y S) (g, ξ), ξ being the Reeb vector
field of M , then the manifold becomes η-Einstein manifold.

It cognizant,

(∇U1
S)(U2, U3) = ∇U1

S(U2, U3)− S(∇U1
U2, U3)− S(Y,∇U1

U2). (3.6)

for all vector fields U1, U2, U3 on M and ∇ is the Levi-Civita connection associated
with g. Presently, supplanting the expansion of S from (3.5), we get,

(∇U1
S)(U2, U3) = −

[
λ+ µ

2
+ 3α2

]
[η(U3)(∇U1

η)U2 + η(U2)(∇U1
η)U3]. (3.7)

for all vector fields U1, U2, U3 on M . Presently, allow the manifold be Ricci sym-
metric i.e ∇S = 0. Next from (3.7), we have[

λ+ µ

2
+ 3α2

]
[η(U3)(∇U1

η)U2 + η(U2)(∇U1
η)U3] = 0. (3.8)
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for all vector fields U1, U2, U3 on M . Setting Z = ξ in the followed condition and
make use of (2.5) and (2.1), it yields[

λ+ µ

2
+ 3α2

]
[−αg(φU1, φU2)] = 0, (3.9)

for all vector fields U1, U2, U3 on M . Subsequently, we have

λ+ µ = −6α2 (3.10)

Thus, we have

Theorem 3.4. Let a (α − pkm)3 M admits an η-(Y S) (g, ξ), ξ being the Reeb
vector field of M . If the manifold is Ricci symmetric, then λ + µ = −6α2, where
λ, µ, α are constants.

Presently, in the event that the Ricci tensor S is η-recurrent, at that point we
possess

∇S = η ⊗ S. (3.11)

It suggests

(∇U1
S)(U2, U3) = η(U1)S(U2, U3), (3.12)

for all vector fields U1, U2, U3 on M . As well employing (3.7), we compel

−
[
λ+ µ

2
+ 3α2

]
[η(U3)(∇U1η)U2 + η(U2)(∇U1η)U3] = η(U1)S(U2, U3), (3.13)

for all vector fields U1, U2, U3 on M . Employing (2.5), then followed equation come
to be

−
[
λ+ µ

2
+ 3α2

]
{η(U3)[α(g(U1, U2)− η(U1)η(U2))]

+η(U2)[α(g(U1, U3)− η(U1)η(U3))]} = η(U1)S(U2, U3) (3.14)

Now taking U2 = ξ, U3 = ξ and make use of (2.1) and (3.5), the above equation
come to be, 2α2η(U1) = 0. Since η(U1) 6= 0, for all U1 on M . we have,

α = 0. (3.15)

This leads the accompanying

Theorem 3.5. Let a (α − pkm)3 M admits an η-(Y S) (g, ξ), ξ being the Reeb
vector field of M . If the Ricci tensor S is η-recurrent, then α = 0.

Presently, if the manifold is Ricci symmetric and the Ricci tensor S is η-
recurrent, then employing (3.15) in (3.10) then (3.4) becomes r = 0, we have
the following:

Proposition 3.6. Let a (α− pkm)3 M admits an η-(Y S) (g, ξ), ξ being the Reeb
vector field of M . If the manifold is Ricci symmetric and the Ricci tensor S is
η-recurrent, then the manifold becomes flat.

Make V be pointwise collinear with ξ i.e., V = bξ, where b is a function on M .
Next, the equation (1.3) yields,

(Lbξg)(U1, U2) = 2(r − λ)g(U1, U2)− 2µη(U1)η(U2), (3.16)
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for all vector fields U1, U2, U3 on M . Employing the property of Lie derivative and
Levi-Civita connection, we have,

bg(∇U1
ξ, U2) + (U1b)η(U2) + bg(∇U2

ξ, U1) + (U2b)η(U1)

= 2(r − λ)g(U1, U2)− 2µη(U1)η(U2) (3.17)

Make use of (2.7) and (2.3), the followed equation reduces to,

2bα[g(U1, U2)− η(U1)η(U2)] + (U1b)η(U2) + (U2b)η(U1)

= 2(r − λ)g(U1, U2)− 2µη(U1)η(U2) (3.18)

Setting U2 = ξ in the followed equation and employing (2.1) and (2.4), we obtain

U1b+ (ξb)η(U1) = 2(r − λ)η(U1)− 2µη(U1) (3.19)

Again setting U1 = ξ, we get

ξb = r − λ− µ (3.20)

Then, using (3.20), the equation (3.19) becomes,

U1b = (r − λ− µ)η(U1) (3.21)

Employing exterior differentiation in (3.21), we receive,

(r − λ− µ)dη = 0 (3.22)

In view of dη 6= 0 [13] ,the followed equation generates

r = λ+ µ (3.23)

Using (3.23), the equation (3.21) gets,

Xb = 0, (3.24)

which implies that b is constant. Hence, we have the following theorem:

Theorem 3.7. Let M be a (α − pkm)3 admitting an η-(Y S) (g, V ), V being a
vector field on M . If V is pointwise collinear with ξ, then V is a constant multiple
of ξ, where ξ being the Reeb vector field of M .

Employing (3.23), the equation (1.3) yields,

(LV g)(U1, U2) = 2µ[g(U1, U2)− η(U1)η(U2)], (3.25)

for all vector fields U1, U2, U3 on M . We develop,

Theorem 3.8. Let M be a (α − pkm)3 admitting an η-(Y S) (g, V ), V being a
vector field on M which is pointwise collinear with ξ, where ξ being the Reeb vector
field of M . Then, V is a Killing vector field iff the soliton reduces to a (Y S).

From the equation (3.5), it becomes,

QU1 =

(
λ+ µ

2
+ α2

)
U1 −

(
λ+ µ

2
+ 3α2

)
η(U1)ξ, (3.26)

for all vector fields U1 on M and Q. We have,

(∇ξQ)U1 = ∇ξQU1 −Q(∇ξU1), (3.27)
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for all vector fields U1 on M Next employing (3.26), the equation (3.27) becomes,

(∇ξQ)U1 = −
(
λ+ µ

2
+ 3α2

)
((∇ξη)U1)ξ (3.28)

Using (2.5)

(∇ξQ)U1 = 0, (3.29)

for all vector fields U1 on M . Therefore Q is parallel along ξ. Once again from
(3.7),we accomplish,

(∇ξS)(U1, U2) = −
(
λ+ µ

2
+ 3α2

)
[η(U2)(∇ξη)U1 + η(U1)(∇ξη)U2], (3.30)

for all vector fields U1, U2 on M . Using (2.5) in the followed equation, we make
out,

(∇ξS)(U1, U2) = 0, (3.31)

for all vector fields U1, U2 on M . since S is parallel along ξ. So, we state the
following theorem:

Theorem 3.9. Let M be a (α − pkm)3 admitting an η-(Y S) (g, ξ), ξ being the
Reeb vector field of M . Then Q and S are parallel along ξ, where Q is the Ricci
operator, defined by S(U1, U2) = g(QU1, U2) and S is the Ricci tensor of M .

4. Curvature properties on (α− pkm)3 admitting η-(Y S)

The projective curvature tensor P of type (1,3) in 3-manifolds M is defined by

P (U1, U2)U3 = R(U1, U2)U3 −
1

2
[S(U2, U3)U1 − S(U1, U3)U2], (4.1)

for all vector fields U1, U2, U3 on M (See [12]). Imposing U3 = ξ in the followed
equation also make use of (2.8) and (2.9), we obtain

P (U1, U2)ξ = −α2[η(U2)U1 − η(U1)U2]− α2[−η(U2)U1 + η(U1)U2], (4.2)

which implies that,

P (U1, U2)ξ = 0. (4.3)

So, we state the following theorem:

Theorem 4.1. If M is a (α − pkm)3 admitting η-(Y S) (g, ξ), ξ being the Reeb
vector field on M , then M is ξ-projectively flat.

The concircular curvature tensor C̃ of type (1,3) in 3-manifold [9] is given by

C̃(U1, U2)U3 = R(U1, U2)U3 −
r

6
[g(U2, U3)U1 − g(U1, U3)U2], (4.4)

for any vector fields U1, U2, U3 on M . Setting U3 = ξ in the followed equation
further make use of (2.4) and (2.8), it yields

C̃(U1, U2)U3 = −α2[η(U2)U1 − η(U1)U2]− r

6
[η(U2)U1 − η(U1)U2], (4.5)

Now using (3.4), we get

C̃(U1, U2)ξ =

[
−α2 − λ+ µ

6

]
[η(U2)U1 − η(U1)U2], (4.6)
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This implies that C̃(U1, U2)ξ = 0, if and only if λ+µ = −6α2. It can be expressed
as

Theorem 4.2. A (α − pkm)3 admitting η-(Y S) (g, ξ), ξ being the Reeb vector
field on M is ξ-concircularly flat iff λ+ µ = −6α2.

Presently, if the Ricci tensor S is η-recurrent and applying (3.15) in (4.5), we
obtain,

Corollary 4.3. Let M be a (α− pkm)3 admitting η-(Y S) (g, ξ), ξ being the Reeb
vector field on M . If the manifold is ξ-concircularly flat and the Ricci tensor is
η-recurrent, then the manifold M becomes flat.

The Weyl-conformal curvature tensor W of type (1,3) in 3-manifold M is rep-
resented by

W (U1, U2)U3 =R(U1, U2)U3 − [S(U2, U3)U1 − S(U1, U3)U2

− g(U2, U3)QU1 − g(U1, U3)QU2]

+
r

2
[g(U2, U3)U1 − g(U1, U2)U3], (4.7)

for any vector fields U1, U2, U3 on M (See [12]). Fixing U3 = ξ in the followed
equation as well as employing (2.4),(2.8),(3.5) and (3.26). we get,

W (U1, U2)ξ =

(
λ+ µ

2

)
[η(U2)U1 + η(U1)U2]− 2

(
λ+ µ

2

)
η(U1)η(U2)ξ

+

(
λ+ µ

2

)
[η(U2)U1 − η(U1)U2] (4.8)

Thus, we get

W (U1, U2)ξ = (λ+ µ)[η(U2)U1 − η(U1)η(U2)ξ], (4.9)

which implies that W (U1, U2) = 0 iff λ + µ = 0. Hence, it gives the following
theorem:

Theorem 4.4. A (α − pkm)3 admitting η-(Y S) (g, ξ), ξ being the Reeb vector
field on M is ξ-Weyl-conformally flat iff λ+ µ = 0.

The Pseudo-projective curvature tensor P̄ of type (1,3) in 3-manifold M is
defined by [10]

P̄ (U1, U2)U3 = aR(U1, U2)U3 + b[S(U2, U3)U1 − S(U1, U3)U2]

− r

3
(
a

2
+ b)[g(U2, U3)U1 − g(U1, U3)U2],

(4.10)

for any vector fields U1, U2, U3 on M and a, b are constants. Taking U3 = ξ in the
followed equation as well as playing (2.4),(2.9), (3.4), (3.5) and (3.26), the followed
equation proceeds,

P̄ (U1, U2)ξ =

[
−aα2 − 2α2b− λ+ µ

3

(a
2

+ b
)]

[η(U2)U1 − η(U1)U2] (4.11)
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This implies that P̄ (U1, U2)ξ = 0 if and only if aα2 + 2α2b+
λ+ µ

3

(a
2

+ b
)

= 0.

At that point by explaining, we get P̄ (U1, U2)ξ = 0 iff (a+ 2b)

[
α2 +

λ+ µ

6

]
= 0.

i.e., either a+ 2b = 0 or λ+ µ = −6α2. So, we can state the following:

Theorem 4.5. A (α − pkm)3 admitting η-(Y S) (g, ξ), ξ being the Reeb vector
field on M is ξ-Pseudo-projectively flat iff a+ 2b = 0 or λ+ µ = −6α2.

Presently, on the off chance that the Ricci tensor S is η-recurrent at that point
utilizing (3.15) in (4.11), we produce,

P̄ (U1, U2)ξ =

(
a+ 2b

6

)
(λ+ µ)[η(U2)U1 − η(U1)U2]. (4.12)

Consequently utilizing (3.4) in (4.12), we obtain,

Corollary 4.6. Let a (α−pkm)3 admitting η-(Y S) (g, ξ), ξ being the Reeb vector
field on M . If the manifold is ξ-Pseudo-projectively flat and the Ricci tensor is
η-recurrent, then the manifold M becomes flat, provided a+ 2b 6= 0.

We have,

R(ξ, U1) · S = S(R(ξ, U1)U2, U3) + S(U2, R(ξ, U1)U3), (4.13)

for any vector fields U1, U2, U3 on M .
Presently, let the manifold be ξ-semi symmetric, i.e., R(ξ, U1) · S = 0.
Next, from (4.13), we compel

S(R(ξ, U1)U2, U3) + S(U2, R(ξ, U1)U3) = 0. (4.14)

for any vector fields U1, U2, U3 on M . Utilizing (2.8), supplanting the declaration
of S from (3.5) and clarifying, we concur,

α2

(
λ+ µ

2

)
[g(U1, U2)η(U3) + g(U1, U3)η(U2)− 2η(U1)η(U2)η(U3)] = 0 (4.15)

Taking U3 = ξ in the followed equation and utilizing (2.1) and (2.4), we obtain

α2

(
λ+ µ

2

)
[g(U1, U2)− η(U1)η(U2)] = 0, (4.16)

for any vector fields U1, U2 on M .
Using (2.2), the followed equation becomes.

α2

(
λ+ µ

2

)
[g(φU1, φU2)] = 0, (4.17)

for any vector fields U1, U2, U3 on M . Therefore, we have

α2

(
λ+ µ

2

)
= 0 (4.18)

Then, either α2 = 0 or λ+ µ = 0. Hence, we have the following theorem:

Theorem 4.7. If a (α − pkm)3 admitting η-(Y S) (g, ξ), ξ being the Reeb vector
field on M is ξ-semi symmetric, then either α = 0 or λ+ µ = 0.
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