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Abstract. A physical law is described by differential equation. Meanwhile,

Einstein’s general relativity asserts the equation should be the same form

in all coordinate systems, which results in a revolution for finding covariant
equations on physical laws in last century. However, there are no essential

difference in covariant or differential equation for the conclusion unless its

form of expression of a physical law, one attends to trifles but neglect the es-
sential in applying Einstein’s general relativity. In this paper, we review the

Einstein’s general relativity in philosophy, not only its pursuit on mathemat-
ical form but also its enlightening for understanding things in the universe

by remaind its philosophical implications, including the discussion on the

essence of invariants and general relativity, the contradictory system’s uni-
versal with combinatorics, new mathematical elements for understanding the

reality of things and Einstein’s general relativity to multi-fields with differen-

tial equations on new elements, i.e., continuity flows which are more general
for understanding things in the universe.

1. Introduction

A well-known natural law is that all things are continuously changing in the
universe, concluded by Heraclitus, a philosopher in ancient Greek that one can not
step enter the same river twice, which implies an initial work for understanding
things, i.e., holding on the change laws of things in the world. Then, how do
we describe the change event of a thing T? Usually, we characterize the state
function F (t, x) of T on position x in space and the moment, i.e., the time t in a
coordinate system F in the eyes, ears, nose, tongue, body and mind of humans,
where x = (x1, x2, x3) ∈ R3. Because of the continuously change, all values x and
t on a thing T can only be observed in themselves difference, not the absolute
one and furthermore, its state F (t, x) can be determined if its initial position and
speed are known before hand, which leads to characterize the change law of T by
differential equation{

F (t, x, Ft, Fx, · · · ) = 0

F (x)|t=t0 = F0, Fx|t=t0 = F1

(1.1)
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on observed x and t, a solvable equation by its physical meaning. For example,
the Maxwell equation

∇ ·E(t, x) =
1

ε0
ρ(x),

∇×E(t, x) = − ∂

∂t
B(t, x),

∇ ·B(t, x) = 0,

∇×B(t, x) = µ0j(t, x
′) +

1

c2
∂

∂t
E(t, x)

(1.2)

on an electromagnetic field, where E and B are respectively the electric and mag-
netic fields dependent on both the position x and time t with an operator action
∇, i.e.,

E = (Ex1 , Ex2 , Ex3) , B = (Bx1 , Bx2 , Bx3) ,

∇ =

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
and ρ(t, x), j(t, x) are respectively the densities of electric charge and electric
current.

Certainly, different coordinate systems {O; t, x} result in differential equations
on a thing T , maybe in different forms of (1.1). However, all these equations are
characterizing the same thing T . Then, how are these differential equations related
in mathematics? Einstein answered this question with a long time speculation on
the gravitation with the inertial force, i.e., the general relativity in 1915 following.

Principle 1.1 (Equivalence,[3]) These gravitational forces and inertial forces act-
ing on a particle in a gravitational field are equivalent and indistinguishable from
each other.

Principle 1.2 (Covariance,[3]) An equation describing the law of physics should
have the same form in all coordinate systems.

According to Principles 1.1 and 1.2, Einstein thought that a physical equation
should be a tensor equation because tensors are covariant, He presented his grav-
itational equation Rij − 1

2gijR = κTij in [5] by tensors, which is equivalent to
the minimum variational principle, also includes the Newtonian’s law of univer-
sal gravitation as a limitation case ([3]). For testing the correctness of general
relativity, Einstein predicted 3 experiments, i.e., Mercury’s motion on the perihe-
lion, curved light and gravitational redshift, which were all verified by experiments
later, arrival at the rightness of general relativity.

Einstein’s great achievements led to a revolution movement for finding covariant
in mathematics on physical laws, i.e., tensors which promoted physics greatly.
However, a few peoples consider the philosophical implication of Einstein’s general
relativity in revolution. Certainly, it gives unified mathematical forms of physical
laws, but what is its essence for understanding things in the universe? The answer
is not certain. Lots of researchers were absorbed in finding covariant forms of
physical laws in classical, rewriting them in tensors but innovative achievements
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rarely. Why did this happen? We should think back to its reason deeply that
happened, i.e., too emphasizing the form but neglecting the conclusion.

Notice that the science’s role is understanding the nature and then, developing
our society in coordination with the universal laws. For this objective, the first
question is whether the reality can be all characterized by solvable differential e-
quations or not? Notice that all things in the universe can be characterized by
solvable differential equation is only one’s priori hypotheses. The answer is like-
ly uncertain because few peoples consider the non-solvable differential equations
with reality. The second question is on the mathematical expression of reality, i.e.,
which is more important for the expression, the form or its conclusion? The an-
swer is certainly the conclusion because the form of expression always serves that
of the conclusion. Certainly, getting an unified mathematical form of physical law
is beautiful but we can not attend to trifles, neglect the essential in applying Ein-
stein’s general relativity to the reality of things. The main purpose of this paper
is to review the Einstein’s general relativity in philosophy, not only its pursuit
on mathematical form but also its enlightening for understanding things in the
universe by remaind its philosophical implications, including the discussion on the
essence of invariants and general relativity, the contradictory system’s universal
with combinatorics, new mathematical elements for understanding the reality of
things and Einstein’s general relativity to multi-fields with differential equations
on new elements in mathematical combinatorics ([6]), i.e., continuity flows which
are more general for understanding things in the universe.

For terminologies and notations not mentioned here, we follow the reference
[1] for mechanics, [3] and [4] for general relativity, [5] for algebraic invariants,
[11] for combinatorial geometry, [27] for elementary particles and [11], [28] for
Smarandache systems and multispaces.

2. Invariants with Physical Equations Background

Einstein’s general relativity concludes the mathematical form F(x) of a phys-
ical equation F(x) = 0 should be invariant under all transformations T on its
coordinate system {O;x}, i.e.,

F(x) = F(T (x)), (∗)

which should be an invariant. We look back the invariant with finding of the
Einstein’s general relativity.

2.1. Algebraic Invariants A physical law should be an expression or solu-
tion of differential equation in a coordinate system {O;x1, x2, · · · , xn}. Con-
sider invariants under linear transformation T of coordinate system following
Hilbert ([5]). Let C(a0, a1, · · · , an;x1, x2, · · · , xn) be a polynomial with an image
C(a′0, a′1, · · · , a′n;x′1, x′2, · · · , x′n) under a linear transformation T = (αij)n×n x

′t,

where x′ = (x′1, x′2, · · · , x′n). Then, C is said to be a covariant if

C(a′0, a′1, · · · , a′n;x′1, x′2, · · · , x′n) = δpC(a0, a1, · · · , an;x1, x2, · · · , xn),

where δ = det(T ), the determinant of T which is a constant and p is an integer.
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For example,

(a0a1 − a2
1)(x1)2 + (a0a3 − a1a2)x1x2 + (a1a3 − a2

2)(x2)2,

(a2
0a3 − 3a0a1a2 + 2a3

1)(x)13 + 3(a0a1a3 + a2
1a2 − 2a0a

2
2)(x1)2x2

−3(a0a2a3 − 2a2
1a3 + a1a

2
2)x1(x2)2 − (a0a

2
3 − 3a1a2a3 + 2a3

2)(x2)3

are the only covariant of degree 2 in p = 2 or degree 3 in p = 3, respectively [5].
Particularly, if det(T ) = 1,

C(a′0, a′1, · · · , a′n;x′1, x′2, · · · , x′n) = C(a0, a1, · · · , an;x1, x2, · · · , xn),

i.e., its form is invariant under the transformation T is particularly important
in physics because it is in accord with Principle 1.2. For example, the Lorentz
transformation T , i.e.,

x′1 =
x1 − vt√
1−

(
v
c

)2
x′2 = x2

x′3 = x3

t′ =
t− v

c2x
1√

1−
(
v
c

)2
with matrix (αij)4×4 =


1√

1−( v
c )

2
0 0 −v√

1−( v
c )

2

0 1 0 0
0 0 1 0
− v

c2√
1−( v

c )
2

0 0 1√
1−( v

c )
2



it is easily verified that

det(T ) =

∣∣∣∣∣∣∣∣∣∣∣

1√
1−( v

c )
2

0 0 −v√
1−( v

c )
2

0 1 0 0
0 0 1 0
− v

c2√
1−( v

c )
2

0 0 1√
1−( v

c )
2

∣∣∣∣∣∣∣∣∣∣∣
= 1.

Thus, a covariant C(a0, a1, · · · , an;x1, x2, x3, t) transferred by the Lorentz trans-
formation holds with

C(a′0, a′1, · · · , a′n;x′1, x′2, x′3, t) = C(a0, a1, · · · , an;x1, x2, x3, t).

Furthermore, it can be applied to the covariance of physical laws under special
transformation, i.e., the Lorentz transformation, which is nothing else but the
Einstein’s special relativity.

2.2. General Relativity with Equation Notice that the transformation T
of coordinate system maybe not linear but differentiable in Principle 1.2 and a
physical law is usually describing by differentials. We should find the differential,
not only the algebraic invariants of physical laws in general. Einstein found to
solve this problem is a little easy than that of Hilbert et al. on algebraic invariants
because of the chain rule of differential applicable, which concludes that if u =
g(y1, y2, · · · , ym) is a differential function at b = (b1, b2, · · · , bm) ∈ Em and fi(x)
differentiable at a ∈ En with bi = fi(a) for 1 ≤ i ≤ m, then the chain rule of
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differential concludes that u = g ◦ f is also differentiable at a with

∂u

∂xi
=

m∑
j=1

∂u

∂yj
∂yj

∂xi
=

m∑
j=1

∂g

∂yj
∂fj
∂xi

, 1 ≤ i ≤ n, (2.1)

and the complete differential

du =

n∑
i=1

∂u

∂yi
dyi =

n∑
i=1

∂u

∂yi

n∑
j=1

∂fi
∂xj

dxj =

n∑
i=1

∂u

∂xi
dxi, (2.2)

is invariant under a transformation f of coordinate system {O; y1, y2, · · · , yn}, no
matter whatever f is linear or not. Generally, let f = (f1, f2, · · · , fn) : En → En
be differentiable at x ∈ En, then we know the differential of f at x should be the
Jacobian matrix

Jf ;x =
∂ (f1, f2, · · · , fn)

∂ (x1, x2, · · · , xn)
=


∂f1

∂x1
∂f1

∂x2 · · · ∂f1

∂xn

∂f2

∂x1
∂f2

∂x2 · · · ∂f2

∂xn

· · · · · · · · · · · ·
∂fn
∂x1

∂fn
∂x2 · · · ∂fn

∂xn


with a complete differential

df = Jf ;xdx
t, (2.3)

which is invariant under transformations of coordinate system {O;x1, x2, · · · , xn},
where dx = (dx1, dx2, · · · , dxn) and furthermore,

det(Jf ;x) = det

(
∂ (f1, f2, · · · , fn)

∂ (x1, x2, · · · , xn)

)
‖dx‖ (2.4)

with ‖dx‖ = dx1dx2 · · · dxn.
Let M be an manifolds of dimension n with a finite cover {Ci; 1 ≤ i <∞} such

that each Ci is homeomorphic to Rn, i.e., there is a 1 − 1 continuous mapping
ρ : Ci → Rn and an inverse ρ−1 for an integer n ≥ 1. Thus, an manifold is a
combination of finite local Euclidean space Rn. Then, what is a tensor? A tensor
is tensor product of tangent vectors X, cotangent vectors X∗ generated by ([4]){

∂

∂xi

∣∣∣∣
p

| 1 ≤ i ≤ n

}
and

{
dxip 1 ≤ i ≤ n

}
on local chart (Cp; p) of manifold M , i.e.,

X|Cp
=

n∑
i=1

Xi ∂

∂xi
or X∗|Cp

=

n∑
i=1

X∗idxi,

where Xi, X∗i are smooth functions on (Cp; p) or exactly, a (r, s)-tensor τCp
is

τCp
=

∑
i1,··· ,ir;j1,··· ,js

τ i1,i2,··· ,irj1,j2,··· ,js
∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs , (2.5)

where τ i1,i2,··· ,irj1,j2,··· ,js is a smooth function on Cp. Notice that both of the tangent and

cotangent vectors are invariant by equations (2.2), (2.3) and (2.4), which concludes
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that tensors are invariant under transformations T of coordinate system {O;x1, x2,
· · · , xn}, consistent with the requirements of Principle 1.2.

For establishing metric space on tensors, Riemann defined the length of a curve
γ on a manifold to be the integral of the length of tangent vector along γ, resulted
in a metric g on manifold M such that g 〈X,Y 〉 = g(X,Y ), g(X,X) ≥ 0 with
equality hold only if X = 0 for ∀X,Y ∈ Tp(M), where TM is the tangent vector
space at a point p ∈M ([4]). Notice that g is a (2, 0) covariant tensor determined
by

g =
∑
i,j

gijdx
i ⊗ dxj , gi,j = g

(
∂

∂xi
,
∂

∂xj

)
(2.6)

and dγ =
√∑

i,j

gij(p)dxi ⊗ dxj on Cp of p ∈ γ.

Then, how to differentiate a tensor X with respect to Y on a Riemmanian
manifold for X,Y ∈ TpM? Generally,

(DYX)Cp
=
∑
i,j,k

Y k
(
∂Xi

∂xk
+XjΓijk

)
∂

∂xi
(2.7)

in the local chart
(
Cp;x

i
)
, where

Γkij =
1

2

∑
l

gkl
(
∂gil
∂xj

+
∂glj
∂xi
− ∂gij
∂xl

)
(2.8)

with (gij)n×n
(
gkl
)
n×n = In×n, and a curvature tensor R is defined by

R =
∑
i,i,k,l

Rlkijdx
k ⊗ ∂

∂xl
⊗ dxi ⊗ dxj (2.9)

with

Rlkij =
∂Γlkj
∂xi

− ∂Γlki
∂xj

+ ΓhkjΓ
l
hi − ΓhkiΓ

l
hj , Rij =

∑
k

Rkikj , (2.10)

which implies that

∇sRlkij =
∂2Γlkj
∂xs∂xi

− ∂2Γlki
∂xs∂xj

and ∇iRlkjs +∇jRlksi +∇sRlkij = 0, (2.11)

where

∇iVj =
∂Vj
∂xi
−
∑
k

ΓkijVk, ∇sVij =
∂Vij
∂xs

−
∑
k

(
ΓksiVkj + ΓksjVik

)
on tensors Vi, Vij , · · · . Applying equations (2.10) and (2.11), one gets that∑

j

∇j
(
Rij −

1

2
gijR

)
= 0 where R =

∑
i,j

gijRij .

Notice that the conservation law of matters implies the distribution of matter T
in the universe satisfies

∑
j

∇jTij = 0, which concludes the gravitational equations

Rij −
1

2
gijR = kTij

6



REALITY OR MATHEMATICAL FORMALITY 7

by Einstein. If it concludes Newtonians law of universal gravitation as a limitation,
then it can be determined ([3]) that k = 8πG/c4 = 2.08× 10−48s2/cm · g.

Similarly, Einstein’s method on gravitational field can be applied also to other
classical fields of physical laws in covariant forms. For example, the equation (2.12)
following is nothing else but the covariant form ([3])of Maxwell equations.{

∂µF
µν = µ0j

ν ,

∂κFµν + ∂µFνκ + ∂νFκµ = 0
(2.12)

where ∂µ = (∂t, ∂x1
, ∂x2

, ∂x3
),

Fµν =


0 Ex1

/c Ex2
/c Ex3

/c
−Ex1

/c 0 −Bx3
Bx2

−Ex2/c Bx3 0 −Bx1

−Ex3/c −Bx2 Bx1 0

 ,
and

Fµν =


0 −cBx1 −cBx2 −cBx3

cBx1
0 Ex3

−Ex2

cBx2
−Ex3

0 Ex1

cBx3
Ex2

−Ex1
0

 .

3. Differential Equations on Multi-Fields

Let Mr be the sets of things holding on by mathematics and let Ur be things
in the universe. Then, is there Mr = Ur or not? There is popular conjecture
on mathematics with the reality of things in the universe which claims that the
physical universe is not merely described by mathematics but is mathematics pro-
posed by Max Tegmark [26], which concludes Mr = Ur, a duplicate of the Theory
of Everything. Clearly, if this conjecture is true, the mathematics could provides
methods and tools for understanding all things in the universe. However, math-
ematics is homogenous without contradictions, i.e. a compatible one in logic but
the contradictions exist everywhere in the eyes of humans, which implies that
Mr ⊂ Ur ([21]). Therefore, how to view a contradictory system to be mathemat-
ics is an important step for hold on the reality of things in the universe. We have
to find new elements for establishing new mathematics and then, understanding
things in the universe.

3.1. Contradictory Equations Notice that there is a priori assumption for
describing a physical law by differential equations, i.e., the state function F (t;x)
of a thing in the universe is in accordance with the differential property. Even so,
it can not be applied to the systems of things not synchronized such as adaptive
systems in case by classical mathematics. Formally, assume the solution manifold
of the ith second order differential equations{

Fi
(
t, x, F it , F

i
x, · · ·

)
= 0

F i(x)|t=t0 = F i0, F
i
x|t=t0 = F i1

(Eqi)

7



8 LINFAN MAO

is Si(t;x) for an integer i, 1 ≤ i ≤ m but

m⋂
i=1

Si(t;x) = ∅,

i.e., the system (Eqi), 1 ≤ i ≤ m is non-solvable in the classical. Then, the
non-solvable system (Eqi), 1 ≤ i ≤ m is valuable for understanding things in the
universe or not? The central point for answering this question is to determine
whether there are no things or subspace F i(t;x), 1 ≤ i ≤ m in the universe
holding with this system. The answer is No in general. For example, let Hi be a
horse with active region restricted to the solution of differential equation

d2x

dt2
+ (1 + 2i)

dx

dt
+ i(i+ 1)x = 0 (Hi)

for integer 1 ≤ i ≤ 6. Clearly, the solution basis of equation (Hi) is
{
e−it, e−(i+1)t

}
with

6⋂
i=1

{
e−it, e−(i+1)t

}
= ∅,

i.e., there are no solution of the system (Hi), 1 ≤ i ≤ 6. Could one concludes
there are meaningless of the equation system (Hi), 1 ≤ i ≤ 6 in the universe? Of
course not because the horses Hi, 1 ≤ i ≤ 6 are actual living on the earth. Then,
what is wrong with his conclusion? He is wrong from the beginning, i.e., con-
cludes incorrectly that the active region of the 6 horses is the solution of equations
(Hi), 1 ≤ i ≤ 6, i.e., the intersection of the 6 active regions.

Generally, it is certainly right that applies differential equations to describing
the behavior of one horse Hi because each equation characterizes its one character
and the horse should posses all characters that described by the equations. How-
ever, it can not be applied to a group of horses because the behaviors of the group
of horses or an adaptive system is not the intersection

m⋂
i=1

Si(t;x) but

m⋃
i=1

Si(t;x),

the union of solutions of the differential equations (Eqi), 1 ≤ i ≤ m.
Then, how to view such non-solvable differential systems for understanding

things in the universe? In classical mathematics, such a case is abandoned without
attentions or discussed one by one, i.e., the variables x are assumed in different
spaces but lost all of them are in one systems. That is why classical mathematics
be limited only to isolated things. However, all things in the universe are connect-
ed in the universe, particularly, elements in a system. We should across this gap
to characterize systems by elements, not only those of isolated elements.

For this objective, the topological graph GL is the best candidate because each
thing inherits a topological structure in the universe defined by

V
(
GL
)

= {Si(t;x)| 1 ≤ i ≤ m} ,

E
(
GL
)

=
{

(Si(t;x), Sj(t;x)) | Si(t;x)
⋂
Sj(t;x) 6= ∅, 1 ≤ i, j ≤ m

}

8
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with a labeling

L : Si(t;x) ∈ V (G)→ {Si(t;x); 1 ≤ i ≤ m},
L : (Si(t;x), Sj(t, x)) ∈ E(G)→ {Si(t;x)

⋂
Sj(t;x); 1 ≤ i, j ≤ m},

where

L = {Si(t;x); 1 ≤ i ≤ m}
⋃
{Si(t;x)

⋂
Sj(t;x); 1 ≤ i, j ≤ m}

is the set of labels. For example, the labeled graph of the non-solvable system of
differential equations (Hi), 1 ≤ i ≤ 6 is shown in Figure 1, where, L is denoted
simply by the solution basis.








r r
r r
r r

{
e−t, e−2t

} {
e−2t, e−3t

}
{
e−3t, e−4t

}
{
e−4t, e−5t

}{
e−5t, e−6t

}
{
e−6t, e−t

}
{
e−2t

}
{
e−t

} {
e−3t

}
{
e−4t

}
{
e−5t

}
{
e−6t

}

Figure 1. Graph solution

Consequently, the dynamical behavior of a system described by a non-solvable
system of differential equations can be characterized by labeled graph GL, a com-
plex network ([2]) which can be abstracted to mathematical elements for under-
standing the group behavior of things in the universe. More details on non-solvable
differential equations with reality can be found in [12]-[16].

3.2. Mathematical Elements A non-harmonious system is such a system S
consisting of elements Pi, 1 ≤ i ≤ p, p ≥ 2 with interrelations that Pi is constrained
on equation Fi = 0 in space on time t. Certainly, there are elements for describing
behavior of things in classical mathematics but none of them can be applied to
such a non-harmonious system described by a non-solvable system of differential
equations. However, they are indeed exist in the universe. Notice that if we
view the labels on GL as continuity flows, then it holds with conservation laws on
vertices of GL, which enables us to introduce 2 globally mathematical elements
holding with conservation laws for such systems ([16]-[25]).

-���� ����L(v, u)A+
vu A+

uv
L(v) L(u)

v u

Figure 2

Element I. Element I is called continuity flow
−→
GL, which is an oriented em-

bedded graph
−→
G in a topological space S associated with a mapping L : v →

L(v), (v, u) → L(v, u), 2 end-operators A+
vu : L(v, u) → LA

+
vu(v, u) and A+

uv :

9
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L(u, v) → LA
+
uv (u, v) on a Banach space B over a field F such as those shown

in Figure 2, with L(v, u) = −L(u, v), A+
vu(−L(v, u)) = −LA+

vu(v, u) for ∀(v, u) ∈
E
(−→
G
)

and holding with continuity equation∑
u∈NG(v)

LA
+
vu (v, u) = L(v) for ∀v ∈ V

(−→
G
)
.

Element II. Element II is called harmonic flow
−→
GL, which is an oriented em-

bedded graph
−→
G in a topological space S associated with a mapping L : v →

L(v) − iL(v) for v ∈ E
(−→
G
)

and L : (v, u) → L(v, u) − iL(v, u), 2 end-operators

A+
vu : L(v, u)− iL(v, u)→ LA

+
vu(v, u)− iLA+

vu(v, u) and A+
uv : L(v, u)− iL(v, u)→

LA
+
uv (v, u)− iLA+

uv (v, u) on a Banach space B over a field F such as those shown
in Figure 3,

-���� ����L(v, u)− iL(v, u)A+
vu A+

uv
L(v) L(u)

v u

Figure 3

where i2 = −1, L(v, u) = −L(u, v) for ∀(v, u) ∈ E
(−→
G
)

and holding with continu-

ity equation∑
u∈NG(v)

(
LA

+
vu (v, u)− iLA

+
vu (v, u)

)
= L(v)− iL(v) for ∀v ∈ V

(−→
G
)
.

All continuity flows, i.e., Elements I are denoted by GB, where G is a graph
family. Notice that if we let the Banach space to be B×B then the Element II is
only a special case of Element I with complex vector v + iu, i2 = −1. However,
it reflects living bodies with respective real and imaginary parts L(v, u), −L(v, u)
appearing in pair with the property that v + u = 0, which can be applied to
characterize livings ([21]-[24]).

Are Elements I and II really mathematical elements with operations +, · and
furthermore, differential and integral as the usual? The answer is Yes in case
because they can be viewed as vectors underlying a topological graph. For example,
we define ([25])

−→
GL +

−→
G′L

′
=

(−→
G \
−→
G′
)L⋃(−→

G
⋂−→
G′
)L+L′⋃(−→

G′ \
−→
G
)L′

,

−→
GL ·

−→
G′L

′
=

(−→
G \
−→
G′
)L⋃(−→

G
⋂−→
G′
)L·L′⋃(−→

G′ \
−→
G
)L′

and

df

dt
= lim

∆t→0

f
(−→
G′L

′
[t+ ∆t]

)
− f

(−→
GL[t]

)
−→
G′L′ [t+ ∆t]−

−→
GL[t]

= G
lim

∆t→0

f(L′[t+∆t])−f(L[t])

L′[t+∆t]−L[t] ,

10
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where f is G-isomorphic operator which is an isomorphism of graph on GB hold

with L2 = f ◦ ϕ ◦ L1 for ∀(v, u) ∈ E
(−→
G1

)
,
−→
GL[t] ∈ GB dependent on variable t

and the image f
(−→
G′L

′
[t+ ∆t]

)
→ f

(−→
GL[t]

)
as ∆t→ 0.

Similarly, we define partial differentials

∂f
(−→
G [t]

)
∂t

=
−→
G

∂f(L)
∂t and

∂f
(−→
G [t]

)
∂xi

=
−→
G

∂f(L)

∂xi

and also tensors Vij... generated by ∂
∂xi , dx

i for integers 1 ≤ i, j · · · ≤ n. Thus,
the initial problem 

∂2−→GL

∂t2
=
−→
G

∂2L
∂t =

−→
GL0

0

−→
GL
∣∣∣
t=t0

=
−→
GL1

1 ,
∂
−→
GL

∂t

∣∣∣∣∣
t=t0

=
−→
GL2

2

(3.1)

on GB with solution
−→
GL is valuable in mathematics.

3.3. Differential Equation on Multi-Fields A multi-field S̃ is a union of
distinct fields Si constraint with solvable differential equation (Eqi) for integers
i ≥ 1, i.e., a Smarandache multi-space [28] on non-harmonious systems in the

universe. Then, what is the differential equations on a multi-field S̃ and are there

GL solutions? Clearly, a multi-field S̃ is characterized by a non-solvable system
of second order differential equations

1 ≤ i ≤ m

{
Fi
(
t, x, F it , F

i
x, · · ·

)
= 0

F i(x)|t=t0 = F i0, F
i
x|t=t0 = F i1

(3.2)

and the solution manifold of the ith equation is Si(t;x). Similar to the subsection

3.1, we construct a continuity flow
−→
GL[t] with bi-direction on each edge by

V
(−→
GL[t]

)
= {Si(t;x)| 1 ≤ i ≤ m} ,

E
(−→
GL[t]

)
=

{
(Si(t;x), Sj(t;x)) | Si(t;x)

⋂
Sj(t;x) 6= ∅, 1 ≤ i, j ≤ m

}
with a labeling

L : Si(t;x) ∈ V
(−→
G [t]

)
→ {Si(t;x); 1 ≤ i ≤ m},

L : (Si(t;x), Sj(t, x)) ∈ E
(−→
G [t]

)
→ {Si(t;x)

⋂
Sj(t;x); 1 ≤ i, j ≤ m}.

Then,
−→
GL[t] is the

−→
GL solution of the system (3.1) with initial conditions

−→
GL
∣∣∣
t=t0

=
−→
GLF0 and

∂
−→
GL

∂xi

∣∣∣∣∣
t=t0

=
−→
GLF1 ,

11
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where

LF0 : Si(t;x) ∈ V
(−→
GL[t]

)
→ F i0, LF1 : Si(t;x) ∈ V

(−→
GL[t]

)
→ F i1,

LF0
: (Si(t;x), Sj(t;x)) ∈ E

(−→
GL[t]

)
→ F i0

⋂
F j0 ,

LF1
: (Si(t;x), Sj(t;x)) ∈ E

(−→
GL[t]

)
→ F i0

⋂
F j1 .

For example, it is known that the Einstein’s gravitational equation Rij − 1
2gijR =

κTij is established by an assumption that curvature tensors are sufficiently smooth.
However, if it is not true, what will happens? In this case, we can not describe
the gravitational field M only by one tensor equation Rij − 1

2gijR = κTij . We
should decompose M into m subfields M1,M2, · · · ,Mm whose curvature tensor
is sufficiently smooth ([14]). Then, the Einstein’s gravitational equation can be
applied on each subfield Mi, 1 ≤ i ≤ m, i.e., the gravitational field M should be
described by a system of tensor equations

R1
i1j1
− 1

2gi1j1R
1 = κ1T 1

i1j1

R2
i2j2
− 1

2gi2j2R
2 = κ2T 1

i2j2

· · · · · · · · · · · · · · · · · · · · · · · ·
Rmimjm −

1
2gimjmR

m = κmTmimjm

(3.3)

where Rkikjk , Rk, gikjk , T kikjk and κk denote respectively the tensors Rij , R, gij ,
Tij and the constant κ in the kth smooth manifold Mk, 1 ≤ k ≤ m. Then, what is
M looks like in geometry? Certainly, it should be the combination of the smooth

manifolds Mk, 1 ≤ k ≤ m, i.e., M̃ =
m⋃
i=1

Mi underlying a labeled graph GL with

V
(
GL
)

= {Mi| 1 ≤ i ≤ m} ,

E
(
GL
)

=
{

(Mi,Mj)| Mi

⋂
Mj 6= ∅, 1 ≤ i, j ≤ m

}
with

L : Mi ∈ V
(
GL
)
→Mi, L : (Mi,Mj) ∈ E

(
GL
)
→Mi

⋂
Mj ,

which is nothing else but a combinatorial manifold with Riemannian metric

ds2
M = ds2

M1
+ ds2

M2
+ · · ·+ ds2

Mm
, (3.4)

where dsMi is the Riemannian metric of the smooth manifold Mi ([7]-[10]). Thus,
the Einstein’s gravitational field is a projection ofM on Mk for an integer k, 1 ≤
k ≤ m, only a local or partial holding on the gravitational field of the universe.

4. Einstein’s General Relativity for Reality

Holding on the reality of things advances one naturally to speculate a philo-
sophical questions on the reality with mathematics, i.e., what is the reality implied
by a mathematical form on the behavior of things or what is an appropriate for-
m on the reality of things, particularly, the Einstein’s general relativity with the
differential equations of physical laws.

12
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4.1. Philosophy of Einstein’s General Relativity Notice the relative rela-
tionship in humans with the objective things determines that there two kind of
observing systems: the system Sout in which the observing things do not depend
on human’s will and the system Sin in which humans are included in the observing
things or in other words, the human’s behavior is acting on the observing things
with influence on the observing things. As is known to all, human is independent
of objective things in the macroscopic world, whose will can not affects or changes
the objective existence. However, an observer with an observed microscopic par-
ticle form a mutual interaction system, which results in the observation can not
accurately determine a microscopic particle ([26]). Certainly, this is because of
the limitation of humans, namely we cannot simultaneously determine the speed
and position of a microscopic particle which results in that one only describes a
microscopic particle by filed, i.e., the possibility of its location in space.

A coordinate system {O;x1, x2, · · · , xn} is a reference frame for humans to
quantitatively characterize the behavior of objective things, and it is also the basis
for establishing equations of physical laws. Clearly, Einstein’s general relativity
asserts that physical equations should have the same mathematical form in all
reference frames, which concludes that humans and the objective things consist of a
system Sout, namely, objective things are independent of humans and then, follows
the law that objective things do not change on human’s will and their behavior
should be expressed by mathematical invariants, i.e., not change depending on
the coordinates one sets up, which is indeed true in the macroscopic world by
human’s observation, for instance the object’s motion and the gravitational field.
That is why Einstein applied tensor equations for describing the gravitational law.
However, is Einstein’s notion also true in the case of microscopic particles?

Usually, one characterizes a microscopic particle P by a field, which is a space R4

associated with the probability of P appearing at location (t, x1, x2, x3) ∈ R4. It
should be noted that characterizing the microscopic particles by fields is actually to
apply the same notion that used in the macroscopic cases, i.e., observing things do
not depend on human’s will. Whence, applying the Einstein’s general relativity
in the microscopic cases should be with the assumption applied in macroscopic
particles because only in this way the physical laws of microscopic particles can
be described by tensor equations, i.e., invariant under the transformation of the
coordinate system {O; t, x1, x2, x3}. But, is the behavior of a microscopic particle
really so? We are not certain on this analogical pattern because their behavior is
very different from that of macroscopic particles.

4.2. Mathematical Form with Reality Notice that the universe is not well-
distributed in matter. Thus, the non-solvable differential equations (3.2) is a
general form that of equation (1.1) on things in the universe, particularly, the
fields. Clearly, the equation (1.1) is a projection of the system (3.2) of equations
on an integer k, 1 ≤ k ≤ m, maybe invariant or not under transformations of
the coordinate system {O;x1, x2, · · · , xn}. Then, what is the essential difference
in the two equations? Certainly, the equation (1.1) is a special case of equation
(3.2) in m = 1. However, if we generalize the conception of solution of equations
to continuity flows, i.e., elements I or II, they have no difference because both

13
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of them are solvable equations describing physical laws. Clearly, to apply non-
solvable system (3.2) of solvable differential equations (1.1) to physical laws is
a great leap for understanding things of the universe because of the universal
contradiction in the eyes of humans.

Then, what is the difference of differential equation with its tensor equations
on reality of things in the universe? For example, what is the difference between
equations (1.2) and (2.12) on electromagnetic field? Certainly, the equation (2.12)
is a tensor equation on electromagnetic fields with form invariant under the trans-
formation of the coordinate system {O; t, x1, x2, x3} but the equation (1.2) is not.
However, there are no essential difference because both of them characterize elec-
tromagnetic fields, and the equation (1.2) is more useful in practise. We have to
transfer the form of the tensor equation (2.12) to (1.2) for examining or experi-
mental in an electromagnetic field.

Certainly, the tensor equation is more concise in the expression form, more
like a criterion or a philosophical notion on the form but there are no essential
difference on reality of things. Thus, the expression of a physical law in tensor
equations or usual differential equations is insubstantial because both of them are
equally important for understanding things in the universe.

4.3. A Review on Einstein’s General Relativity Einstein’s general relativ-
ity is actually the mathematical realization of one philosophical words, i.e., the
objective things do not depend on humans will in the universe. Indeed, he con-
cluded that the equation describing a physical law should be invariant under all
transformations of the coordinate systems in his general relativity, which brought
about him to find the tensor equation on gravitational field and more researchers
pursued further the mathematical form of physical laws that concluded by Ein-
stein but neglected the physical meaning of a mathematical form, a little deviation
from the understanding of things in the universe. Then, how can we get out of
this situation and avoid the limitation of humans for understanding? We should
take two steps at least for this objective.

First, we should recognize the limitations of human’s understanding on things
in the universe, i.e., all understandings are local or partial, an approximation on
the reality of things and then, establish the equation (3.1) or (3.2) for physical
laws, i.e., the understandings of humans is a projection of the reality of things.

Principle 4.1(Projection) All known characters of thing T is the projection of
that T on an assumed well-distributed universe of humans.

Second, even if the universe is well-distributed in matter, what should we know
in Einstein’s general relativity? Is it only concluded the tensor form of physical
laws? Of course not! If we understand the philosophical implication of Einstein’s
general relativity, we should realize that the tensor equations are only the ex-
pression form for physical laws, which concludes the unimportance of coordinate
systems in understanding things of the universe. However, if we consider the
expression form of physical laws in an unimportant point, we could view the Ein-
stein’s general relativity in a new way on coordinate systems. Thus, the central
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thing is not throw away but the equal importance on coordinate systems in Ein-
stein’s general relativity, i.e., the equal-right principle for understanding things of
the universe.

Principle 4.2(Equal-Rights) All coordinate systems are equally important for
understanding things in the universe.

By Principle 4.2, how could we understand things in the universe by differential
equations? Certainly, we can establish differential equation describing a physical
law in any coordinate system because each of them characterizes the same physical
law, no matter what its mathematical form. However, we should choose such a
coordinate system {O; t, x1, x2, x3} that holds with a brevity and easily verified
mathematical form of the physical laws for characterizing and then, rewrite the
covariant equation by tensors if we hope so. Thus, the most important thing
for understanding a thing in the universe is not throw away but establish an
appropriated coordinate system, a new view on the Einstein’s general relativity.
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