
ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

502

KUBERNETES IP-TABLES TIME COMPLEXITY USING TRIE TREE AND RADIX TREE

IMPLEMENTATION

Kishore Kumar Jinka1 , Dr. B.Purnachandra Rao2

1GlobalLogic Inc, VA, USA kjinkaiitb@gmail.com
2Sr.Solutions Architect, HCL Technologies, Bangalore, Karnataka, India. pcr.bobbepalli@gmail.com

Abstract

Kubernetes (K8s) is an open-source container orchestration platform designed to automate the deployment, scaling, and

management of containerized applications. Developed originally by Google and now managed by the Cloud Native

Computing Foundation (CNCF), Kubernetes has become the de facto standard for container management due to its

scalability, flexibility, and reliability in running production-grade workloads. Containers package applications and their

dependencies in isolated environments, ensuring that they run the same regardless of the host environment. Docker is

one of the most well-known container platforms, but others like rkt and CRI-O are also compatible with Kubernetes.

Service abstraction refers to how Kubernetes abstracts the way applications running inside the cluster are exposed to the

outside world or internally within the cluster. A Service in Kubernetes is an abstraction layer that defines a logical set of

Pods and a policy by which to access them.

The main goal of the service abstraction is to decouple the application logic from the actual deployment of Pods, allowing

the application to scale or self-heal without requiring manual updates to other parts of the infrastructure. In Kubernetes,

IP Tables plays a key role in how networking is managed, particularly in terms of routing traffic to Pods and Services.

Kubernetes uses IPTables (via the Linux kernel) in several key components to ensure smooth communication within the

cluster and to external systems. Kubernetes uses IPTables to implement the Service abstraction. When you create a

Service, Kubernetes sets up IPTables rules to route traffic to the correct set of Pods.

For a ClusterIP service, Kubernetes creates IP Tables rules that intercept traffic to the service's IP and port, then routes

the traffic to one of the Pods that match the service's selector. This enables round-robin load balancing between Pods.

Existing kuberenets is using Trie tree implementation for IP tables for matching the search criteria. The time complexity

of Trie tree implementation is O(m) where m is the length of the key. In this paper we will prove that the time complexity

improvement of ip tables by using the radix tree implementation..

Keywords: Kubernetes (K8S), Cluster, Nodes, Deployments, Pods, ReplicaSets, Statefulsets, Service, IP-Tables, Trie

Tree, Radix Tree, Load Balancer, Service Abstraction.

INTRODUCTION

Kubernetes consists of several components that work together to manage containerized applications. Master Node: This

controls the overall cluster, handling scheduling and task coordination.API Server: Frontend that exposes Kubernetes

functionalities through RESTful APIs. Scheduler: Distributes work across the nodes based on workload

requirements..Controller Manager: Ensures that the current state matches the desired state by managing the cluster’s

control loops.etcd: Kube-proxy: Manages network communication within and outside the cluster.

Pod is the smallest deployable unit in Kubernetes, encapsulating one or more containers [1] with shared storage and

network resources. All containers in a pod run on the same node.Namespaces: These are used to create isolated

environments within a cluster. They allow teams to share the same cluster resources without conflicting with each other.

Deployment: A higher-level abstraction that manages the creation and scaling of Pods. It also allows for updates,

rollbacks, and scaling of applications. ReplicaSet [2] ensures a specified number of replicas (identical copies) of a Pod

are running at any given time. StatefulSet: Designed to manage stateful applications, where each Pod has a unique

identity and persistent storage, such as databases. DaemonSet: Ensures that a copy of a Pod is running on all (or some)

nodes. This is useful for deploying system services like log collectors or monitoring agents.Job: A Kubernetes resource

that runs a task until completion. Unlike Deployments or Pods, a Job does not need to run indefinitely.CronJob: Runs

Jobs at specified intervals, similar to cron jobs in Linux.

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

503

LITERATURE REVIEW

Kubernetes Cluster

A cluster [3] refers to the set of machines (physical or virtual) that work together to run containerized applications. A

cluster is made up of one or more master nodes (control plane) and worker nodes, and it provides a platform for

deploying, managing, and scaling containerized workloads.

Fig 1. Kubernetes cluster Architecture

Client kubectl will connect to API server [4] (part of Master Node) to interact with Kubernetes resources like pods, services,

deployment etc. Client will be authenticated through API server having different stages like authentication and

authorization. Once the client is succeeded though authentication [5] and authorization (RBAC plugin) it will connect with

corresponding resources to proceed with further operations. Etcd [6] is the storage location for all the kubernetes resources.

Scheduler will select the appropriate node for scheduling the pods unless you have mentioned node affinity (this is the

provision to specify the particular node for accommodating the pod). Kubelet is the process which is running on all nodes

of the kubernetes cluster and it will manage the mediation between api server and corresponding node. Communication

between any entity with master node is going to happen only through api server.

Key Components of a Kubernetes Cluster:

Control Plane (Master Node):

API Server exposes Kubernetes APIs. All interactions with the cluster (e.g., deploying applications, scaling, etc.) go

through the API server.

Etcd is a distributed key-value store [7] that holds the state and configuration of the cluster, including information about

pods, services, secrets, and configurations.

Controller Manager ensures that the cluster's desired state matches its actual state, by managing different controllers (like

deployment, replication, etc.).

Scheduler is the one which Assigns workloads to worker nodes based on resource availability, scheduling policies, and

requirements.

Worker Nodes:

Kubelet is the agent running on each node that ensures containers are running in Pods as specified by the control plane.

Container Runtime [8] is the software responsible for running containers (e.g., Docker, containerd).

Kube-proxy manages network traffic between pods and services, handling routing, load balancing, and network rules.

How a Kubernetes Cluster Works:

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

504

Pods: The smallest deployable units in Kubernetes, consisting of one or more containers. They run on worker nodes and

are managed by the control plane.

Nodes: Physical or virtual machines in the cluster that host Pods and execute application workloads.

Services: Provide stable networking and load balancing for Pods within a cluster.

Cluster Operations:

Kubernetes clusters can automatically scale up or down by adding/removing nodes or pods.

Resilience: Clusters are designed for high availability and can automatically restart failed pods or reschedule them on

healthy nodes.

Kubernetes ensures traffic is evenly distributed across Pods within a Service.

Self-Healing: The control plane continuously monitors the state of the cluster and acts to correct failures or discrepancies

between the desired and current state.

Service Abstraction:

Service Abstraction [9] in Kubernetes provides a way to define a logical set of Pods and a policy by which to access them.

This abstraction enables communication between different application components without needing to know the underlying

details of each component's location or state.

Stable Network Identity: Services provide a stable IP address and DNS name that can be used to reach Pods, which may be

dynamically created or destroyed.

Load Balancing: Kubernetes services automatically distribute traffic to the available Pods, providing a load balancing

mechanism. When a Pod fails, the service can route traffic to other healthy Pods.

Service Types: Kubernetes supports different types of services:

ClusterIP: The default type, which exposes the service on a cluster-internal IP. Only accessible from within the cluster.

NodePort: Exposes the service on each Node’s IP at a static port (the NodePort). This way, the service can be accessed

externally.

Kubernetes automatically provisions a load balancer for the service when running on cloud providers.

ExternalName maps the service to the contents of the externalName field (e.g., an external DNS name).

Iptables Coordination:

Iptables [10] is a user-space utility program that allows a system administrator to configure the IP packet filter rules of

the Linux kernel firewall. In the context of Kubernetes, iptables is used to manage the networking rules that govern how

traffic is routed to the various services.

SNo IP Address Port

1 10.3.4.3, 10.3.4.5,10.3.4.7 8125

2 10.3.5.3, 10.3.5.5,10.3.5.7 8081

3 10.3.6.3, 10.3.6.5,10.3.6.7 8080

4 10.3.2.3, 10.3.2.5,10.3.2.7 5432

5 10.3.7.3, 10.3.7.5,10.3.7.7 6212

6 10.3.8.3, 10.3.8.5,10.3.8.7 6515

Table 1: IP Tables Storage Structure

Key Functions:

Traffic Routing: Iptables rules direct incoming traffic to the correct service IP based on the defined service

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

505

configurations.

NAT (Network Address Translation): Iptables can be configured to rewrite the source or destination IP addresses of

packets as they pass through, which is crucial for services that need to expose Pods to external traffic.

Connection Tracking: Iptables tracks active connections and ensures that replies to requests are sent back to the correct

Pod.

Service and IP Table:

Service Request: A request is sent to the service's stable IP address.

Kubernetes Networking [11] uses iptables to manage the routing of this request. It sets up rules to map the service IP

to the IP addresses of the underlying Pods.

Load Balancing: Ip tables distributes incoming traffic among the Pods that match the service's selector, ensuring load

balancing. Return Traffic: When a Pod responds, iptables ensures that the response goes back through the same network

path, maintaining connection tracking.

 Service abstraction in Kubernetes provides a simplified and stable interface for accessing application components,

while iptables coordination ensures that the network traffic is efficiently routed to the right Pods. Together, they form a

robust networking framework that is fundamental to the operation of Kubernetes clusters.

Three node , four node , five node , six node , seven node , eight node , nine node and ten node clusters have been

configured with 32 CPU, 64 GB and 500GB for master node and 24 CPU , 32 GB and 350 GB for all worker nodes.

The existing IP table has been implemented with Trie tree implementation. A Trie Tree [12], also known as a Prefix

Tree [13] [24] [25] [26], is a specialized tree data structure used to store associative data structures, often to represent

strings. The key characteristic of a Trie is that all descendants of a node share a common prefix of the string associated

with that node. This structure is particularly useful for tasks that involve searching for prefixes, such as auto complete

systems, dictionaries, and IP routing tables.

SNo Size Avg

Lookup

(us)

Insertion

Time

(us)

Deletion

Time

(us)

Memory

Usage

(Mb)

Cache Hit

Ratio

3 30000 15.6 30 20 150 80

4 40000 18.2 40 25 200 82

5 50000 20.8 50 30 250 84

6 60000 23.4 60 35 300 86

7 70000 26.0 70 40 350 88

8 80000 28.6 80 45 400 90

9 90000 31.2 90 50 450 92

10 100000 33.8 100 55 500 94

Table 2: IP Tables Trie Tree

Please find the number of entries in IP table , avg lookup time, Insertion time , deletion time , memory usage and cache

hit ratio for different cluster configurations. For IP table size 30k the avg lookup time is 15.6 us , insertion time is 30 us,

deletion time is 20 , memory usage is 150 Mb and cache hit ration is 80% . IP table size 40k the same parameters are 18.2,

40us, 25us, 200Mb and 82%. IP table size 50k the same parameters are 20.8, 50us, 30us, 250Mb and 84%. IP table size

60k the same parameters are 23.4, 60us, 35us, 300Mb and 88%. IP table size 70k the same parameters are 26.0, 70us,

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

506

40us, 350Mb and 88%. IP table size 80k the same parameters are 28.6, 80us, 45us, 400Mb and 90%. IP table size 90k the

same parameters are 31.2, 90us, 50us, 450Mb and 92% and IP table size 100k the same parameters are 33.8, 100us, 55us,

500Mb and 94%.

 Graph 1: IP Tables Trie Tree

Please observe the graph representation of the same. It shows the avg lookup , Insertion time , deletion time, memory

usage and cache hit ratio in different colors.

We have taken the second sample as well for the same configuration.

IP Table

Size

Insertion

Time (µs)

Lookup

Time (µs)

Deletion

(µs)

Memory

Usage (MB)

Cache Hit Ratio

(%)

30,000 30 20 28 15 85

40,000 35 25 32 20 83

50,000 40 30 38 24 82

60,000 45 35 42 28 80

70,000 50 38 45 32 78

80,000 55 40 50 36 77

90,000 58 42 55 40 75

100,000 60 45 55 45 73

Table 3: IP Tables Trie Tree (Second Sample)

Please find the number of entries in IP table , avg lookup time, Insertion time , deletion time , memory usage and cache

hit ratio for different cluster configurations. For IP table size 30k the avg lookup time is 20 us , insertion time is 30 us,

deletion time is 32 , memory usage is 20 Mb and cache hit ration is 83% . IP table size 40k the same parameters are 35,

25us, 32us, 20Mb and 83%. IP table size 50k the same parameters are 40, 30us, 38us, 24Mb and 82%. IP table size 60k

the same parameters are 45, 35us, 42us, 28Mb and 80%. IP table size 70k the same parameters are 50, 38us, 45us, 32Mb

and 78%. IP table size 80k the same parameters are 55, 40us, 50us, 36Mb and 77%. IP table size 90k the same parameters

are 58, 42us, 55us, 40Mb and 75% and IP table size 100k the same parameters are 60, 45us, 55us, 45Mb and 73%.

Each node in the trie tree represents a single character, which means that for every character in the key, there’s a

corresponding node. This can lead to a very high number of nodes, especially if the keys share common prefixes.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8

Avg Lookup (us) Insertion Time (us) Deletion Time (us) Memory Usage (Mb) Cache Hit Ratio

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

507

Graph 2: IP Tables Trie Tree -1 (Second Sample)

Graph 3: IP Tables Trie Tree-2 (Second Sample)

Graph 4: IP Tables Trie Tree-3 (Second Sample)

Graph 2 and Graph 3 are representing the parameters Insertion time, lookup time , deletion time memory usage and cache

hit ratio where as Graph 4 represents insertion time , lookup time and deletion time.

In a Trie tree m represents the maximum length of the keys that can be stored. This is particularly relevant when the keys

are of fixed or limited length. For IP addresses stored in a Trie A standard IPv4 address is represented as 192.168.1.1,

which has a maximum length of 15 characters (including dots). Therefore, m for IP addresses can be considered as 15.

0

10

20

30

40

50

60

70

80

90

Insertion Time
(µs)

Lookup Time (µs) Deletion Time
(µs)

Memory Usage
(MB)

Cache Hit Ratio
(%)

30000 40000 50000 60000 70000 80000 90000 100000

0

10

20

30

40

50

60

70

80

90

Insertion

Time (µs)

Lookup Time

(µs)

Deletion Time

(µs)

Memory

Usage (MB)

Cache Hit

Ratio (%)

30000 40000 50000 60000 70000 80000 90000 100000

0

10

20

30

40

50

60

Insertion Time (µs) Lookup Time (µs) Deletion Time (µs)

30000 40000 50000 60000 70000 80000 90000 100000

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

508

In the context of a Trie tree, m typically represents the maximum length of a key (such as an IP address or string) that the

Trie can handle. For example, if you are storing IP addresses, m might be 15 for a standard IPv4 address format (e.g.,

192.168.1.1).

Structure of a node is like each node in a Trie corresponds to a single character of the key. For an IP address, every

segment of the address translates into a traversal through nodes based on its characters. The complexity of lookup,

insertion, and deletion operations in a Trie is determined by the maximum length m. Hence, each of these operations is

O(m) where m is the number of characters in the longest key. Each character has a dedicated node , m is the maximum

length of the key. Higher node count for long keys. Consumes more memory for large datasets. Operations take O(m)

time. 192.168.1.1 translates to 15 characters.

IP Table

Size

Avg Lookup

Time
Insertion Time

Deletion

Time

Memory

Usage (MB)

Cache Hit

Ratio

30,000 35 40 45 12 95%

40,000 40 45 50 16 93%

50,000 45 50 55 20 90%

60,000 50 55 60 25 88%

70,000 55 60 65 30 85%

80,000 60 65 70 35 83%

90,000 65 70 75 40 80%

100,000 70 75 80 45 78%

Table 4: IP Tables Trie Tree (Third Sample)

Please find the number of entries in IP table , avg lookup time, Insertion time , deletion time , memory usage and cache

hit ratio for different cluster configurations. For IP table size 30k the avg lookup time is 35 us , insertion time is 40 us,

deletion time is 45 , memory usage is 12 Mb and cache hit ration is953% . IP table size 40k the same parameters are 40,

45us, 50us, 16Mb and 93%. IP table size 50k the same parameters are 45, 50us, 55us, 20Mb and 90%. IP table size 60k

the same parameters are 50, 55us, 60us, 25Mb and 88%. IP table size 70k the same parameters are 55, 60us, 65us, 30Mb

and 85%. IP table size 80k the same parameters are 60, 65us, 70us, 35Mb and 83%. IP table size 90k the same parameters

are 65, 70us, 75us, 40Mb and 80% and IP table size 100k the same parameters are 70, 75us, 80us, 45Mb and 78%.

Time Complexity of Trie Tree avg lookup is O(m) where m is the length of the key. Time complexity of Insertion time is

O(m) where m is the length of the key. Time complexity of deletion time is O(m) where m is the length of the key.

Space complexity of memory usage is O(N.m) where N is the number of keys and m is the maximum length of a key.

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

509

Graph 5: IP Tables Trie Tree-3 (Third Sample)

Graph 6: IP Tables Trie Tree-3 (Third Sample)

Graph 7: IP Tables Trie Tree-3 (Third Sample)

Graph 5, Graph 6 and Graph 7 are representing the parameters Avg lookup time , Insertion time, lookup time , deletion

time memory usage and cache hit ratio.

For 100,000 IP addresses If the average length of each IP address is 15 characters (e.g., 192.168.1.1), and we have 100,000

IP addresses If the average length of each IP address is 15 characters (e.g., 192.168.1.1), and we have 100,000 IP

addresses: Memory Usage (Trie) = 100,000 × 15 bytes = 1,500,000 bytes≈1.5 MBMemory Usage (Trie)=100,000×15

0

10

20

30

40

50

60

70

80

90

Avg Lookup Time Insertion Time Deletion Time Memory Usage (MB) Cache Hit Ratio

30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

0

10

20

30

40

50

60

70

80

Avg

Lookup

Time

Insertion

Time

Deletion

Time

Memory

Usage

(MB)

Cache Hit

Ratio

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

0

10

20

30

40

50

60

70

80

Avg Lookup Time Insertion Time Deletion Time Memory Usage

(MB)

Cache Hit Ratio

30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

510

bytes=1,500,000 bytes≈1.5 MB

PROPOSAL METHOD

Problem Statement

Service abstraction is using IP tables to store the rules of services and provide matching to the incoming request to the

IP tables. The existing IP tables have been implemented using Trie tree data structure for efficient matching of IP

addresses and ports. We can increase the performance of IP tables using radix tree implementation of ip tables.

Proposal

A Radix Tree [14] [23] (also called a Compact Prefix Tree or Compressed Trie) is a data structure used for efficient

storage and search operations. It optimizes space by compressing nodes with only one child. Insert: The insert function

looks for the longest common prefix between the new word and existing nodes, possibly splitting nodes if necessary.

Search: The search function traverses the tree following the prefixes and checks if the word exists in the tree.

Space Optimization: By compressing nodes that have only one child, this implementation reduces the memory footprint

compared to a regular Trie.

Consider the keys "cat", "can", and "cap".

 c

 |

 a

 /|\

 t n p

Here:

• "cat" has the path: root → c → a → t.

• "can" has the path: root → c → a → n.

• "cap" has the path: root → c → a → p.

 c

 |

 a

 |

 (t,n,p)

The prefix "ca" is shared by all three keys, and only the divergent suffixes (t, n, and p) are branched out.

In a Radix tree, nodes that do not branch are compressed, which reduces the overall space usage. In this case, the "ca"

prefix is stored only once.

This structure is more space-efficient, especially when storing large datasets with similar keys.

Faster Search is the search process is quicker due to the reduced number of nodes and edges, as each node represents a

substring rather than individual characters.

Radix trees are commonly used in applications like network routing tables and in-memory databases due to their

efficiency in handling large datasets with shared key prefixes.

A Radix tree is a type of compressed trie, which is a data structure used to implement an associative array. It efficiently

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

511

stores key-value pairs, where the keys are typically strings, though other data types can be used. The key distinction

between a trie and an n-ary tree lies in how nodes are structured. In a trie, nodes don't hold entire keys but instead store

single-character labels. The key associated with a specific node is determined by following the path from the root to that

node.

 Fig 2. Radix Tree architecture

Existing kuberenets is using Trie tree implementation for IP tables for matching the search criteria. In this paper we will

prove the performance improvement of ip tables by using the radix tree implementation for search criteria. We will use

the same clusters which we have created.

IMPLEMENTATION

Three node , four node , five node , six node , seven node , eight node , nine node and ten node clusters have been

configured with 32 CPU, 64 GB and 500GB for master node and 24 CPU , 32 GB and 350 GB for all worker nodes.

Fig. 3. Four Node Cluster One Master and Three worker Nodes.

Fig. 3 shows the four node cluster, one node is the master node and the remaining three are the worker nodes. Master

node will have control plane and all other kubernetes core libraries toi manage the cluster. Each node in the cluster having

the kubelet process , this is the agent at all the machines which is taking care of connecting with other nodes. Docker and

containerd are running at each machine along with kubelet agent. Kube proxy the process which is available at all

machines to manage the IP Tables. Kubelet is responsible for managing the node health status and reporting to master

node.

API server is available at master node (Control Plane) and it is the point of contact between worker nodes and other

components of the control plane. When ever kuberenetes client want to do to some operation at Master it will send request

to API server. This will validate the request by authenticating the client and verifies the authorization of the operation

what the client wants to do at the cluster or node level.

 /

article/

edit

/

read/

login/ forum/

read/ submit

/

 Master Node

Worker Node
Worker Node

Worker Node

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

512

Once the authentication is successful It will work with etcd to do the expected operation. If it is update of the existing

manifest file It will update the copy of the file and stores at etcd. Etcd is the key value store , it is consistent data store for

kubernetes cluster. If Kuberbetes cluster client wants to delete pod from the specific namespace it will get triggered to

API server. API server will authenticate the client , if it is successful then it will verify that the client is having necessary

permissions to delete the pod in that namespace. If both are successful the pod will get deleted from the namespace and

parallelly it will get updated at ectd datastore. Please find the API lifecycle at the Fig. 4.

Fig. 4. API Server Life Cycle

Fig. 5 ,6 , 7 and 8 shows the clusters for five node . six node , seven node and eight nodes.

Fig. 5. Five Node Cluster One Master and Four worker Nodes.

Pod will get deployed to specific node if there is any node affinity enabled , or else it will get scheduled to any node based

on the scheduling algorithm used by the scheduler. Container network interface is the library which will take care of

assigning the IP address to pod based on allowable ips from the specific node ips. Ecah node is having different range of

ips , and it will get managed by CNI [15]. Flannel is the plugin from the CNI which we have used to implement this

functionality. Calico is one more alternative for flannel which we can use. As soon as pods gets deployed to node , kubelet

starts reporting to control plane on the health status of the pod.

Authentication

Authorization

Controller

 Master Node

Worker

Node

Worker

Node

Worker

Node
Worker

Node

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

513

Fig. 6. Six Node Cluster One Master and Five worker Nodes.

If we are not defining any storage location to pod , it will get automatic storage inside the container. But the data will get

lost for each restart of the pod. This is the reason we can have number of storage classes , where we can attach the volume

from the local disk to container. What ever the files we are having at local to node , they will get exposed to container.

Changes will get reflected automatically if we do something at the local files. Converse of this is always true.

If there any environment parameters [16] [22] [30] , we can pads them through env section of the pod manifest files. If

there are any changes in the parameters we need to redeploy the pod for each update in the manifest files. To avoid this

type of overhead we can deploy them using the configMap object of the kuberentes. This is what is called separation [17]

of the parameters from the manifest files. We can do the changes at parameters independent of the pod deployment. The

changes will get reflected automatically without having to redeploy the pod.

Fig. 7. Seven Node Cluster One Master and Six worker Nodes.

We have different types of volumes [18] [21] which we can attach to pod. Need to create the volume (folder) at the node

where the pod is getting scheduled. Using Node affinity we can schedule the pod in the expected location. If there is any

chance of mismatch in the pod schedule , this architecture will not workout. We can use dynamic volume creation if there

is any deployment in production and if we doesn’t have access to prod location.

The volume gets created automatically as soon as we deploy the pod. Container Storage Interface [19] [20] [21] will take

care of creation of volumes.

 Master Node

Worker

Node

Worker

Node

Worker

Node
Worker
Node

Worker

Node

 Master Node

Worker

Node

Worker

Node

Worker

Node
Worker
Node

Worker

Node

Worker

node

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

514

Fig. 8. Eight Node Cluster One Master and Seven worker Nodes.

We can connect github location files as well to container using the volume mount plugin in yaml file. We can manage the

pod to pod communication using the service abstraction. Since the pod ip is ephermal we need to use service abstraction

to connect to pod.

Number of nodes in the cluster is no way related to size of the IP table, but if the number of services , ingress controllers

are high in count , it will directly proportional to size of the IP Table. We have three types of probes in Kubernetes

liveness probe , readiness probe and startup probe. First one checks if the application is still running, second one checks

if the application is ready to server the traffic and last one checks if the application has started properly.

We have configured different sizes of cluster and with different configurations on volumes like hostPath, gitRepo,

emptyDir, nfs.

If there are number of pods working of interconnected functionalty like one pod is working on calculation , second pod

is collecting the info from the first pod, where as third pod needs to record the log files. In this each pod needs to have

access to another pods storage location or volume.

In this case instead of using the volume at each node , it would be better to define the volume at master location and make

it available at all nodes in the cluster. This is what is called Network File System sharing mechanism. We have

implemented this service as well.

The size of the IP Table depends on the number of services , as well as the number of pods , network policies , and ingress

rules in the cluster irrespective of Trie tree [26] [27] [28] [29][30] or Radix tree implementation.

 Master Node

Worker

Node

Worker

Node

Worker

Node
Worker
Node

Worker

Node

Worker
Node

Worker
Node

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

515

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

516

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

517

Imports functions time for measuring the time taken to insert and search elements, random and string to generate random

strings of lowercase letters, matplotlib.pyplot is for visualizing the comparison between Trie and Radix Tree.

TrieNode Class represents a node in the Trie and it contains a dictionary children to store its child nodes, is_end_of_word

is a boolean flag to mark if the current node is the end of a word.

RadixNode Class represents a node in the Radix Tree. Similar to TrieNode, it has children and is_end_of_word. Trie

Class implements the Trie data structure.

Insert function inserts a word into the Trie. It creates a new node for each character in the word. Search function

(search()) Searches for a word in the Trie, returning True if it exists, False otherwise.

RadixTree Class implements the Radix Tree. Insert function (insert()) inserts words into the Radix Tree by considering

two characters (prefixes) at a time. Search function (search()) Searches for words using the same two-character prefix

method. The helper functions generate_random_words(n, length) Generates n random words, each of length length and

measure_trie_performance(words) mMeasures the time taken to insert and search words in the Trie . The function

measure_radix_performance(words) measures the time taken to insert and search words in the Radix Tree.

In performance comparison the program generates 30,000 random words (each 10 characters long) and inserts and

searches them in both the Trie and Radix Tree. It measures the time for insertion and searching for both structures.

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

518

It prints the times for insertion and searching for both data structures. It uses matplotlib to visualize the performance

comparison using bar charts. We have done the same comparison for 40k, 50k, 60k, 70k , 80k , 90k and 100k values.

SNo Size Avg

Lookup

(us)

Insertio

n Time

(us)

Deletion

Time

(us)

Memory

Usage

(Mb)

Cache

Hit Ratio

3 30000 7.8 15 10 90 85

4 40000 9.2 20 12 120 88

5 50000 10.6 25 15 150 90

6 60000 12.0 30 18 180 92

7 70000 13.4 35 20 210 94

8 80000 14.8 40 25 240 96

9 90000 16.2 45 30 270 98

10 100000 17.6 50 35 300 99

Table 5: IP Tables Radix Tree

Please find the number of entries in IP table , avg lookup time, Insertion time , deletion time , memory usage and cache

hit ratio for different cluster configurations. For IP table size 30k the avg lookup time is 7.8 us , insertion time is 15 us,

deletion time is 10 , memory usage is 90 Mb and cache hit ration is 85% . IP table size 40k the same parameters are 9.2,

20us, 12us, 120Mb and 88%. IP table size 50k the same parameters are 10.6, 25us, 15us, 150Mb and 90%.

IP table size 60k the same parameters are 12.0, 30us, 18us, 180Mb and 92%. IP table size 70k the same parameters are

13.4, 35us, 20us, 210 Mb and 94%. IP table size 80k the same parameters are 14.8, 40us, 25us, 240Mb and 96%. IP table

size 90k the same parameters are 16.2, 45us, 30us, 270Mb and 98% and IP table size 100k the same parameters are 17.6,

50us, 35us, 300Mb and 99%.

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

519

Graph 8: IP Tables Radix Tree

 Graph 8 represents the IP tables Radix Tree implementation’s metrics.

SNo Size Avg

Lookup

(us)

Insertio

n Time

(us)

Deletion

Time

(us)

Memory

Usage

(Mb)

Cache

Hit Ratio

3 30000 15.6

7.8

30

15

20

10

150

90

80

85

4 40000 18.2

9.2

40

20

25

12

200

120

82

88

5 50000 20.8

10.6

50

25

30

15

250

150

84

90

6 60000 23.4

12.0

60

30

35

18

300

180

86

92

7 70000 26.0

13.4

70

35

40

20

350

210

88

94

8 80000 28.6

14.8

80

40

45

25

400

240

90

96

9 90000 31.2

16.2

90

45

50

30

450

270

92

98

10 100000 33.8

17.6

100

50

55

35

500

300

94

99

Table 6: Trie Tree vs Radix Tree

Table 6 shows the comparison between Trie tree and Radix tree implementation of IP Tables. IP Table Size 30000 entries

avg lookup time is 15.6 micro seconds where as for Radix tree it is 7.8 micro seconds. Insertion time is 30 micro seconds

and for raidix tree it is 15 micro seconds. Deletion time is 20 micro seconds and 10 micro seconds for Radix tree

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8

Avg Lookup (us) Insertion Time (us) Deletion Time (us) Memory Usage (Mb) Cache Hit Ratio

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

520

implementation. For 40000 entries avg lookup speed is 18.2 and for Radix tree it is almost 50% reduced.

 If the table size is 50000 entries then the avg lookup speed is 20.8 micro seconds and radix is 10.6 only, Insertion speed

is 50 for Trie tree implementation and Radix tree it is 25 micro seconds only. Deletion speed is 30 micro seconds where

as for Radix tree it is 15 micro seconds, memory usage came down from 250 to 150 when we shift from Triee to Radix

tree implementation. Cache hit ratio increased to 90 from 84 in Radix tree implementation.

For 60000 entries 23.4 micro seconds is the avg lookup speed for Trie Tree where it is 12.0 for Radix tree implementation.

Insertion and deletion times are reduced to 50% when we shift from Trie tree to Radix tree implementation. Memory

usage came down from 300 to 180 where as cache hit ratio increased to 92 from 86.

For 70000 entries 26.0 micro seconds is the avg lookup speed for Trie Tree where it is 13.4 for Radix tree implementation.

Insertion and deletion times are reduced to 50% when we shift from Trie tree to Radix tree implementation. Memory

usage came down from 350 to 210 where as cache hit ratio increased to 94 from 88.

For 80000 entries 28.6 micro seconds is the avg lookup speed for Trie Tree where it is 14.8 for Radix tree implementation.

Insertion and deletion times are reduced to 50% when we shift from Trie tree to Radix tree implementation. Memory

usage came down from 400 to 240 where as cache hit ratio increased to 96 from 90.

For 90000 entries 31.2 micro seconds is the avg lookup speed for Trie Tree where it is 16.2 for Radix tree implementation.

Insertion and deletion times are reduced to 50% when we shift from Trie tree to Radix tree implementation. Memory

usage came down from 450 to 270 where as cache hit ratio increased to 98 from 92.

For 100000 entries 33.8 micro seconds is the avg lookup speed for Trie Tree where it is 17.6 for Radix tree implementation.

Insertion and deletion times are reduced to 50% when we shift from Trie tree to Radix tree implementation. Memory

usage came down from 500 to 300 where as cache hit ratio increased to 99 from 94.

With this analysis we can say that by using the radix tree implementation of the IP Tables Avg lookup speed , Insertion

and deletion times are getting reduced by 50% and the memory usage is coming down by almost 45%, Cache hit ratio is

getting increased by 5%.

Graph 9: Trie Tree vs Radix Tree

Graph 9 represents the trend which we have discussed so far on the table. Avg lookup speed, insertion, deletion times,

memory usage are having downwards trend where as cache hit ratio is having upwards trend.

In Radix trees, k represents the average length of the keys, but it’s influenced by the tree structure and the compression of

common prefixes. Unlike Tries, Radix trees store

common prefixes in a single node, leading to a potentially reduced effective key length for operations. Example: Given

the same IP addresses (192.168.1.1), multiple IPs can share the prefix 192.168, compressing the representation: For a

0

100

200

300

400

500

600

Avg look
up Trie

Tree

Avg look
up Radix

Tree

Insertion
Time Trie

Tree

Insertion
Time
Radix
Tree

Deletion
Trie Tree

Deletion
Radix
Tree

memory
usage

Trie Tree

memory
usage
Radix
tree

Cache
Trie tree

Cache
Radix
tree

30000 40000 50000 60000 70000 80000 90000 100000

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

521

dataset of IP addresses, if the average length after compression is about 7 characters (like 192.168 plus the remaining

segment), then k could be approximately 7.

IP Table

Size

Insertion

Time (µs)

Lookup

Time (µs)

Deletion

Time (µs)

Memory

Usage (MB)

Cache

Hit Ratio

(%)

30,000 25 15 18 12 90

40,000 28 18 20 16 88

50,000 32 22 25 19 86

60,000 35 25 28 22 85

70,000 38 28 30 26 83

80,000 42 30 32 30 81

90,000 45 32 35 34 79

100,000 48 35 40 38 78

Table 6: IP Tables Radix Tree (Second Sample)

Graph 10: IP Tables Radix Tree (Second Sample)

Graph 11: Trie Tree vs Radix Tree (Second Sample)

0

10

20

30

40

50

60

70

80

90

100

Insertion Time
(µs)

Lookup Time
(µs)

Deletion Time
(µs)

Memory Usage
(MB)

Cache Hit
Ratio (%)

30000 40000 50000 60000 70000 80000 90000 100000

0

10

20

30

40

50

60

70

Trie Tree
Insertion Time

(µs)

Radix Tree
Insertion Time

(µs)

Trie Tree
Lookup Time

(µs)

Radix Tree
Lookup Time

(µs)

Trie Tree
Deletion Time

(µs)

Radix Tree
Deletion Time

(µs)

30000 40000 50000 60000 70000 80000 90000 100000

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

522

SNo

Size Avg

Lookup

(us)

Insertion

Time

(us)

Deletion

Time

(us)

Memory

Usage

(Mb)

Cache Hit

Ratio

3 30000 35

15

40

25

45

18

12

12

95

90

4 40000 25

18

35

28

32

20

20

16

83

88

5 50000 30

22

40

32

38

25

24

19

82

86

6 60000 35

25

45

35

42

28

28

22

80

85

7 70000 38

28

50

38

45

30

32

30

78

81

8 80000 40

30

55

42

50

32

36

30

77

81

9 90000 42

32

58

45

55

35

40

34

75

79

10 100000 45

35

60

48

55

40

45

38

73

78

Table 7: Trie Tree vs Radix Tree (Second Sample)

Table 7 shows the comparison between Trie tree and Radix tree implementation of IP Tables. IP Table Size 30000 entries

avg lookup time is 15 micro seconds where as for Trie tree it is 20 micro seconds. Insertion time is 30 micro seconds and

for raidix tree it is 25 micro seconds.

Deletion time is 28 micro seconds and 18 micro seconds for Radix tree implementation. For 40000 entries avg lookup

speed is 25 and for Radix tree it is 18 micro seconds only.

 If the table size is 50000 entries then the avg lookup speed is 30 micro seconds and radix is 22 only, Insertion speed is

40 for Trie tree implementation and Radix tree it is 32 micro seconds only.

Deletion speed is 32 micro seconds where as for Radix tree it is 20 micro seconds, memory usage came down from 20 to

16 when we shift from Triee to Radix tree implementation. Cache hit ratio increased to 88 from 83 in Radix tree

implementation.

For 60000 entries 35 micro seconds is the avg lookup speed for Trie Tree it is 25 for Radix tree implementation. Insertion

time is 45 micro seconds where as it is 25 micro seconds n Radix tree implementation , deletion time is 42 us in trie gtree

where as it is 28 us in radix tree. Memory usage came down from 28 to 22 where as cache hit ratio increased to 85 from

80.

For 70000 entries 38 micro seconds is the avg lookup speed for Trie Tree it is 28 for Radix tree implementation. Insertion

time is 50 micro seconds where as it is 38 micro seconds n Radix tree implementation , deletion time is 45 us in trie tree

where as it is 30 us in radix tree. Memory usage came down from 32 to 30 where as cache hit ratio increased to 81 from

78.

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

523

For 80000 entries 40 micro seconds is the avg lookup speed for Trie Tree it is 30 for Radix tree implementation. Insertion

time is 55 micro seconds where as it is 42 micro seconds n Radix tree implementation , deletion time is 50 us in trie gtree

where as it is 32 us in radix tree. Memory usage came down from 36 to 30 where as cache hit ratio increased to 81 from

77.

For 90000 entries 42 micro seconds is the avg lookup speed for Trie Tree it is 32 for Radix tree implementation. Insertion

time is 58 micro seconds where as it is 48 micro seconds n Radix tree implementation , deletion time is 55 us in trie gtree

where as it is 35 us in radix tree. Memory usage came down from 40 to 34 where as cache hit ratio increased to 79 from

75.

For 100000 entries 45 micro seconds is the avg lookup speed for Trie Tree it is 35 for Radix tree implementation. Insertion

time is 60 micro seconds where as it is 48 micro seconds n Radix tree implementation, deletion time is 55 us in trie gtree

where as it is 40 us in radix tree. Memory usage came down from 45 to 38 where as cache hit ratio increased to 78 from

73.

Graph 10 represents the Radix tree implementation stats for IP Table and Graph 11 represents the comparison of Trie tree

and Radix tree implementation.

With this analysis we can say that by using the radix tree implementation of the IP Tables Avg lookup speed , Insertion

and deletion times are getting reduced by 30% and the memory usage is coming down by almost 20%, Cache hit ratio is

getting increased by 5%.

Nodes in a Radix tree can represent multiple characters, effectively combining several characters into one node when

there are common prefixes.

The complexity of lookup, insertion, and deletion operations is based on the average length k, leading to an efficiency of

O(k). Since k is generally less than or equal to m due to compression, Radix trees can be more efficient.

IP Table Size
Avg Lookup

Time
Insertion Time

Deletion

Time

Memory

Usage (MB)

Cache Hit

Ratio

30,000 30 35 40 10 97%

40,000 35 40 45 13 95%

50,000 40 45 50 18 92%

60,000 45 50 55 22 90%

70,000 50 55 60 28 87%

80,000 55 60 65 33 85%

90,000 60 65 70 38 83%

100,000 65 70 75 42 80%

Table 8: IP Tables Radix Tree (Third Sample)

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

524

Graph 12: IP Tables Radix Tree-1 (Third Sample)

Graph 13: IP Tables Radix Tree-2 (Third Sample)

Graph 14: IP Tables Radix Tree-3 (Third Sample)

IP

Table

Size

Trie

Avg

Lookup

Time

Radix

Avg

Lookup

Time

Trie

Insertion

Time

Radix

Insertion

Time

Trie

Deletion

Time

Radix

Deletion

Time

Trie

Memory

Usage

(MB)

Radix

Memory

Usage

(MB)

Trie

Cache

Hit

Ratio

Radix

Cache

Hit

Ratio

30,000 35 30 40 35 45 40 12 10 95% 97%

40,000 40 35 45 40 50 45 16 13 93% 95%

0

10

20

30

40

50

60

70

80

Avg Lookup

Time

Insertion Time Deletion Time Memory Usage

(MB)

Cache Hit Ratio

30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

0

10

20

30

40

50

60

70

80

Avg Lookup

Time

Insertion Time Deletion Time Memory Usage

(MB)

Cache Hit Ratio

30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

0

10

20

30

40

50

60

70

80

Avg Lookup Time Insertion Time Deletion Time Memory Usage (MB) Cache Hit Ratio

30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

525

50,000 45 40 50 45 55 50 20 18 90% 92%

60,000 50 45 55 50 60 55 25 22 88% 90%

70,000 55 50 60 55 65 60 30 28 85% 87%

80,000 60 55 65 60 70 65 35 33 83% 85%

90,000 65 60 70 65 75 70 40 38 80% 83%

100,000 70 65 75 70 80 75 45 42 78% 80%

Table 9: Trie Tree vs Radix Tree (Third Sample)

Graph 15: IP Tables Trie Tree Vs Radix Tree -1

(Third Sample)

Graph 16: IP Tables Trie Tree Vs Radix Tree-2

(Third Sample)

0

10

20

30

40

50

60

70

80

Trie Avg

Lookup

Time

Radix

Avg

Lookup

Time

Trie

Insertion

Time

Radix

Insertion

Time

Trie

Deletion

Time

Radix

Deletion

Time

Trie

Memory

Usage

(MB)

Radix

Memory

Usage

(MB)

Trie

Cache Hit

Ratio

Radix

Cache Hit

Ratio

30000 40000 50000 60000 70000 80000 90000 100000

0

10

20

30

40

50

60

70

80

90

Trie Avg

Lookup

Time

Radix

Avg

Lookup

Time

Trie

Insertion

Time

Radix

Insertion

Time

Trie

Deletion

Time

Radix

Deletion

Time

Trie

Memory

Usage

(MB)

Radix

Memory

Usage

(MB)

Trie

Cache

Hit Ratio

Radix

Cache

Hit Ratio

30000 40000 50000 60000 70000 80000 90000 100000

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

526

Graph 17: IP Tables Trie Tree Vs Radix Tree-3

(Third Sample)

Table 9 shows the comparison between Trie tree and Radix tree implementation of IP Tables. IP Table Size 30000 entries

avg lookup time is 30 micro seconds where as for Trie tree it is 35 micro seconds. Insertion time is 40 micro seconds and

for raidix tree it is 35 micro seconds. Deletion time is 45 micro seconds and 40 micro seconds for Radix tree

implementation.

For 40000 entries avg lookup speed is 40 and for Radix tree it is 35 micro seconds only.

 If the table size is 50000 entries then the avg lookup speed is 45 micro seconds and radix is 40 only, Insertion speed is

50 for Trie tree implementation and Radix tree it is 45 micro seconds only.

Deletion speed is 55 micro seconds where as for Radix tree it is 50 micro seconds, memory usage came down from 20 to

18 when we shift from Triee to Radix tree implementation. Cache hit ratio increased to 95 from 93 in Radix tree

implementation.

For 60000 entries 50 micro seconds is the avg lookup speed for Trie Tree it is 45 for Radix tree implementation. Insertion

time is 55 micro seconds where as it is 50 micro seconds n Radix tree implementation , deletion time is 25 us in trie gtree

where as it is 22 us in radix tree. Memory usage came down from 28 to 22 where as cache hit ratio increased to 90 from

88.

For 70000 entries 55 micro seconds is the avg lookup speed for Trie Tree it is 50 for Radix tree implementation. Insertion

time is 60 micro seconds where as it is 55 micro seconds n Radix tree implementation , deletion time is 65 us in trie tree

where as it is 60 us in radix tree. Memory usage came down from 30 to 28 where as cache hit ratio increased to 87 from

85.

For 80000 entries 60 micro seconds is the avg lookup speed for Trie Tree it is 55 for Radix tree implementation. Insertion

time is 65 micro seconds where as it is 60 micro seconds n Radix tree implementation , deletion time is 70 us in trie gtree

where as it is 65 us in radix tree. Memory usage came down from 35 to 33 where as cache hit ratio increased to 85 from

83.

For 90000 entries 65 micro seconds is the avg lookup speed for Trie Tree it is 60 for Radix tree implementation. Insertion

time is 70 micro seconds where as it is 65 micro seconds n Radix tree implementation , deletion time is 75 us in trie gtree

where as it is 70 us in radix tree. Memory usage came down from 40 to 38 where as cache hit ratio increased to 83 from

80.

For 100000 entries 70 micro seconds is the avg lookup speed for Trie Tree it is 65 for Radix tree implementation. Insertion

time is 70 micro seconds where as it is 65 micro seconds n Radix tree implementation, deletion time is 80 us in trie gtree

where as it is 75 us in radix tree. Memory usage came down from 45 to 42 where as cache hit ratio increased to 80 from

80.

Graph 12 , 13 and 14 represents the Radix Tree implementation statistics for the IPTables. Graph 15 , 16 and 17 represents

the comparison of IP Tables performance stats for Trie tree implementation and Radix tree impmentation.

0

10

20

30

40

50

60

70

80

30000 40000 50000 60000 70000 80000 90000 100000

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

527

With this analysis we can say that by using the radix tree implementation of the IP Tables Avg lookup speed , Insertion

and deletion times are getting reduced by 8% and the memory usage is coming down by almost 7%, Cache hit ratio is

getting increased by 5%. In Radix tree implementation common prefixes are stored together. k is the average length, often

less than m. Fewer nodes due to compression. More memory-efficient due to prefix sharing. Operations take O(k) time.

192.168 as a single node compresses multiple keys.

If the average length of the keys is reduced to 7 characters due to prefix sharing (e.g., common prefixes for 192.168.x.x):

Memory Usage (Radix) = 100,000×7 bytes=700,000 bytes≈0.7 MB Memory Usage (Radix)=100,000×7 bytes=700,000

bytes≈0.7 MB.

Time Complexity of Trie Tree avg lookup is O(k) , time complexity of Insertion time is O(k), time complexity of deletion

time is O(k) where m is the length of the key, where k is the average key length after considering compression.

Space complexity of memory usage is O(N.k) where N is the number of keys and k is the average key length after

considering compression.

EVALUATION

Search operation , insert , deletion operations using Trie tree involves O(m) time complexity where as in Radix it involves

O(N.k) complexity. Where is the length of the key and N is the number of keys and k is the average key lebgth considering

compression. The comparison of Trie Tree implementation results with Radix tree implementation shows that later one

exihibits high performance. If the IP table size is 30000 entries the average lookup time is 15.6 micro seconds in Trie tree

implementation and it is 7.8 micro seconds in radix implementation.

Insertion time, deletion time is 50% reduced to radix implementation , memory usage is reduced to 40% and cache hit

ratio came up to 85 from 80. The same type of evaluation is there all table sized entries 40000, 50000, 60000, 70000,

80000 , 90000 and 100000.

We can conclude that using the Radix implementation of ip tables in kubernetes increases the avg lookup time , insertion

time , deletion time , memory usage and cache hit ratio.

CONCLUSION

We have configured three node , four node , five node , six node , seven node , eight node , nine node and ten node

clusters with 32 CPU, 64 GB and 500GB for master node and 24 CPU , 32 GB and 350 GB for all worker nodes.

IP Table size is no way related to cluster size (number of nodes). size of the IP table is influenced by the number of pods,

services, and network policies, it is not a direct measure of the cluster size (i.e., the number of nodes). Instead, it is more

closely related to the complexity of the network configuration in the cluster.

A larger cluster with many pods and services, especially if there are complex network policies or ingress configurations,

will likely result in a larger IP table.

I have tested the performance of ip tables having Trie tree implementation and Radix implementation using different IP

table sizes such as 30000, 40000, 50000, 60000, 70000, 80000, 90000 and 100000 entries. The performance is getting

increased with radix implementation i.e avg lookup time , insertion time, deletion time are raising to 50%, memory usage

is coming down to 40% and hit ratio is raising to 5%.

Search operation , insert , deletion operations using Trie tree involves O(m) time complexity where as in Radix it involves

O(N.k) complexity. Where is the length of the key and N is the number of keys and k is the average key length considering

compression. if there is scaling in IP Tables.

The future work includes finding the time and space complexity if there is a scaling in IP Tables.

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

528

REFERENCES

[1] Kuberenets in action by Marko Liksa , 2018.

[2] Kubernetes and Docker - An Enterprise Guide: Effectively containerize applications, integrate enterprise systems,

and scale applications in your enterprise by Scott Surovich and Marc Boorshtein, 2020.

[3] Kubernetes Patterns, Ibryam , Hub

[4] Kubernetes Best Practices , Burns, Villaibha, Strebel , Evenson.

[5] Learning Core DNS, Belamanic, Liu.

[6] Core Kubernetes , Jay Vyas , Chris Love.

[7] A Formal Model of the Kubernetes Container Framework. GianlucaTurin, AndreaBorgarelli, SimoneDonetti,

EinarBrochJohnsen, S.LizethTapiaTarifa, FerruccioDamiani Researchreport496,June202

[8] Kubernetes Container Orchestration as a Framework for Flexible and Effective Scientific Data Analysis, IEEE

Xplore, 13 February 2020.

[9] A survey of Kubernetes scheduling algorithms, Khaldoun Senjab, Sohail Abbas, Naveed Ahmed & Atta ur

Rehman Khan Journal of Cloud Computing volume, 12 , 2023.

[10] Research and Implementation of Scheduling Strategy in Kubernetes for Computer Science Laboratory in

Universities, by Zhe Wang 1,Hao Liu ,Laipeng Han ,Lan Huang and Kangping Wang.

[11] Study on the Kubernetes cluster mocel, Sourabh Vials Pilande. International Journal of Science and Research ,

ISSN : 2319-7064.

[12] Multiset-Trie Data Structure, Mikita Akulich, Mikita Akulich, Iztok Savnik.

[13] Implementation of Trie Structure for Storing and Searching of English Spelled Homophone Words , Dr. Vimal

P.Parmar , Dr. CK Kumbharana.

[14] Composite Radix Tree-A Storage Method for Efficient Retrieval of Massive Data, Yanan Qi; Linkun Sun;

Wenbao Jiang, IEEE Xplore.

[15] Kubernetes and Docker Load Balancing: State-of-the-Art Techniques and Challenges, International Journal of

Innovative Research in Engineering & Management, Indrani Vasireddy, G. Ramya, Prathima Kandi

[16] Research on Kubernetes' Resource Scheduling Scheme, Zhang Wei-guo, Ma Xi-lin, Zhang Jin-zhong.

[17] Deploying Microservice Based Applications with Kubernetes: Experiments and Lessons Learned, Leila Abdollahi

Vayghan Montreal, Mohamed Aymen Saied; Maria Toeroe; Ferhat Khendek, IEEE XPlore.

[18] Improving Application availability with Pod Readiness Gates https://orielly.ly/h_WiG

[19] Kubernetes Best Practices: Resource Requests and limits https://orielly.ly/8bKD5

[20] Configure Default Memory Requests and Limits for a Namespace https://orielly.ly/ozlUi1

[21] Kubernetes CSI Driver for mounting images https://orielly.ly/OMqRo

[22] Modelling performance & resource management in kubernetes by Víctor Medel, Omer F. Rana, José Ángel

Bañares, Unai Arronategui.

[23] The Adaptive Radix Tree: ARTful Indexing for Main-Memory Databases, Viktor Leis, Alfons Kemper, Thomas

Neumann.

[24] Trie: Mathematical and Computer Modelling An Alternative Data Structure for Data Mining Algorithms F.

BODON AND L. R~NYAI Computer and Automation Institute, Hungarian Academy of Sciences.

[25] Application of TRIE data structure and corresponding associative algorithms for process optimization in GRID

https://orielly.ly/h_WiG
https://orielly.ly/8bKD5
https://orielly.ly/ozlUi1
https://orielly.ly/OMqRo

ISSN: 2633-4828 Vol. 5 No.2, June, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.2, June, 2023

 International Journal of Applied Engineering & Technology

529

environment, Vladislav Kashansky, Igor Kaftannikov.

[26] An Analysis on the Performance of Tree and Trie based Dictionary Implementations with Different Data Usage

Models, M. Thenmozhi1 and H. Srimathi, Indian Journal of Science and Technology, Vol 8(4), 364–375,

February 2015.

[27] Research on Multibit-Trie Tree IP Classification Algorithm, Yi Jiang; Fengjun Shang, IEEE Explore.

[28] A reduction algorithm based on trie tree of inconsistent system, Xiaofan Zhang, IEEEXplore

[29] Predicting resource consumption of Kubernetes container systems using resource models, Gianluca Turin , Andrea

Borgarelli , Simone Donetti , Ferruccio Damiani , Einar Broch Johnsen , S. Lizeth Tapia Tarifa.

[30] TRIE DATA STRUCTURE, Pallavraj SAHOO. 2015, Research Gate.

