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Abstract 

In this paper, we display the lattice structure of the lattice of subgroups of the 2x2 non-singular matrices 

over Z3. 
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1. Introduction 

The study of subgroup lattices has a quite long history, starting with Richard Dedekind’s [2] work in 

1877. After that a number of authors made contributions in the subgroup lattice theory. In 2015, Jebaraj 

Thiraviam[7] has worked in the lattice of subgroups of 2x2 matrices over Zp, p≤7, with determinant 

value 1. In this paper we continue the same work for all non-singular matrices over Zp, p≤7. 

Let G = {(
a1 a2

a3 a4
): a1, a2, a3, a4 ∈ Zp, a1a4 − a2a3 ≠ 0}. Then G is a group under the binary 

operation of matrix multiplication modulo p of order (p2-1)(p2-p) 

2. Preliminaries 

In this section, we give the necessary definitions and theorems for the development of the paper. 

Definition 2.1  

A partially ordered set (A, ≤) consists of a non-empty set A and a binary relation ≤ on A such that ≤ 

satisfies reflexive, anti-symmetric and transitive. A Poset(A, ≤) that also satisfies either  a ≤ b or b ≤
a for every a, b ∈ A is called a chain(totally ordered set). 

Definition 2.2 

Let (A, ≤) be a Poset. LetS be a non-empty subset of A. An element u ∈  A is called an upper bound of 

S if a ≤ u for all a ∈S. The least upper bound of S is called the supremum or join of S. An element l ∈ 

A is called a lower bound of S if l ≤ afor all a ∈ S. The greatest lower bound of S is called the infimum 

or meet of S. 

Definition 2.3  

A Poset (A, ≤ ) is a lattice if every pair of elements of A have infimum and supremum, we denote the 

infimum and supremum of two elementsa and b ∈A by a⋀b and a⋁b respectively. 

Definition 2.4 
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In the Poset (A, ≤), a  covers b or b is covered by  a (in notation a ≻ b or b ≺ a)  if only if   b < a  and 

for no  x ∈ A, b < x < a holds. 

Theorem 2.5 (Lagrange’s theorem) If G is a finite group and H is a subgroup of G, then the order of H 

is a divisor of the order of G. 

Theorem 2.6. (Sylow’s theorem) If p is a prime number and pα∣o(G) and pα+1∤ o(G), then G has a 

subgroup of order pα, called a p-Sylow subgroup. 

Theorem 2.7 The number of p-Sylow subgroups in G, for a given prime p, is of the form 1+mp. 

.3. Elements of G order-wise 

Let G denote the collection of all 2 x 2 non-singular matrices over Z3. Then G is a group under the 

binary operation of matrix multiplication modulo 3 and o(G) = (32-1) (32-3) 

                                                       = 8 x 6 = 48 

 

The order-wise arrangement of elements of G. 

.3.1.1. Element of order 1(one element) 

                      e =  (
1 0
0 1

) 

3.1.2 The list of elements of order 2(13 elements) 

α1= (
0 1
1 0

) , α2 = (
0 2
2 0

),  α3= (
1 0
0 2

) , α4=  (
1 0
1 2

), α5=  (
1 0
2 2

),α6=  (
1 1
0 2

) 

α7= (
1 2
0 2

), α8=  (
2 0
0 1

) , α9=(
2 0
0 2

), α10= (
2 0
1 1

), α11=  (
2 0
2 1

),  α12=(
2 1
0 1

),  

α13=  (
2 2
0 1

) 

3.1.3 The list of elements of order 3(8 elements) 

β1= (
0 1
2 2

), β2=(
0 2
1 2

), β3=(
1 0
1 1

),  β4=(
1 0
2 1

) ,β5=(
1 1
0 1

), β6=(
1 2
0 1

), 

β7= (
2 1
2 0

), β8= (
2 2
1 0

) 

3.1.4 The list of elements of order 4(6 elements) 

 γ1=(
0 1
2 0

) , γ2= (
0 2
1 0

), γ3=(
1 1
1 2

), γ4= (
1 2
2 2

),γ5= (
2 1
1 1

),γ6= (
2 2
2 1

) 

3.1.5 The list of elements of order 6(8 elements) 

 δ1=(
0 1
2 1

), δ2=  (
0 2
1 1

), δ3 =  (
1 1
2 0

), δ4= (
1 2
1 0

), δ5 = (
2 0
1 2

), δ6= (
2 0
2 2

), 

δ7= (
2 1
0 2

), δ8= (
2 2
0 2

) 
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3.1.6 The list of elements of order 8(12 elements) 

 η1=(
0 1
1 1

), η2 =  (
0 1
1 2

), η3=(
0 2
2 1

), η4= (
0 2
2 2

),η5= (
1 1
1 0

), η6=(
1 1
2 1

), 

η7=(
1 2
1 1

) , η8= (
1 2
2 0

), η9=(
2 1
1 0

), η10=(
2 1
2 2

), η11=(
2 2
1 2

),  η12=(
2 2
2 0

) 

4. Subgroups of G of various orders 

In the present section we find all the subgroups of G of various orders. Based on Lagrange’s theorem, 

we have to look only among the divisors of 48 for identifying the subgroups G. 

4.1 Subgroups of G which have order 2 

Consider a subgroup H of G which has order 2. Then all the subgroups of order 2 are 

  H1 = {e, α1}, H2 = {e, α2}, H3 = {e, α3}, H4 = {e, α4}, H5 = {e, α5}, 

                  H6={e, α6}, H7= {e, α7}, H8= {e, α8}, H9= {e, α9}, H10= {e, α10}, 

                  H11= {e α11}, H12= {e, α12}, H13= {e, α 13} 

4.2 Subgroups of G which have order 3 

Since o(G) = 24 x 3, 3 |o(G) and 32∤ o(G), by Sylow's theorem, G has a 3- Sylow subgroup which has 

order 3. Hence the number of 3 – Sylow subgroups of G is of the form 1+3m and we have 1+3m |o(G). 

That is, 1+3m | 24 x 3.Then, 1+3m |24. Therefore, the probable values for m = 0, 1. 

Hence, there are atmost four 3- Sylow subgroups corresponding to m = 1. 

The subgroups are 

 L1= {e, β1, β8}, L2 = {e, β2, β7}, L3 = {e, β3, β4}, L4= {e, β5, β6} 

4.3 Subgroups of G which have order 4 

Consider an arbitrary subgroup M of G which has order 4. Then M consists of elements of orders1, 2 

or 4. If M consists of an element which has order 4, then M is generated by that element. Then the first 

three subgroups are cyclic and the remaining 6 are non-cyclic. 

M1= {e, α1, α2, α9}, M2= {e, α3, α8, α9}, M3= {e, α4, α9, α11},M4= {e, α5, α9, α10}, M5= {e, 

α6, α9, α13},M6= {e, α7, α9, α12},M7= {e, α9, γ1, γ2}, M8= {e, α9, γ3, γ6}, M9= {e, α9, γ4, γ5}. 

4.4 Subgroups of G which have order 6 

Consider a subgroup N of G which has order 6. Since o(N) = 2 x 3, by Sylow’s theorem, N has only 

one subgroup of order 3. Further, if N contains an element which has order 6, then N is generated by 

that element. Then the subgroups of order 6 are 

 

  N1 = {e, α1, α5, α13, β1, β8}, N2 = {e, α2, α4, α12, β2, β7}, N3 = {e, α3, α4, α5, β3, β4}, 

 N4= {e, α8, α12, α13, β5, β6}, N5= {e, α9, β1, β8,  δ2, δ3}, N6= {e, α9, β2, β7 δ1, δ4}, 
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  N7= {e, α9, β3, β4, δ5, δ6},      N8= {e, α9, β5, β6, δ7, δ8}. 

 Here each of the last four subgroups of order 6 has two elements of order 6 and we find that all 

the 8 elements of order 6 have been taken care of and we note that every subgroup of order 6 contains 

exactly one subgroup of order 3. Thus, there is no other possibility for any other subgroups of order 6. 

4.5 Subgroups of G which have order 8 

Consider an arbitrary subgroup K of order 8 in G. Then K consists of elements of order 1, 2, 4 or 8. If 

K has an element of order 8, then K is generated by that element. Then the subgroups are 

K1= {e, α9, γ1, γ2, γ3, γ4, γ5, γ6}, K2= {e, α9 γ1, γ2, η6, η7, η10, η11} 

K3= e, α9, γ3, γ6, η1, η4, η8, η9}, K4 = {e, α9,γ4, γ5, η2, η3, η5, η12},  

 Here each of the last three subgroups of order 8 has four elements of order 8 and we find that 

all the 12 elements of order 8 have been taken care of and we note that only one subgroup of order 8 

contains six elements of order 4. Thus, there is no other possibility for any other subgroups of order 8. 

4.6 Subgroups of G which have order 12 

Let P be an arbitrary subgroupof G of order 12. Since, o(P) = 22 x 3, by Sylow’s theorem, P has a 2-

Sylow subgroup which has order 4. The number of 2-Sylow subgroups is of the form 1+2m and we 

have 1+2m | 3. Then the probable values for m= 0,1. 

Also, by Sylow’s theorem P hasonly one subgroup of order 3.  

Two cases arise: 

i. Only one subgroup of order 3 and three subgroups of order 4. 

ii. Only one subgroup of order 3 and one subgroup of order 4. 

Case(i): At a time, combining a subgroup of order 3 with three subgroups of order 4, we find the 

following subgroups of order 12. 

P1= {e, α1, α2, α5, α6, α9, α10, α13, β1, β8, δ2, δ3}, 

P2= {e, α1, α2, α4, α7, α9, α11, α12, β2, β7, δ1, δ4}, 

 P3= {e, α3, α4, α5, α8, α9, α10, α11, β3, β4, δ5, δ6},  

 P4= {e, α3, α6, α7, α8, α9, α12, α13, β5, β6, δ7, δ8}. 

Here every subgroup of order 12 have two elements of order 6 and we get exactly 8 elements of order 

6 and 4 subgroups which have order 3. Then there is no other possibility for any other subgroups. 

Case(ii): Multiplying a subgroup of order 4 by a subgroup of order 3 produces another subgroup of 

order 3, which is not in the original group and hence this case does not at all. 

4.7 Subgroups of G which have order 16 

Since, o(G)=48=24x3 and 24 | o(G) but 24+1 ∤ o(G), then G has a 2-Sylow subgroup which has order 

24.Thenumber of 2 –Sylow subgroups is of the form 1+2m and we have 1+2m | o(G). 

Hence 1+2m | 24x3.Then 1+2m | 3.  There are two probable values for m, namely, 0and1. 

Hence there are atmost three 2-Sylow subgroups corresponding to m=1 which has order 16. 
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But G does not have an element of order 16, so that the subgroups of order 16 must have elements of 

orders 1,2,4 or 8. Then the subgroups are 

Q1={e, α1, α2, α3, α8, α9, γ1, γ2, γ3, γ4, γ5, γ6, η6, η7, η10, η11}, 

Q2= {e, α4, α6, α9, α11, α13, γ1, γ2, γ3, γ4, γ5, γ6, η1, η4, η8, η9},  

Q3= {e, α5, α7, α9, α10, α12, γ1, γ2, γ3, γ4, γ5, γ6, η2, η3, η5, η12}. 

4.8 Subgroups of G which have order 24 

Consider an arbitrary subgroup R of G of order 24 and o(R)=24=23x3. By Sylow’s theorem, R has a 3-

Sylow subgroup which has order 3.  The number of 3-Sylow subgroup of order 3 is 1+3m and we have 

1+3m | 23x3. Then 1+3m | 23.  The probable values for m are 0,1.  Hence, the number of subgroups of 

R of order 3 is either 1 or 4. 

Also, R has 2-Sylow subgroups which have order 8. The number of 2- Sylow subgroups of order 8 is 

1+2m and we have 1+2m | 3. The probable values for mare 0,1.  Hence the number of subgroups of R 

of order 8 is either 1 or 3. 

Four cases arise:  

i. Only one subgroup of order 3 and one subgroup of order 8. 

ii. Four subgroups of order 3 and three subgroups of order 8. 

iii. One subgroup of order 3 and three subgroups of order 8. 

iv. Four subgroups of order 3 and one subgroup of order 8. 

Case(i): Let S be the one subgroup of order 3 and T be another one subgroup which has order 8 in R.  

But S and T are normal subgroups in R. Therefore R=ST should be abelian, but it is found to be false 

by verifying all cases of S and T. Hence, this case does not arise at all. 

Case(ii): Will not exist, since combing four subgroups of order 3with three subgroups of order 8 we 

will have more than 24 elements. 

Case(iii): Let ℬ be a collection of three number of subgroups of order 8. Consider a subgroup P which 

has order 3. Clearly P is a normal subgroup of R, because P is the only one subgroup in R of order 3.  

Hence, rpr-1∈ P for every r ∈ R, p ∈  P.  At a time, consider a subgroup of order 3, combining it with 

three subgroups of order 8, we find that this condition is not true. Hence, this case does not arise at all. 

Case(iv): At a time, combining a subgroup of order 8 with four subgroups of order 3, we get exactly 

one subgroup of order 24, by examination. 

R1= {e, α9, γ1, γ2, γ3, γ4, γ5, γ6, β1, β2, β3, β4, β5, β6, β7, β8, δ1, δ2, δ3, δ4, δ5, δ6, δ7, δ8}. 

 

 

5. The structure of L(G) 

 Using all the above subgroups of G, we draw the Hasse diagram of L(G) as in Figure1. 

Lattice Structure of L(G) 
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Figure 1 

6. Conclusion: 

We have displayed in this paper the lattice structure formed by all subgroups of the 2x2non-singular 

matrices over Z3. There is a scope for studying some lattice - theoretic properties of the lattice such as 

super solvability, 0-distributivity and complementedness in L(G). 
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