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Abstract 

In present study, we have analyzed free and damped vibration of an elliptical plate resting on elastic foundation 

with thickness changes linearly. The model equation is solved using energy strain method i.e., Rayleigh-Ritz 

Technique. The parameter under study are damping parameter, time period, aspect ratio, taper constant, 

logarithmic decrement, elastic foundation, also the effect of these parameter on the deflection of plates is also 

provided with numerical and graphical result. The relationship between various parameters as told above are 

also presented numerically and graphically for first two modes of vibration for thin clamped elliptical plate.  

Keywords: Vibration, Elliptical plate, Damped vibration, Elastic Foundation, aspect ratio, taper constant, 

logarithmic decrement. 

INTRODUCTION 

Modern structures and machine designs requires stability, durability, reliability, strength and efficiency. So we 

need critical thinking and analysis to study these design structures with the advancement of technology  and use 

of new developed material in the field of construction  of equipment and structures. We requires various factors 

which could be bounded with the construction in control of different type of plate vibrations. Vibration of plates 

plays a vital role in the field of mechanical engineering, machine designing, nuclear reactor technology, big 

architectural design, naval structures etc. and various parameters effect these structures namely variable 

thickness, homogeneity, temperature, foundation etc. Plates of various shapes are used in construction which 

are studied with reference to above parameters. A review of literature provide us the insight of the studies being 

conducted in structural analysis. We observe that a large amount of work has been carried out for rectangular 

plate, circular plate, infinite plate but lesser amount of work has been taken for elliptical plates. Elliptical plates 

are widely used in various structures. So the need to study these elliptical plates arises.  J. S. Tomar and A. K. 

Gupta (1984) [12] have studied vibration of orthotropic elliptic plate in which  thickness is non-uniform and 

temperature variation using Galerkin’s Method corresponding to two modes of frequencies  for clamped 

boundary conditions. B. Singh and S. Chakraverty (1992) [8] used thickness variation which varies quadratically 

to study the transverse vibration of elliptic plates and considering circular plate as a special case by employing 

ritz method. Bani Singh and Vipin Saxena (1995) [10] considered quarter of an elliptic plate which is widely 

used in industry and applied linear and quadratic variation in thickness for obtaining frequencies and mode 

shapes. The method was used rayleigh ritz method. B. Singh and V. Saxena[1996] [9] thoroughly worked on 

circular plate and considered its vibration studying the effect of unidirectional quadratic variation in plate 

thickness.  S. Chakraverty, Ragini Jindal and V. K. Agarwal (2005) [2] have determined Flexural vibration of 

elliptical plate with Rayleigh-Ritz method and Gram Schmidt process.  S. Chakraverty, Ragini Jindal and V. K. 

Agarwal (2007) [3] have investigated the vibration of Orthotropic elliptic and circular plate with non-

homogeneity and variable thickness.  A.K. Gupta, A. Khanna [2007] [5] considered the effect of visco elasticity 

on rectangular plate and solved this problem with thickness variation in both direction considering it linearly.  

A. K. Gupta and et.al [2009] [7] extended their work and studied visco-elastic effect  on rectangular plate 

considering bi-direction variation in thickness which varies exponentially. A. K. Gupta, L. Kumar (2009) [4] 

considered  visco elastic elliptic plate in their study with reflecting the effect of thermal gradient non- 

homogeneous and variable thickness. E. Kago, J. Lellep [2013][7] worked on Free vibrations of plates on  

Elastic foundation. P. Arora[2016] [1] established results for tapered parallelogram plate with two dimensional 

thickness, non homogeneity and also considering change in temperature the vibration analysis of non- 

homogeneous tapered parallelogram plate with two dimensional thickness and temperature variation. Nitu Singh 

and Vipin Saxena (2017)[11] presented a numerical experiment on quarter of an elliptic plate in which thickness 

varies exponentially.  
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By above discussion we observe that damping effect on vibration analysis of elliptical plate is being least 

studied. Through this paper we shall study elliptical plate with various parameters as damping factor, elastic 

foundation factor, taper constant, aspect ratio, time period, deflection, logarithmic decrement and distance of 

elliptical plate from centre to any point. We shall carry our work to find the relation between the parameters as 

told above. Here, we will solved  our problem of free and damped vibration of elliptical plates resting on elastic 

foundation by Rayleigh Ritz method taking two term deflection function.   

Assumptions and governing equation of motion 

We consider a elliptical plate occupy the domain defined by E={(x,y), x2/a2+y2/b2=1, x,y belong to R} 

The equation of motion for plate under study is obtained using of  reference [4] and then adding damping and 

elastic foundation factor, we get 

Ď [D1(W,xxxx +2W,xxyy +W,yyyy ) + 2D1,x (W,xxx +W,xyy ) + 2D1,y (W,yyy +W,yxx ) + D1,xx (W,xx +νW,yy ) + D1,yy 

(W,yy +νW,xx) + 2(1-ν)D1,xyW,xy+KfW ]T+ρhWT,tt+KdWT,t = 0                             (1)      

Here, a comma followed by a suffix denotes partial differentiation with respect to that variable. 

By the method of separation of variables, we get 

[D1(W,xxxx +2W,xxyy +W,yyyy ) + 2D1,x (W,xxx +W,xyy ) + 2D1,y(W,yyy +W,yxx ) + D1,xx (W,xx+νW,yy) + +D1,yy (W,yy 

+νW,xx) + 2(1 − ν)D1,xyW,xy+KfW]/ρhW=(-T,tt -T,t Kd/ρh)/ĎT                                       (2)        

The above condition only hold when LHS and RHS both equal to a constant. Let P2 be the required constant. 

We get, 

[D1(W,xxxx +2W,xxyy +W,yyyy ) + 2D1,x (W,xxx +W,xyy ) + 2D1,y (W,yyy +W,yxx) + D1,xx(W,xx+νW,yy )  +D1,yy (W,yy 

+νW,xx ) + 2(1 − ν)D1,xyW,xy +KfW]-ρhP2W=0                                                               (3)                                                                    

And   T,t (Kd/ρh) +T,tt + P2T Ď= 0                                                                                                        (4) 

where (3) is differential equations of motion for plate and (4) is differential equation for time function for plate. 

 Solution with Rayleigh Ritz Method                                                                                                                                                                                                                                                                    

We shall employ Rayleigh-Ritz technique  to solve our model equation (3).  Thus, we have 

 δ(Vmax − Tmax)=0                                                                                                                             (5) 

We have considered different values of W which satisfies our geometrical conditions for clamped elliptic plate. 

The boundary conditions are that  

W = W,x= 0 along 1-x2/a2-y2/b2=0 

W = W,y = 0 along 1-x2/a2-y2/b2=0 

 The two-term deflection function is assumed that as,  W=  A1(1-x2/a2-y2/b2)2 +A2(1-x2/a2-y2/b2)3  

The expressions for strain energy Vmax and kinetic energy Tmax are   

 

Assuming thickness h varies as,    h=h0[1-β(x2/a2+y2/b2)]                                                                    (6)                                                                                                                                   

Introducing the non-dimensional variables as X = x/a, Y = y/a , W̅=W/a,  
_

h =h/a  
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Substituting the thickness from (6) and above conditions, the expressions of Vmax  and Tmax  becomes as,                 

   
(7) 

Where Q = (Ea3ho̅̅ ̅3)/24(1-ν2)                                                                                                                                                                                                                                                                                                  

                                                                                 (8)           

Where R= (1/2)ρa5P2ho̅̅ ̅                                                                                                                        

substituting the values of Tmax & Vmax from Eqs (7) and (8) in Eq. (5), we get 

δ(V1 − λ2P2T1)=0                                                                                                                                   (9)  

here V1 and T1 are given by  

                                                                                                                                        
(10)                                       

                                                                                     (11) 

Where λ2 (frequency parameter) is equal to =12ρP2a2(1-ν2)/Eho̅̅ ̅2 

Now substituting the value of W , we obtain the result in two unknown constants A1 and A2 which is 

determined as  

(∂ /∂An)(V1 − λ2P2T1)=0, n = 1, 2                                                                                                        (12) 

On  solving, we get 

b11A1 + b12A2 = 0 

And  b21A1+b22A2=0                                                                                                                            (13)  

b11,  b12, b21 and b22 are coefficient of A1 and A2 which are functions of various parameters used in our problem. 

To obtain non-trivial solution, from equation (13) we get frequency equation as,  

b11b22-b12b21 = 0                                                                                                                                (14)  

which gives us a second degree equation in P2. 

Here, b11 = (8*pi*m)/3 + (4*pi)/m + 4*pi*m^3 + (28*pi*β^2)/(5*m) - (8*pi*β^3)/(5*m) + 

(28*pi*β^2*m^3)/5 - (8*pi*β^3*m^3)/5 - (231*pi*β*m)/50 - (7*pi*β)/m + (462*pi*β^2*m)/125 - 

7*pi*β*m^3 - (793*pi*β^3*m)/750 + (pi*kf)/(10*m) - (pi*β*kf)/(20*m) + (pi*β^2*kf)/(70*m) - 

(pi*β^3*kf)/(560*m) + (λ2p2pi*(56*β - 336))/(3360*m) 

b12=2*pi*m + (3*pi)/m + 3*pi*m^3 + (12*pi*β^2)/(5*m) - (3*pi*β^3)/(5*m) + (12*pi*β^2*m^3)/5 - 

(3*pi*β^3*m^3)/5 - (1179*pi*β*m)/500 - (18*pi*β)/(5*m) + (393*pi*β^2*m)/250 - (18*pi*β*m^3)/5 - 

(197*pi*β^3*m)/500 + (pi*kf)/(12*m) - (pi*β*kf)/(28*m) + (pi*β^2*kf)/(112*m) - (pi*β^3*kf)/(1008*m) + 

(λ2p2pi*(40*β - 280))/(3360*m) 

2
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b21=2*pi*m + (3*pi)/m + 3*pi*m^3 + (12*pi*β^2)/(5*m) - (3*pi*β^3)/(5*m) + (12*pi*β^2*m^3)/5 - 

(3*pi*β^3*m^3)/5 - (1179*pi*β*m)/500 - (18*pi*β)/(5*m) + (393*pi*β^2*m)/250 - (18*pi*β*m^3)/5 - 

(197*pi*β^3*m)/500 + (pi*kf)/(12*m) - (pi*β*kf)/(28*m) + (pi*β^2*kf)/(112*m) - (pi*β^3*kf)/(1008*m) + 

(λ2p2pi*(40*β - 280))/(3360*m) 

b22=(12*pi*m)/5 + (18*pi)/(5*m) + (18*pi*m^3)/5 + (72*pi*β^2)/(35*m) - (9*pi*β^3)/(20*m) + 

(72*pi*β^2*m^3)/35 - (9*pi*β^3*m^3)/20 - (1179*pi*β*m)/500 - (18*pi*β)/(5*m) + (1179*pi*β^2*m)/875 - 

(18*pi*β*m^3)/5 - (591*pi*β^3*m)/2000 + (pi*kf)/(14*m) - (3*pi*β*kf)/(112*m) + (pi*β^2*kf)/(168*m) - 

(pi*β^3*kf)/(1680*m) + (λ2p2pi*(30*β - 240))/(3360*m) 

Where, * indicates ordinary multiplication, pi denotes π and ^ denotes power. 

Choosing A1=1, we obtain A2=-b11/b12 by eq (15), with these values of A1 and A2 we get, deflection function as 

W = (1-X2-Y2m2)2 +(-b11/b12)(1-X2-Y2m2)3                                                                                        (15)  

Solution for time function. 

Time functions T(t) given  by equation (5) and  visco- elastic operator Ď is equal to  

 Ď ≡ {1+(η/G)(d/dt)}                                                                                                                           (16) 

 Time function is obtained by using equation (18) in equation (5),  thus we obtain a differential equation in T 

whose solution is  

T (t) = ea
1
t[C1Cosb1t + C2Sinb1t]                                                                                                         (17)  

where a1 = −(kd/ρh+ηP2/G)/2 

 

using starting conditions in equation (17) which are as T =1 & T,t = 0 at t = 0, we get the value of constants                                                                                                             

C1 =1 and C2 =  −a1/b1 

After computing the required values of constants the time function T(t) becomes as 

T (t) = ea
1
t [Cosb1t + (−a1/b1)Sinb1t]                                                                                                   (18)  

Now  by using Eqs (15) and (18), the deflection comes out as 

w =[(1-X2-Y2m2)2 +(-b11/b12)(1-X2-Y2m2)3][ea
1
t{Cosb1t + (−a1/b1)Sinb1t}]                                       (19) 

 time period and logarithmic decrement for the vibration of plates are represented respectively by the standard 

results as,   K = 2π/P                                                                                                            (20)                                                                                                                                                                                                                                                            

And  ∧= loge(w2/w1)                                                                                                                                                               (21)                                                                                                                                                                                                                                                       

here w1 is the deflection at any point at K = K1 and w2 is the deflection at same point at succeeding K1.  

Numerical work and Discussion: 

For the solving the problem, the following values of parameter were used [4]: 

E=7.08 ✕1010 N/M2 ,   

G=2.682 ✕1010 N/M2,  , 

 η=1.4612 ✕ 106 N.S./M2  

ρ=2.8 ✕ 103 Kg/M3,  ν=0.345,   

ho=0.001, thickness at the centre of elliptical plate.  

2 2 2

1 4 ( / / ) / 2db P K h P G = − +
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Z= x2/a2+y2/b2,distance from the centre of elliptical plate to reference point. 

m=a/b (aspect Ratio) 

Table1: Foundation factor Kf  vs. Deflection function w for different m, 

                Kd =0.5, β=0.6, T=5K, Z=0.2 

 

Figure 1  

From table 1 and figure 1 we interpret that deflection w decreases slightly with the increasing value of elastic 

foundation factor kf for both modes and for different values of m. Here different thing from figure 1 is that the 

value of deflection is very closed for first mode but for different value of  m.  

Table 2. Damping factor Kd  vs. Deflection function w for different m, 

 Kf=1, β=0.6, T=5K, Z=0.2 

kf m=1 m=1.5 

First 

mode 

Second 

mode 

First 

mode 

Second 

mode 

0 0.375044 0.0176436 0.355247 0.0135782 

0.5 0.374752 0.0176357 0.355110 0.0135758 

1 0.374461 0.0176278 0.354973 0.0135734 

1.5 0.374171 0.0176199 0.354836 0.0135709 

2 0.373882 0.0176119 0.354700 0.0135685 

2.5 0.373594 0.0176040 0.354564 0.0135661 

kd m=1 m=1.5 

First 

mode 

Second 

mode 

First 

mode 

Second 

mode 

0 0.37572 0.017640 0.35569 0.013579 
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Figure 2. 

From figure 2, we see that deflection w decreases slightly with the increasing value of damping factor kd for 

both modes for different values of aspect ratio m.  we observe also that for increasing value of m, value of 

deflection w decreases for both mode. 

Table 3. Taper constant β vs. Deflection function w for different Kd 

 Kf=0.5, m=1.5, T=5K, Z=0.2 

0.5 0.37446 0.017627 0.35497 0.013573 

1 0.37320 0.017615 0.35425 0.013567 

1.5 0.37194 0.017602 0.35354 0.013561 

2 0.37069 0.017589 0.35283 0.013555 

2.5 0.36944 0.017576 0.35212 0.013550 

 

β 

Kd=1 Kd=3 

First 

mode 

Second 

mode 

First 

mode 

Second 

mode 

0 0.638351 0.011017 0.635667 0.011006 

0.2 0.514659 0.012171 0.512047 0.012156 

0.4 0.419594 0.012963 0.416950 0.012944 

0.6 0.354393 0.013569 0.351539 0.013546 

0.8 0.316689 0.014608 0.313430 0.014579 
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                                                                                                              Figure 3. 

Here we see that deflection w decreases with the increasing value of β for both modes for different values of 

Kd.  we observe also that one different thing is that there is no change in deflection up to two decimal place 

deflection w for both mode. 

Table 4. Aspect ratio m vs. Deflection function w for different Kd 

Kf=0.5, β=0.6, T=5K, Z=0.2 

1 0.298804 0.016575 0.295096 0.016539 

 

m 

Kd=0.5 Kd =3 

First 

mode 

Second 

mode 

First 

mode 

Second 

mode 

0.5 0.3839 0.01993 0.3745 0.01975 

1 0.3747 0.01763 0.3741 0.01754 

1.5 0.3551 0.01357 0.3737 0.01353 

2 0.3268 0.00914 0.3733 0.00912 

2.5 0.2928 0.00542 0.3729 0.00541 



ISSN: 2633-4828  Vol. 4 No.3, December, 2023  

 

International Journal of Applied Engineering & Technology 
 

Copyrights @ Roman Science Publications Ins.                                                                              Vol. 4 No.3, December, 2022 

                                                      International Journal of Applied Engineering & Technology 

235 

 

 

                                                                                                                                  Figure 4. 

Figure 4 shows that deflection w decreases  with the increasing value of m for both modes for different values 

of Kd. here we also observe that the graph of deflection w cuts each other at one point for first mode.. there is no 

change in deflection up to four decimal place for second mode. For Kd=3, there is no change in deflection up to 

to decimal place.                                                          

Table 5. Z vs. Deflection function w for different Kd,   

 Kf=0.5, β=0.6, m=1.5 

 

Z 

Kd=0.5 Kd=3 

First 

mode 

Second 

mode 

First 

mode 

Second 

mode 

0 0.47625 -0.10449 0.47204 -0.10429 

0.2 0.35511 0.01357 0.35153 0.01354 

0.4 0.22801 0.05288 0.22536 0.05275 

0.6 0.11388 0.04361 0.11230 0.04348 

0.8 0.03159 0.01592 0.03106 0.01586 
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Figure 5. 

From figure 5 we see that  deflection w decreases for first  mode but for second mode it increases up to the value 

of Z=0.6 and then decreases. 

Table 6. Time period vs. foundation factor Kf  for different β , 

 m=1.5 

 

 

 

 

Kf 

β=0.2 β=0.4 

First 

mode 

Second 

mode 

First 

mode 

Second 

mode 

0 0.027385 0.006489 0.032613 0.007488 

0.5 0.027356 0.006488 0.032567 0.007487 

1 0.027327 0.006488 0.032522 0.007487 

1.5 0.027298 0.006488 0.032476 0.007486 

2 0.027269 0.006487 0.032431 0.007486 

     2.5 0.027240 0.006487 0.032386 0.007485 
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 figure 6.                                                                

Figure 6 shows that time period slightly decreases with increasing value of Kf  for both modes of vibration for 

different value of β 

Table 7. Time period vs. m for different Kf 

β=0.6, 

 

m 

Kf=0.5 Kf=2 

First 

mode 

Second 

mode 

First 

mode 

Second 

mode 

0 0.023592 0.005602 0.023533 0.005601 

0.5 0.027356 0.006488 0.027269 0.006487 

1 0.032567 0.007487 0.032431 0.007486 

1.5 0.039834 0.008486 0.039606 0.008484 

2 0.048650 0.009293 0.048268 0.009290 
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                                                                                                                                     Figure 7. 

Figure 7.  shows that time period increases with increasing value of m for both modes vibration for different 

value of Kf and for first mode time period varies parabolically and for second mode it varies linearly. 

Table 8. Deflection w vs. m for different Z,  

kf=0, Kd=0,β=0.6,T=5K,Z=0.2, 

 

 
m Z=0.2 Z=0.4 

First 

mode 

Second 

mode 

First 

mode 

Second 

mode 

0 0.734871 0.019771 0.391985 0.069014 

0.5 0.703066 0.016406 0.375021 0.057270 

1 0.639822 0.011023 0.341286 0.038478 

1.5 0.555023 0.006041 0.296053 0.021089 

2 0.460339 0.002725 0.245548 0.009514 
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Figure 8. 

In figure 8, our result for deflection matches with reference [4] for the values of elastic foundation factor and 

damping factor equal to zero. 

Table 9. Logarithmic decrement vs. Kf for different Kd, 

 B=0.6, m=1.5 

 

 

Kf 

Kd=0.2 Kd=0.4 

First mode Second 

mode 

First mode Second mode 

  0   -0.027888  -0.129251 -0.028319 -0.129343 

0.5 -0.027940   -0.129261 -0.028371 -0.129353 

1 -0.027992 -0.129271 -0.028422 -0.129363 

1.5 -0.028045 -0.129281 -0.028474 -0.129372 

2 -0.028097 -0.129290 -0.028525 -0.129382 

2.5 -0.028149 -0.129300 -0.028576 -0.129392 
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Figure 9. 

From table 9 we see that there is no change in logarithmic decrement up to two decimal  place for both mode of 

vibration for different value of Kd and logarithmic decrement varies linearly for both mode of vibration. 

Conclusion:  

On comparing with reference [4], it is observed that: 

When we increases the value of elastic foundation factor and damping factor from 0 to 2.5 close  agreement is 

found for the free and damped vibration of elliptical plate with resting on elastic foundation. 
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List of Symbols:  

a  length of the semi major axis of 

elliptical plate 

ρ  mass density per unit volume of the 

plate material,  

b b  length of the semi minor axis of 

elliptical plate, 

t  time,  

m ( a/b ) aspect Ratio η  Visco-elastic constant ,  

h   thickness of the plate at the point 

(x,y), 

w(x,y,t)  deflection of the plate i.e. amplitude,  

x, y  co-ordinates in the plane of the plate. T(t)  time function,  

E  young’s modulus,  W(x,y)  deflection function 

G  shear modulus,  β  taper constant 

ν  Poisson’s ratio,  Λ  Logarithmic decrement, 

Ď   visco-elastic operator K  time period,  

D1   Eh0
3/12(1-ν2), Flexural rigidity,  ho̅̅ ̅ =h0 at x = y = 0 

Q =(Ea3ho̅̅ ̅3)/24(1-ν2) , a constant R   = (1/2)ρP2a5ho̅̅ ̅, a constant    

λ2 =12ρP2a2(1-ν2)/Eho̅̅ ̅2, a frequency 

parameter 

Kd     Damping factor 

Kf      Elastic foundation factor   

 

 

 

 


