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Abstract: 

All along the machine learning (ML) pipeline, people are essential. An intricate network of dispersed 

assessments allows people to annotate unmatched volumes of data, which aids in the development of machine 

learning systems. Expert practitioners work with ML model outcomes in a range of real-world areas, including 

healthcare, lending, education, social services, and disaster relief, on the machine learning deployment end. 

In order to better integrate human judgment with machine learning algorithms, this paper looks at and 

supports it in complicated decision-making scenarios. Building on the rich and fertile ground from human 

behavior-studiesing disciplines, such as psychology, cognitive science, and human-computer interaction, this 

work studies the situated human factors in various socio-technical systems, like crowdsourcing, peer review, 

and ML-assisted decision-making, from both quantitative and qualitative perspectives. To be more precise, we 

create statistical instruments to comprehend human behaviour in various data elicitation scenarios. Next, in 

order to assist evidence-based policy reform aimed at improving decision quality, we design experiments that 

yield statistically sound insights regarding human decision-making biases in complicated environments. We 

propose both domain-specific and domain-general frameworks to facilitate efficient human-ML collaboration, 

with the goal of enhancing ML deployment in real-world scenarios. Understanding and utilizing the relative 

advantages of people and machine learning methods is the main goal here. This study demonstrates the value 

of highlighting human involvement in the larger endeavour to increase the effectiveness of machine learning 

algorithms. 

1. Introduction: 

The use of machine learning (ML) models in decision-making systems has increased dramatically in recent 

years, with applications found in a wide range of industries, including criminal justice, credit lending, and 

healthcare (1), for example. In the criminal justice system, algorithmic recidivism risk scores inform pre-trial 

bail decisions for defendants (4), and in credit lending, lenders regularly use credit-scoring models to assess 

the risk of default by applicants (5). The excitement surrounding the use of these technologies in high-stakes 

decision-making is fuelled by the promise of these technologies to tap into large datasets, mine relevant 

statistical patterns within them, and use those patterns to make more accurate predictions at a lower cost and 

without experiencing the same cognitive bias. 

However, a growing body of research indicates that ML models are susceptible to a number of biases (6) and 

instability (7). Furthermore, because machines lack human characteristics like cognitive flexibility, social and 

contextual knowledge, and commonsense reasoning abilities, they frequently result in detrimental outcomes 
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in practice (8). Due to these findings, there have been requests for both human and machine learning 

participation in high-stakes decision-making systems. The idea behind these requests is to create carefully 

crafted hybrid decision-making systems that combine and enhance the advantages of both ML models and 

human thought processes. In actuality, such systems are widespread, even in the previously listed sectors. A 

variety of hybrid human-ML designs, from algorithm-in-the-loop (10) to human in-the-loop (9) configurations, 

have been developed and tested by researchers. 

Nevertheless, there are conflicting empirical results about these solutions' efficacy and success (11). 

Concurrently, an expanding corpus of theoretical research has endeavoured to formulate and structure these 

hybrid frameworks (12) and examine the most effective methods for combining human and machine learning 

assessments inside them (12).We examined the literature on human behaviour, cognitive and behavioural 

sciences, and psychology to develop our taxonomy of human-ML complementarity and identify the key areas 

where human and machine learning decision-making processes diverge. utilizing the traditions of cognitive 

science, computational social science, behaviour, cognitive and behavioural sciences, and psychology to 

comprehend the fundamental differences between the decision-making processes of humans and machines. As 

per the conventions of cognitive science and computational social science (13), we comprehend decision-

making in both human and machine learning. 

Our taxonomy delineates specific distinctions between human and machine learning decision-making. We 

propose a mathematical framework that encompasses all the factors in the taxonomy and shows how our 

taxonomy can be used to analyse whether we can expect complementarity in a given environment and what 

kinds of human-ML combination can help accomplish it. Specifically, we formulate an optimization issue for 

convex combinations of decisions made by humans and machine learning. This issue formulation creates a 

framework for academics to investigate which traits of humans and machine learning models can support 

complementing performance. We suggest quantitative complementarity measures in order to classify various 

forms of complementarity. These measures are intended to capture two prominent forms of human-ML 

collaboration that have been identified in the literature: communication-based collaboration and routing (or 

deferral). 

We simulate ideal human-ML pairings under two different scenarios to illustrate the application of our 

taxonomy, the optimization problem setup, and the related metrics of complementarity: (1) Different feature 

sets are available to human and machine learning models; (2) distinct objective functions are associated with 

each model type. Through the comparison of optimal aggregation procedures under these circumstances, we 

are able to obtain important insights into how each agent contributes to the best possible combined choice. 

This helps future research and practice create human-ML relationships in these circumstances in a successful 

manner. Together, these studies demonstrate that integrating human-ML judgments should take use of each 

entity's distinct advantages and disadvantages, since various sources of complementarity influence the kind 

and degree of performance improvement that may be attained through human-ML collaboration. 

2. Methodology for designing the taxonomy 

In order to look into the possibility of complementarity in combined human-ML decision-making, we must 

comprehend the advantages and disadvantages of the ML model and the human decision-maker in the 

particular application. As an example, it has been noted that ML models make conclusions based on far larger 

data sets than humans could effectively process (13). Human decision-makers may be unable to replicate the 

rich contextual knowledge and common-sense reasoning abilities that humans bring to the decision-making 

process (10). As a result, we create a taxonomy for human-ML decision-making that takes into consideration 
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the many distinctions between machine learning and human decision-makers, including applications that 

involve predictive decision-making. 

 

 

  

 

 

 

 Task Input                 Processing Output 

Figure 1: Proposed taxonomy of human and ML strengths & weaknesses in decision-making divided into four 

parts of the decision-making process: Task definition,    

input, internal processing, and output. 

 

3. A taxonomy of human and ML strengths & weaknesses in decision-making 

In this study, we analyse two decision-making agents: the ML model, represented by M, and the human, 

represented by H. Using the notation we expand upon it by usingXH, XMto represent the feature space that each 

agent has access to, where XH, XM⊆ X. Similarly, we consider a human version and an ML version for each 

variable presented for our decision-making setup in the previous section, denoted by subscripts H and M, 

respectively. 

 

3.1. Task 

The key differences between the ML model and the human in terms of how the decision-making task is defined. 

• Objective: For example, supervised learning models seek to reduce anticipated loss while reinforcement 

learning models want to maximize expected cumulative rewards. These are the sole predicted performance 

optimization goals of most machine learning models. Although recent studies have investigated methods for 

developing models that take into account a wider range of goals, such as various risk metrics (15), definitions 

of fairness (16), and ideas of interpretability (17). encoding every facet of the goals that a human decision-

maker would seek to maximize is either challenging or impractical (18). Our notation allows us to write this 

as FH ̸= FM. For instance, while deciding whether to lend money, bankers may take into account a variety of 

risk variables as well as other criteria including upholding their organization's lending policies and customer 

connections (19) 

• Misaligned construct of interest: When machine learning is used in social situations, theoretical factors like 

socioeconomic status, teacher efficacy, and recidivism riskall of which are difficult to quantify are frequently 

included in the models. Rather, they are deduced indirectly using proxies, which are measures of attributes that 

are noted in the data that a model may access. 

Simplifying assumptions must be made in order to define proxy variables for a construct of interest, and there 

is frequently a conceptual gap between ML proxies and how human decision-makers understand the targeted 

construct (20). Stated otherwise, OH(X, a) ̸= OM(X, a). According to Jacobs and Wallach (21), the mismatch 

between the notion of interests and the inferred measures is the direct cause of a number of harms examined 
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in the literature on the fairness of socio-technical systems. Obermeyer et al. (22), for instance, looked at racial 

biases in a hospital-based machine learning platform. They discovered that poorer healthcare provision 

decisions were made for Black patients compared to White patients when patients' healthcare expenditures 

were used as an indirect proxy to predict patients' demand for treatment. In this case, the proxythe monetary 

cost of treatmentwas easily obtained from the data that was at hand, but it is very different from how medical 

practitioners understand patients' true needs for care. 

 

3.2. Input 

We now go over the unique features found in the inputs that ML models and humans employ. 

 

Access to different information: 

From an input standpoint, both people and robots have access to shared and non-overlapping information in 

many contexts, such as criminal justice and healthcare: XH ≠ XM. This is because important traits that cannot 

be codified for machine learning are frequently present in real-world decision-making scenarios. For instance, 

a physician can examine a patient's physical presentation and have a better understanding of their symptoms 

since this data is difficult to encode and give to the computer. In a similar vein, interactions with the defendant 

teach the judge about their predispositions (4). In the research on human-ML complementarily, this 

phenomenon is also known as unobservable (10) and information asymmetry (23). 

 

Nature of past experiences: 

The training datasets utilized by contemporary machine learning systems are significantly different from the 

nature of embodied human experience over the course of a lifetime: DH ≠DM. For instance, ML models are 

frequently trained on a large number of historical examples of a particular decision-making activity, yet the 

training data comprises a confined and unchanging set of data. This frequently fails to capture the depth of 

human experience. People make judgments based on a lifetime of experiences from a variety of fields, and it 

can be challenging to identify the precise facts that they consider. In the other hand, people usually only learn 

from large amounts of training data, whereas machine learning models can learn from small portions of a large 

number of human decision-makers' judgments. 

 

3.3. Internal processing 

The key differences between the internal workings of ML systems and humans are now discussed. 

 

Models of the world: Humans rely on sophisticated mental models and "theories" that store complicated views 

about causal mechanisms in the universe, not merely statistical associations, as is thoroughly reviewed in(24). 

As a result, human representations of the world differ from those represented by machine learning models (ML 

models):πH ≠ πM. For instance, beginning Humans acquire complex belief systems about the social and physical 

worlds from a young age (intuitive psychology and intuitive physics), which greatly influence how they see 

and interpret their surroundings. Human mental models are often compositional and causal, in contrast to 

contemporary machine learning methods.Consequently, humans can learn more quickly than contemporary 

machine learning systems thanks to these strong preconceived notions about the world, and they can draw 

conclusions from very little amounts of data such as one-shot and few-shot learning (25) Conversely, 

nevertheless, the model. Whether it is a class of parametric or non-parametric models, the machine decision-

maker class has a more mathematically tractable form (26). While researchers frequently use data and model 
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architecture to encode domain knowledge when designing these models, like neural networks, most machine 

learning models still have issues with distribution shift (27), lack of interpretability (28), and require large 

sample sizes. 

Choosing among models of the world: 

ML models look for the model that maximizes their goal differently than humans do based on the task 

specification, data, and models of the environment OPTH ≠ OPTM. Due to their vastness, modern machine 

learning models such neural networks can need a significant amount of processing power and are often learnt 

by first-order approaches. according to the models (29). Conversely, heuristics that humans can use in a very 

short length of time are possible (30). These straightforward tactics could be superior than more intricate 

models in situations when there is a lot of inherent uncertainty in the work. We direct readers to (31) for a 

more thorough analysis of the situations in which and situations in which such heuristics would be more 

appropriate. 

 

3.4. Output 

We now go over the unique qualities that set human and machine learning system outputs apart. 

 

Available actions 

The range of options or actions that ML models and humans can choose from in real-world deployment 

circumstances can vary: AH ≠ AM. For instance, in the context of K–12 education, ML-based tutoring software 

would be able to provide kids just the right amount of guidance when they're having trouble with a math 

concept. In the meanwhile, even though a humanAlthough teachers using this software in the classroom have 

less time to spend with each student, they can still support students in more ways, like by offering emotional 

support or assisting with prerequisite material that is not covered by the software (10).Similar to this, a model 

may only be able to suggest that a case be looked into or not, depending on the data that is currently available, 

in the context of ML-assisted child abuse screening. On the other hand(32) human call screeners may take 

steps to get further information as necessary, such as calling other parties who may be relevant to a case. 

Explaining the decision 

The ability of humans and machine learning to explain the reasoning behind their choices varies. Extensive 

research has been conducted on interpretability and explain ability (XAI) for machine learning (33). people 

are typically more adept than machine learning algorithms in producing coherent explanations that have 

significance for other people, according to research in cognitive and social psychology. Additionally, (34) 

contends that XAI The focus of study should shift from vague, subjective ideas of what constitutes a "good" 

explanation to the rationale and decision-making processes that individuals use to choose an explanation. They 

discover that human explanations are, above all, social and contextual, contrastive, and biased in their 

selection. However, human explanations could not match their true underlying decision-making processes (35) 

,In contrast, we can always track the exact computational processes that resulted in the output prediction when 

using machine learning models (36). 

Uncertainty communication: 

New techniques for calibrating an ML model's prediction uncertainty have been developed in response to 

growing research in the field of uncertainty quantification for machine learning (37). Additionally, techniques 

have been developed to break down the uncertainty in the model into two categories: epistemic uncertainty, 
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which represents the inherent randomness in an application domain and cannot be reduced, and epistemic 

uncertainty, also referred to as systematic uncertainty, which represents the uncertainty resulting from a lack 

of knowledge or information and can be reduced (38). These techniques for quantifying uncertainty, however, 

might not always be well-calibrated (37)and are a current line of inquiry. In the meanwhile, human decision-

makers typically produce discrete decisions rather than uncertainty scores and struggle to calibrate their level 

of uncertainty or confidence in their choices (39). Additionally, Individuals differ in their uncertainty 

calibration scales (40). 

Output consistency: 

When a decision-maker consistently generates the same result for the same input, we say that they are 

consistent. As a result, we take into account the inconsistent judgments that stem from extraneous elements, 

which we refer to as factors unrelated to the input. The time of day, the weather, and other variables are a few 

instances of external elements. Studies in Human behavior and psychology have demonstrated the inconsistent 

nature of human judgments (41). More precisely, given the exact identical issue description at two separate 

times, there is a positive chance that a particular human decision-maker would arrive at a different choice. 

Numerous fields, including clinical psychology (43), medicine (42), finance, and management (41), have 

shown within-person inconsistencies in human judgments. This type of discrepancy is not shown using 

common ML algorithms.2 

Time efficiency:  

ML models can provide more judgments in a shorter amount of time than human decision-makers in a variety 

of scenarios. Humans frequently have very little time for decision-making overall, in addition to perhaps taking 

longer for each decision. 

 

4. Conclusion 

Our research advances our knowledge of potential processes behind complementing performance in human-

machine learning. By combining knowledge from several different fields of study, we offer a taxonomy that 

describes the possible advantages of human and machine learning-based decision-making. Our taxonomy 

offers a platform for academics and professionals working on human-ML collaboration to examine and 

comprehend the possible causes for anticipating cooperative group performance within the relevant application 

fields. With the use of this taxonomy, we believe the research community will be able to articulate its 

expectations regarding the contexts in which they anticipate complementarity between human and machine 

learning for decision-making. 

We provide a problem design for the best convex combination of human and machine learning judgments, 

along with related measures for complementarity, based on our taxonomy. Our suggested framework integrates 

a number of earlier methods for merging judgments made by humans with machine learning. Crucially, a 

critical study of our approach indicates that the best way to integrate human and machine learning-based 

decisions will rely on the particular relative advantages each has in the particular decision-making application 

area. As the simulations in Section 3 show, our optimization approach may be used to create hypotheses 

regarding the best methods to combine human and ML-based assessments in specific scenarios. 

Models of human and machine decision-making, as well as historical decision-making data, can be used for 

this. 

 

By contrasting the different outcomes of these simulations, academics and practitioners may also better grasp 
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the trade-offs associated with integrating human-ML collaboration in a decision-making scenario. increases in 

accuracy compared to implementation costs. It is important to keep in mind that, although the joint decision-

maker is an idealized form in theory, actual joint decision-making may have lesser accuracy owing to human 

decision-making's inefficiencies. Therefore, before implementing, it would be helpful to estimate the possible 

advantages of collaborative decision-making. It would also be extremely beneficial from a theoretical and 

practical one to examine the hypotheses and trade-offs that our models offer empirically. 
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