
ISSN: 2633-4828 Vol. 2 No.1, June, 2020

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 2 No.1, June, 2020
International Journal of Applied Engineering & Technology

139

A MICROSERVICES SECURITY FRAMEWORK FOR SMALL-SCALE

DEPLOYMENTS: PRACTICAL APPROACHES TO SECURE AND

EFFICIENT SERVICE-BASED ARCHITECTURES

Samuel Johnson

Abstract

The Microservices architecture model has been widely adopted because of its great scalability and

flexibility and because it encourages innovation by breaking applications down into minute services

that are deployable and manageable. Nonetheless, regardless of the scale or the number of

microservices, their security is complex and includes challenges like secure communication between

microservices, access control, and sound vulnerability management. However, many conventional

frameworks are developed for large-scale enterprise systems and may not be suitable for deployment

within the confinements of a small-scale system or may not be financially feasible; thus, these

environments remain vulnerable to threats. This paper offers a general, extensible, yet detailed,

customizable microservices security model designed specifically for small-scale environments. The

framework relies on a weightless and highly effective form of security compared with reliance on

automation for constant monitoring of networks without violating the set standards. Maining service-

to-service authentication, authorization, data encryption, and security policy enforcement, this

framework offers a real and viable solution for microservices protection, especially for starters and

rather small companies. In this article, we discuss the design principles, framework components,

practical realizations, and possible future developments of the proposed security framework to

strengthen security in compact microservices environments.

Key words;

Microservices Architecture, Small-Scale Deployments, Service Communication, Access Control, Data

Encryption, Security Policies, JWT, mTLS, API Gateway, Rate Limiting, Centralized Logging, Incident

Response, Vulnerability and Secrets Management, RBAC, Least Privilege, Zero Trust, Machine

Learning for Anomaly Detection, Compliance Standards.

1. Introduction

The design approach of microservices is a major bolt from conventional software development, where

applications are built as one-piece or monolithic structures. Microservices have revolutionized how

software is developed through the ability to allow decomposing applications into individual services for

easier improvements on aspects without a domino effect on the broader system (Nyati, 2018b). This

architectural style, popular with large-scale companies, has proven beneficial in developing complex,

reliable, fluid, and portable applications. Nevertheless, the microservices being researched by

increasing numbers of small organizations often encounter resource limitations that make security

deployment difficult because most conventional structural designs focus on large-scale infrastructure

and enterprise-level applications.

For limited projects, a security framework must be realistic, inexpensive, and easy to adapt to

provide adequate protection against these emerging threats. Small-scale environments do not have large

budgets for security teams and big-scale solutions; therefore, a separate approach to remediate constant

threats is required to address insecure inter-service communication, unauthorized users, and a weak

response to events. These small-scale deployments are vulnerable to data loss, unauthorized access, and

misappropriation of services that cause malEffects on business image and strategic value in the

marketplace.

This paper presents a security framework for small-scale or microservices in the early growth

stage and aims to develop the security practice without requiring many resources. The following areas

are well captured in the proposed framework, authentication, encryption, monitoring, and logging.

ISSN: 2633-4828 Vol. 2 No.1, June, 2020

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 2 No.1, June, 2020
International Journal of Applied Engineering & Technology

140

Every security component is separable into components, meaning smaller organizations can identify

and respond to greater risks that correspond to greater needs while implementing only those necessary

security aspects. Through careful orientation towards the functionality, this framework allows

organizations to defend the microservices environment without high costs and complexity.

Besides the list of the principles and components of the framework, this paper also presents

recommendations on its application. The phased approach is compatible with the challenges

experienced by smaller-scale projects. The approach discussed above would ensure that small

organizations lock down their microservices architectures to the level of security that may have seemed

out of reach, given their limited financial and operational resources.

Figure 1: Monolithic Approach vs. Microservices Approach

2. Security Challenges in Small-Scale Microservices Deployments

Table 1: Key Security Challenges in Small-Scale Microservices Deployments

Security Challenge Description

Resource Constraints and Budgets
Limited financial resources and lack of dedicated security

personnel.

Decentralized Management
Inconsistent policies and difficulty in enforcing centralized

security measures.

Service Communication

Vulnerabilities
Risks in unencrypted data exchanges and unauthorized access.

Monitoring and Incident

Response

Limited tools and resources for real-time monitoring and rapid

incident response.

2.1 Resource Constraints and Limited Budgets

One of the hardest aspects of protecting small-scale microservices deployment is the constraint on

financial and personnel resources, especially security personnel (Farris et al., 2018). Small

organizations, especially, do not have the luxury of hiring or engineering complete security that requires

dedicated personnel and tools, which can be costly, which consequently makes it important that those

small organizations make do with basic yet effective security tools and measures or programs that they

can obtain at a little cost. For instance, small deploy initializes can take pride in lightweight encryption

schemes that provide data protection without the computational overhead of more 'elaborate' algorithms

(Nyati, 2018a).

Again, due to the restricted funding, small organizations are forced to hire general IT employees

with no intensive security education, leading to knowledge and practice gaps. Lacking the resources to

either attract or maintain experienced personnel, such organizations risk being unable to adequately

monitor their environments for signs of attacks and, subsequently, provide adequate response. The

security introduced here advocates the following approach: JWT, for instance, is a lightweight security

solution that offers great security strength and requires little Setup and Management.

ISSN: 2633-4828 Vol. 2 No.1, June, 2020

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 2 No.1, June, 2020
International Journal of Applied Engineering & Technology

141

To overcome those constraints, this framework also focuses on cost-efficient solutions,

employing free-of-charge tools that provide sufficient security measures and do not require buying the

license for their usage. Through such tools, organizations deploy that tiny security posture that would

otherwise offset certain general risks but at pocket-pinching cost. Further, it also entangles a streamlined

security proposal by developing rudimentary security protocols and utilities that do not need much

formulation to be employed by non-technical personnel.

Furthermore, the framework also promotes high-quality, cryptographically sound data security

encryption without exploiting resources like TLS for inter-service communication. This evident

security/performance trade-off means that even small-scale microservices can have secure interactions

and, thus, not waste resources on managing large-scale integration, allowing the organization to allocate

resources optimally.

Figure 2: Resource Constraints in Project Management

2.2 There was no central management when it came to security.

Microservices are decoupled and decentralized individual service components that dissolve centralized

microservices' security management and control when the extension of microservices deployment is

still small-scale (Andriyanto & Doss, 2020). This decentralization leads to security policies of services

being quite different, and certain areas could go unnoticed and contain entrance points for attackers.

Larger organizations can afford to purchase unified security management solutions. However, small-

scale organizations do not have the structure or financial capability to centralize security control and,

therefore, can enforce standard security measures.

The proposed framework overcomes this problem by suggesting the use of loosely coupled but

centrally accessible components such as API gateways and logging. API gateways are designed to offer

a unique point of entry, supporting common authorization and authentication methods and request

examination. It lowers risks because any organization is less complex when security is centralized, and

everybody is on the same page, which makes a lot of sense for a small team that manages multiple

service endpoints.

The logging and monitoring technologies must be centralized to capture the access patterns and

possible threats in the various decentralized fragments. Using lightweight logging agents and

monitoring dashboards applicable to small deployment deployments, small organizations can have a

big picture of their security status to identify possible incidents quickly. They also aid compliance and

auditing in enforcing and maintaining security in ways that don't require strict centralization of

processes.

In the external environment with no overall security administration, vulnerable points

frequently appear due to differences among services, especially with the growth of microservices and

their new dependencies. This framework tends to execute security measurements and procedures that

can be easily implemented and maintained by valuable but limited security staff. This ensures that the

security process is functionally unified, manageable, and responsive for small teams to enforce security

systematically, record changes, and proactively act against possible threats.

ISSN: 2633-4828 Vol. 2 No.1, June, 2020

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 2 No.1, June, 2020
International Journal of Applied Engineering & Technology

142

Figure 3: Microservice Principles

2.3 The Flaws in Service Communication

Inter-service communication is significant in microservices since it allows individual services to

communicate and exchange data over Application Programming Interfaces (APIs) and message queues

(Nyfløtt, 2017). However, using inter-service communication can lead to poor security where data

interception, unauthorized access, or data manipulation may occur, affecting the reliability of the whole

microservices architecture. Interactions or flows that arise in these small-scale deployments are

potentially exposed to security threats since they often do not have the workforce or capital to deploy

exhaustive encryption or secure identification measures that protect these interactions.

This framework presents lightweight but efficient ways of implementing security for service

communication, including using JWT for stateless authentication, where service identity is established

without needing an ongoing connection. Furthermore, TLS is required to communicate between

services and protect information transmitted in real time from possible interception. These methods are

selected purposely with low resource requirements and high security for small-scale implementation.

mTLS can be used by organizations that need a more robust API protection mechanism than

ordinary TLS. This protocol authenticates both endpoints and only services to transfer information. For

small deployments, it is possible to use mTLS on an as-needed basis to protect high-value assets without

needing to boil the ocean and secure everything that is communicated over the Internet.

Making the communication secure preserves the data and does the same for microservices as

they interoperate (Vresk & Čavrak, 2016). Unauthorized access to service endpoints can cause the

services to be abused, and even their data and user information may be leaked or even subjected to a

denial of service (DoS). These methods are prioritized to provide the means for secure, authenticated

communications, thus increasing data security and decreasing the chance of services being abused.

Figure 4: Inter-service communication in Microservices

2.4 Monitoring and Incident Response Limitations

Monitoring and incident handling are noticing security threats and dealing with their influence in

microservices (Frisell, 2018). However, small-scale service deployments can suffer from serious

difficulties in funding complex monitoring systems, making it difficult to track the state of affairs in

their services and entail slower reactions to incidents. This implies that without live monitoring, users

ISSN: 2633-4828 Vol. 2 No.1, June, 2020

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 2 No.1, June, 2020
International Journal of Applied Engineering & Technology

143

may be exposed to these breaches for a long, thus escalating their chances of losing their data or

affecting their services.

To overcome these issues, the proposed risk management framework incorporates lightweight

monitoring and alerting mechanisms compatible with small systems. Fluent Bit and Wazuh are

important tools that provide necessary monitorization capabilities, log age, region, and real-time

behaviors. By integrating these tools with alerting tools like Prometheus and Grafana, the organization

gets alerts whenever any threat exists, leading to a fast response.

Centralized logging is viewed in the same light as the aspects of small services that need

activities and security events. This approach makes it significantly easier to notice any potential avenues

of threat; all logs are centralized, which makes it easier to look for suspicious patterns. Lightweight

logging agents help in event tracking by cutting down the effort used in log management, which is

possible in small teams.

The final control in the framework suggests implementing pre-identified but widely scripted

playbooks; they detail the processes required to address and prevent various types of security breaches.

These playbooks are valuable for supporting diverse smaller teams in reacting uniformly and adequately

to security risks, most likely without specific security professionals on the team. Using automated

alerting, centralized logging, and structured response plans, the framework enables small deployments

to stay effectively vigilant and minimize the consequences of possible security incidents.

3. Objectives and Principles of the Security Framework

The security design for small-scale microservices architecture is based on foundational principles that

serve the purpose of reasonable functionality cost (Di Francesco et al., 2017). They are intended to

address the need and the limitation of resources endemic to smaller organizations and, at the same time,

preserve the swift, stringent security measures that characterize good information technology

applications. Following these objectives ensures that vulnerability from limited budgets and technical

staff is addressed, leaving organizations with a clear guide to secure operations. All these principles

collectively lead to an approach incorporating security, resource consumption, and scalability, allowing

for small deployment of microservices to remain safe without being overly cumbersome.

Lightweight and Efficient: This framework's number one design goal is to reduce computation

complexity while concurrently providing the best security. Protocols applied to small-scale

deployments do not usually have strong processing power and storage, so these must be efficient in

resource consumption to avoid degrading performance. Lightweight security mechanisms, including

effective encryption methods and simple authentication processes, effectively secure the services

without impacting the Company's cost. These tools are designed to serve in low-resource contexts

whereby small organizations can attain high-impact security without arresting system responsiveness

and agility.

Figure 5: Principles of implementing a Microservice:

1. Modularity: The framework is flexible and can be implemented with one or more

modules from those described above. This modularity allows for an implementation to

be targeted so that an organization can focus on certain problem areas based on their risk.

ISSN: 2633-4828 Vol. 2 No.1, June, 2020

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 2 No.1, June, 2020
International Journal of Applied Engineering & Technology

144

For example, in case of critical concerns such as security in inter-service communication,

it will be easier for organizations to explore and implement JWT and TLS before

considering aspects such as API gateways and logging centralization. Scalability is also

possible because, in modularity, more components can be incorporated as the

organization develops.

2. Automation and Monitoring: Indeed, deployment is greatly augmented by eliminating

repetitive manual interventions when used on a small scale (Konstantinidis et al., 2014).

Automation improves security observation and lets the organization discover security

risks in real-time, which means such threats can be addressed immediately. For this

reason, two response categories have been designed to help organizations with a few

personnel manage their alerting systems and monitor continuous response tools

effectively. Furthermore, automation reduces the time taken in processes such as

vulnerability scanning and intrusion detection, giving an ongoing solution Business

Advantage for managing change and security in an active microservices Society.

3. Compliance and Best Practices: Referring to current practices of the IT industry is crucial

as it helps to prevent security gaps and ensure compliance with the rest of the existing

rules. The framework encompasses principles on security that are aligned with

compliance standards and thus may effectively create compliance within an

organization's setting without extensive resources. Adherence to standards like GDPR,

HIPAA, or PCI DSS reassures customers and other stakeholders where appropriate.

Concerning industry standards, the framework offers a formal structure for achieving

security, meaning that it becomes easier for organizations to know what is expected of

them from a security perspective at any given time.

4. Core Components of the Microservices Security Framework

Table 2: Core Components of the Security Framework

Component Purpose

Service-to-Service

Authentication

To prevent unauthorized access between services using JWT and

mTLS.

Data Encryption TLS and field-level encryption to protect data in transit and at rest.

API Gateway and Rate

Limiting

To centralize control over requests and limit traffic to prevent DoS

attacks.

Centralized Logging and

Monitoring
Provides unified logging for easier identification of threats.

Vulnerability Scanning
Automated tools for detecting and managing vulnerabilities in code

and containers.

Role-Based Access Control

(RBAC)

Restricts access to services based on roles to enforce least privilege

access.

4.1 Service-to-Service Authentication and Authorization

Inter-service authentication is an important factor in microservices architecture, as it prevents one

service from accessing another independent service. The framework focuses on lightweight solutions

such as JSON Web Tokens (JWT) to provide a stateless and efficient authentication mechanism. JWTs

are issued by a trusted third party – the Identity Provider (IdP) and this token contains encoded data,

which every microservice can validate separately. This minimizes and avoids making extra accounts on

any other site to authenticate and greatly benefits small-scale deployment, which may not be able to set

up complex identity management systems. Further, JWTs are extendable to many programming

languages, which makes them flexible in many microservices setups.

ISSN: 2633-4828 Vol. 2 No.1, June, 2020

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 2 No.1, June, 2020
International Journal of Applied Engineering & Technology

145

OAuth is incorporated within the framework to enable services to request access tokens with a

scope defining its functionality (Odyurt, 2014). OAuth 2.0 strengthens security by implementing just-

in-time (JIT) access control, which confirms that a service only has the number of access rights it truly

needs. This method is very useful where there is a need to have multiple services access data, but such

data has to be protected from exposure and unauthorized manipulation. Large-scale blockchain

microservices are effectively scalable due to OAuth 2.0's flexible authorization maintained by access

tokens.

If additional protection is required for deployment, mutual TLS (mTLS) can be enabled,

wherein both the client and server are reciprocally authenticated before initiating a connection. This

protocol is thus well suited for carrying out sensitive information flow of inter-service communication,

whereby only authorized services are allowed to communicate. As a more resource-hungry method than

JWT, mTLS provides a much higher level of security where the threat is high and prevents further

attempts to get into the leaking data.

JWT, together with OAuth 2.0 and mTLS, is placed within this framework and offers a small-

scale deployment of various ways to secure microservices communication. Both methods can be

modified depending on the organization's requirements, so implementing authentication and

authorization procedures is efficient and cost-effective. The framework reduces the possibility of

unauthorized users accessing the system through such protocols while keeping microservice

interactions authenticated.

Figure 6: Security in Microservices

4.2 Data Encryption

Encryption is one of the core controls for microservices since it deals, for instance, with data in motion

(Esposito et al., 2017). The framework uses Transport Layer Security (TLS) as a primary means to

encrypt all inter-service communication and protect from interception while in transit. TLS is well

known to be effective and implemented extensively within web applications; thus, it should be the right

solution to secure microservice interactions. Since TLS provides mechanisms for securing data

exchange in transit, individuals and organizations, especially using flowing and transient technologies,

stand to benefit from avoiding cases of unauthorized access or interception of information.

To enhance security, field-level encryption should also be applied to fields containing sensitive

payload information. This technique encrypts certain information, such as identity numbers or credit

card information, before sending it across the network. Field-level encryption offers an additional

security measure; more specifically, it helps prevent security breaches if the data has been successfully

intercepted and remains illegible. This method is useful for organizations dealing with highly sensitive

information, as it does not expose the information beyond the sides of basic transit encryption.

Secrets management solutions like HashiCorp Vault are important in administrating sensitive

information, including keys, tokens, and passwords (Kuan, 2018). When a single point within an

organization restricts all secrets management, access to key information is regulated effectively, and

access policies are implemented. It also makes it easy to cascade keys and secrets across services and

to update them when sharing or granting access needs to be withdrawn. Centralized secrets are less

ISSN: 2633-4828 Vol. 2 No.1, June, 2020

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 2 No.1, June, 2020
International Journal of Applied Engineering & Technology

146

likely to be placed in versions and source codes; decentralized secrets cause many security issues in

environments that use microservices.

TLS, combined with field-level encryption and a single secrets management platform, provides

a good overview of data encryption within a small-scale microservices application. This framework

safeguards the data at the multilayer during transit and on the storage side to minimize the chances of

miscreants stealing the information. Although these methods are lightweight, they have good security

features matching the industry's needs, and thus, small organizations can implement them without

requiring many resources.

Figure 7: Transport Layer Security

4.3 Light-Weight API Gateways and Rate Limiting

Being singular entry points into an application, API gateways also handle incoming microservices

requests and apply security actions to them (Päivärinta, 2019). In this context, the API gateway is a

single access point consolidating foundational security features like authentication, authorization, rate

limiting, and request validation. This centralized approach minimizes the number of potential attack

vectors and guarantees that any microservices request must be genuine and approved. API gateways

enable control at a single spot, and most of the services' security policies are centralized and thus much

easier to implement.

The rate limiting is set up at the API Gateway level to address the basic threat, such as DoS,

whereby services get overloaded. Through restricting the number of requests a service can handle in a

given duration, rate limiting is useful in preventing disruption of system balance by, say, malicious

people. This is very relevant, especially to small-scale deployments, which may find it challenging to

accommodate the traffic. Both rate limiting and throttling procedures are quite dynamic. Depending on

the service demand, they can be modified, allowing genuine requests to go through while declining

manly or otherwise frequent requests.

In addition to rate limiting, the API gateway offers request validation and input sanitization to

filter potentially unsafe data. When checking requests, it is possible to specify a format and data type

of accepted requests, which makes injection attacks or incorrect requests less of a threat. Input

sanitization assists in preventing cross-site scripting (XSS) and SQL injection by removing potentially

malicious data from input. Combined, the presented measures allow for avoiding the potential abuse of

services at a low level since only authentic requests appear.

When used with authentication, rate limiting, and request validation, the API gateway is a

significant security interface for microservices interactions (Tang, 2017). This is particularly helpful to

a central strategy since various services may be challenging to monitor and protect separately due to

limited resourcing in a small-scale setting. API gateway enables organizations to offer coordinated

security policies, making security more manageable and comprehensive while improving security.

4.4 Logging, Monitoring, and Intrusion Detection

Logging and monitoring are critical for controlling a microservices ecosystem since they help

organizations identify problems and threats and act as necessary. The framework recommended using

lightweight logging embeddable agents, such as Fluent Bit, which gathers logs from every service to

ISSN: 2633-4828 Vol. 2 No.1, June, 2020

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 2 No.1, June, 2020
International Journal of Applied Engineering & Technology

147

form a holistic view of access characteristics and security occurrences. Through consolidated logging,

several teams can observe all the services from one platform, making it much easier to identify

suspicious events and potential hacks. This unified logging system in small-scale deployments makes

it simpler by avoiding the complexities of tracking individual services, hence acting as both a visibility

improvement.

Anti-virus and intrusion detection tools include Wazuh or Snort, which continually look for

abnormal service and network traffic. These free tools process information continuously to produce an

alarm whenever a deviation occurs. With invasion detection, the framework assists the organization in

preventing attacks before they get worse, thus improving response. In small teams, intrusion detection

tools are very helpful as they improve security monitoring while minimizing resources needed.

Alerting is connected with monitoring utilities, also ensures the security team of possible

threats, and can even be real-time (Kanan et al., 2018). Tools such as Prometheus and Grafana have

features like visualization of health state in the form of a dashboard and an alerting system that makes

it easier for organizations to monitor the well-being of their system or look for security breaches.

Alerting lowers receptiveness by guaranteeing that irregularities cause quick notifications, allowing for

efficient probes and remedial actions. This capability is relevant in small-scale environments where

staff may not readily engage in extended surveillance at a lower temporal frequency.

Centralized logging, intrusion detection, and alerting provide small-scale trading banks with

tools that offer security capabilities similar to large corporations. These tools give essential information

about the system's functioning and help identify, analyze, and counteract organizational threats. The

framework omits heavyweight solutions in favor of lightweight and easily extensible solutions, enabling

microservices environments – even those as small as only a few microservices – to benefit from end-

to-end monitoring and efficient incident management.

4.5 Vulnerability Scanning and Dependency Management

Automated vulnerability scanning is useful for vulnerabilities in the software's dependencies and code

libraries. Snyk and OWASP Dependency-Check are services that perform such a scan and alert

developers when they detect known vulnerabilities in an application's code dependencies. Small

organizations must scan for such threats and apply security patches regularly, even if they likely have

little or no security staff. Using this dependency management strategy is quite proactive as it minimizes

the vulnerability of exploiting old libraries or known vulnerabilities.

In containerized environments, which can be characteristic of the microservices architecture,

there are other important aspects to mitigate, such as image scanning (Jagelid, 2020). Container tools

such as Trivy enable scanning container images for vulnerabilities and insecure configurations to avoid

them when implementing the pictures. Container image scanning makes it possible to ensure that base

images within microservices are safe and free from bugs and that there are no inner attacks within

containerized applications. It is even more beneficial for deploying on a smaller scale, as it adds a layer

of defense that fits well with the microservices' structure.

Besides scanning, the dependency management tools also assist the teams in tracking and

managing the libraries consistently. When implemented in the development process, such tools help

ensure that any malicious, exploitable issues found in dependencies are quickly fixed, keeping the

business application secure. Compliance is also achieved by handling dependencies as it ensures that

every component of the dependent is sourced from a provider whose products and services have met

set standards that the industry looks forward to practicing.

Because the format stresses vulnerability scanning and dependency, small-scale deployments

can maintain secure code while not overburdening it with such processes. By automating the process of

identifying and fixing vulnerabilities, these tools are put in the hands of a small group of developers,

ensuring their applications remain secure, compliant, and ready for any possible hacker attempt.

4.6 Role-Based Access Control (RBAC) & Least Privilege Access

ISSN: 2633-4828 Vol. 2 No.1, June, 2020

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 2 No.1, June, 2020
International Journal of Applied Engineering & Technology

148

RBAC is one of the requirements needed for access control in a microservices architecture to protect

critical data and functional interfaces. Implementing different rights assignments and managerial roles

for services or users, RBAC emphasizes that only prepared subjects can use specific resources. This

permissions approach decreases the possibility of unauthorized data access or service alteration and

establishes a set and clear authority escalation plan. In cases of limited usage, RBAC is particularly

beneficial compared to ABAC because issues concerning permissions are made much easier to manage,

and the potential for errors exists that could lead to insecure systems.

The principle of least privilege is basic in RBAC since it limits each service or user to the rights

they need for their job. Due to access rights restrictions, the framework limits opportunities for

adversaries; a service cannot perform an action for which it is not designed. This approach also

minimizes the effect a compromised service or account could cause since the attacker would have little

access. The last is the least privilege, which is more important in small organizations due to limited

capital; hence, every opportunity has to be protected.

The RBAC model assists audit and compliance due to its persistence of a record of permissions

and rights to particular objects. As a result of an access hierarchy, organizations have a better chance of

complying with compliance requirements within the organization. Also, RBAC makes it possible to

track events based on access, focusing on detecting possible misuse or intended violations. It is crucial

for small deployments where few compliance/auditing resources are often available, but compliance

requirements nonetheless exist.

RBAC, along with the least privilege within the microservices security framework, enhances

the access controls and provides the right permissions to the context (Suomalainen, 2019). Role-based

access rights control improves security and accountability, thus offering smaller-level deployments a

simple yet efficient way of controlling the permissions between the services.

5. Technology Stack for Implementation

Table 3: Cost-Effective Security Tools for Small-Scale Deployments

Tool Primary Function Benefits for Small-Scale Deployments

Keycloak
Identity and Access

Management

Open-source, adaptable to small-scale

needs.

Auth0 Authentication as a Service
Easy integration and scalability for smaller

setups.

Prometheus & Grafana Monitoring and Alerting
Real-time monitoring and easy

visualization.

OWASP Dependency-

Check
Vulnerability Scanning

Identifies vulnerabilities in code

dependencies.

HashiCorp Vault Secrets Management
Centralized secrets management without

high costs.

Fluent Bit Lightweight Logging Efficient, resource-saving logging agent.

Using open-source and lightweight tools is critical to creating a strong methodology for small-

scale microservices deployments. Such tools enable small organizations to adequately protect their

systems in a way that is not very expensive or technical. The community is in the open-source solution’s

background, constant improvements, and high maneuverability, which is very efficient for teams with

low financial capabilities. Tools for security include basic security tools such as IDs, passwords, logs,

monitors, scanning tools, and another essential instruments for security within a versatile structure.

Choosing a technology stack that leans on solutions with an active user community always

benefits from cost optimization and high scalability rates (Kumar, 2017). Each tool has been selected

to fit well into the microservices architecture and include the necessary security components without

ISSN: 2633-4828 Vol. 2 No.1, June, 2020

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 2 No.1, June, 2020
International Journal of Applied Engineering & Technology

149

complications. Secondly, compared to proprietary tools, open-source tools offer more versatility in

customization concerning tailored security requirements within an organization. In this way, smaller

teams can focus on core security needs and then build incremental solutions for ever-growing teams,

providing them with stable ground for managing long-term security needs.

The selected technology stack has security measures for each touchpoint within the

microservices architecture. Therefore, the authors suggest that small teams can get security coverage in

a given system through authentication, logging, monitoring, and scanning vulnerabilities. This layered

approach guarantees that even knowing that more resources are scarce within an architecture, one

receives a real-time way of identifying impending threats, minimizing risks, and enabling the continuity

of robust frames within a volatile microservices environment.

5.1 Use of Identity and Access Management (IAM).

Keycloak and Auth0 offer several identity and access management capabilities with options scaled for

the small environment. This authentication interface is effective because it is an open-source solution,

meaning organizations do not need costly commercial licenses to manage authentication, Keycloak also

works well with existing systems using OAuth 2.0 and JWT-based authentication. Auth0 is a SaaS

solution that’s easy to integrate and has flexible license options – ideal for managed service

organizations. They both make the IAM process simple and easy since the configuration of the access

control results in the best format for small teams.

OPA is an important insertion in the IAM stack that allows detailed authorization policies in

microservices requiring secure apps (Jayawardhana, 2019). OPA enables teams to set certain procedures

regarding access; it is versatile for applying security at the service level. Such a level of authorization

benefits small organizations since it will help them advance internal security measures by strictly

enacting the least privilege principle at the service level. By adopting OPA, the team successfully

managed the access with high accuracy and minimized the possibility of exposing the service to

unauthorized users.

When used in tandem with Keycloak/Auth0 or a similar service, OPA guarantees that proper

authentication and authorization are easily achieved with little strain on resources. This setup allows

organizations to set what amounts to reliable and uniform access control across all microservices

without incurring more overhead. Through NS 3 and fine-grained policy enforcement, small-scale

deployment can control access to services in accordance with security specifications and limitations;

this sets the basis for positive identity management for secure service interaction.

Figure 8: Identity and Access Management

5.2 API Gateway and Service Mesh

It is, for example, in integrated API gateways like Kong and NGINX that access control and

authentication occur for all incoming requests, making security an organizational matter across

microservices. Single-threaded and serving as a single entry point to the ecosystem, the API gateway

performs validation, rate limiting, monitoring, and other actions, including the surface. These things are

especially valuable for small teams that cannot dedicate time and money to constant security and

ISSN: 2633-4828 Vol. 2 No.1, June, 2020

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 2 No.1, June, 2020
International Journal of Applied Engineering & Technology

150

monitoring of each service. As they allow a unitary management of the microservices access at a

specific focal point, these gateways also help to create a secure environment to manage such a system.

Systems such as Istio and Linkerd can assist API gateways in that, in addition to offering routing

functions, they have mTLS for inter-service calls, ensuring the identity of both the client and the server

from a security perspective. The Service Mesh provides secure communication between microservices,

ensuring data security and privacy during transit. Furthermore, teams can receive more comprehensive

metrics of service interaction within service meshes. This monitoring capability should be fine-tuned

for small teams that require highly detailed status information on the services to pinpoint threats as soon

as they occur.

API gateways act as one layer of control over all the microservices, while service mesh provides

a deep layer of observability for each microservice (Khakame, 2016). API gateways regulate access

from outside the system, while the service meshes deal with secure communication within the system

to protect external and internal interfacing points. This means that the policies are to be consistent, less

complex, and easy to comprehend and observe so the small groups can maintain rather secure conditions

without being overloaded with numerous operational tasks and regulations.

5.3 Secrets Management

For storing the keys and for secure distribution of secrets, the HashiCorp Vault and AWS Secrets

Manager are the best options available on the market. An open-source tool, HashiCorp Vault, offers a

relatively cheap solution for storing such data as API keys, encryption keys, and database credentials.

It provides safe storage, rights management, and report generation functions and thus is a reasonable

solution for organizations trying to set up secure secrets for a reasonable price. On the other hand, AWS

Secrets Manager differs in terms of the tools. It is primarily useful for teams already working within

AWS because it is designed to be integrated with other AWS tools and perform automated secret

rotation.

Both tools support specific security standards that limit the accessibility of services and users

to the indicated data. By centralizing secrets, organizations can eliminate the risks accompanying hard-

coded secrets since they are vulnerable to breaches. Both HashiCorp Vault and AWS Secrets Manager

have strong logging features that allow an organization to see who was accessing secrets and at what

time. This auditing process of compliance is critical to maintaining and building approximate structures

of accountability that are important for small teams that deal with sensitive information.

Organizations are empowered by HashiCorp Vault and AWS Secrets Manager on how best to

store credentials and other sensitive information across any microservices (Hsu, 2018). This approach

also reduces the odds of exposing the secret, keeps the information accurate, and allows small groups

to organize and access the secrets with little extra effort. These tools are used to build the level of

protection of secrets, which are required exclusively for certain users.

5.4 Logging, Monitoring, and Alerting

These are two popular tools that are often used together to offer monitoring and alerting for

microservices architecture. While Prometheus gathers system performance and health stats in real time,

Grafana provides boards for visualizing data for teams who can observe service behavior and identify

issues. When used together, these tools allow a small team in a large organization to consistently

monitor system health and detect performance and possibly security issues in real time.

The three components that comprise the ELK stack's essentials include Elasticsearch, Logstash,

and Kibana (Kleindienst, 2016). These enable organizations to improve their centralized logging

capabilities of logs collected from all services. Small deployments that have been centralized provide a

single interface where teams can log in and detect or investigate security issues. In one place where logs

from each microservice are viewed, the ELK stack provides easier and more efficient identification of

suspicious patterns in security activities that can contribute to a shorter detection and response time for

attacks.

ISSN: 2633-4828 Vol. 2 No.1, June, 2020

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 2 No.1, June, 2020
International Journal of Applied Engineering & Technology

151

With Prometheus, Grafana, and the ELK stack, alert, log, and monitor features give small teams

the tools to keep their security strong. These tools not only back the detection of the incidents but also

assist the organization in meeting the auditing and reporting guidelines. Hence, through central control,

susceptible small groups can work preventatively to eradicate security threats that might infest

microservices environments.

Figure 9: Cloud Native Monitoring with Prometheus

5.5 Vulnerability Management

The environment needs to be protected; therefore, the best tools for automated vulnerability scanning

are snyk and Aqua security or Trivy (Pihlak, 2020). Snyk emphasizes tracking and highlighting open-

source library problems to ensure that security issues can be rectified by patching before the software

release. To this end, code libraries from external sources are updated proactively and often to minimize

the developers' exposure to vulnerabilities rightfully known to attackers. It also organizes the

recommendations given by Snyk to help the smaller teams prioritize vulnerabilities and act efficiently.

Aqua Security and Trivy are designed for container security and the security of images used in

containers before they are deployed. Container scanning is especially important for microservices

because every microservice typically uses containers to run its applications. These tools assist in locking

down the deployment pipeline by finding misconfigurations and security issues in container images,

which are, in this case, deployed containers. The fact that Trivy is an open-source utility makes it a

great tool for teams interested in adopting an inexpensive container security solution.

Such integration of Snyk, Aqua Security, and Trivy covers every stage of vulnerability

management for both code and container images. Enumerating this approach makes it easier for

organizations to uncover the weaknesses and eliminate the drift that may lead to exploitation. With

vulnerability management being fully automated, the overall amount of work for smaller teams justifies

the creation of a robust microservices and DevOps environment where every line of code and container

can be watched and immediately changed.

6. Implementation Strategy

Due to the nature of the guidelines proposed by the original security framework, small organizations

can implement components in stages and target specific areas first (Alsmadi & Easttom, 2020). Identity

management and API gateway security discussed in this section form a good beginning for external

access control. This phased approach is deliberate to avoid overusing some teams with security

resources so they can invest in gradually building their security capability. Specific segments can be

adopted as the organization grows, allowing the overall systems to be developed to provide total

security.

ISSN: 2633-4828 Vol. 2 No.1, June, 2020

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 2 No.1, June, 2020
International Journal of Applied Engineering & Technology

152

Figure 10: A Comprehensive Guide to Implementing the NIST Cybersecurity Framework for

Effective Risk Management

6.1 Phased rollout of security components

Because of this approach, the organization gets the advantage of implementing high-risk security

elements first due to the phased rollout plan. Identity management and service authentication form part

of Phase 1, whereby only proper entities can gain access to the services. At the same time, the security

of the API gateway protects external access points. As for Phase 2, central log and monitor are

incorporated to gain insight into system status. The following phases are to manage secrets, perform

vulnerability scans, implement access controls according to the roles, and last but not least, intrusion

detection, which makes the comprehensive security stack.

It is helpful to phase security to enable teams to work only on the most important security

aspects and layering security to ensure initial security solutions are put in place early in the process

(Kitchin & Dodge, 2020). While getting to the next phases, organizations improve their security and do

not overload the resources. This phased approach is effective because it allows for costs - and the

necessary resources to be implemented for security – to be distributed over time, which is especially

useful for smaller organizations.

It also means that organizations can allocate security features based on their order of importance

by implementing them gradually, which makes it possible to change the approach to security at any

time. This makes it easy to scale up or down depending on the available resources and incorporate

additional factors that may be considered risks. It is a slow and intentional process that delivers deep

security integration with the organization’s growth path, thus building a stable concept of microservices

security.

Table 4: Phased Implementation Strategy

Phase Components Objectives

Phase

1

Identity Management & API Gateway

Security

Establish external access control and secure

authentication.

Phase

2
Centralized Logging and Monitoring

Enable system-wide visibility and monitoring for

threat detection.

Phase

3

Secrets Management & Vulnerability

Scanning
Secure secrets and address code vulnerabilities.

Phase

4
Role-Based Access Control

Enforce least privilege access to protect critical

resources.

Phase

5

Intrusion Detection & Incident

Response
Improve real-time t

6.2 Pipeline Integration into DevSecOps

ISSN: 2633-4828 Vol. 2 No.1, June, 2020

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 2 No.1, June, 2020
International Journal of Applied Engineering & Technology

153

Extending security checks into the DevSecOps pipeline places vulnerability management on pre-

ordained automation with security integration across the lifecycle. Static analysis tools that Snyk and

OWASP Dependency-Check point out help find problems early so developers can handle threats on

code libraries before presenting them to real users. This proactive approach reduces the chance of a

team introducing new vulnerabilities into a production environment, which can be challenging for small

teams to overcome.

Pre-deployment container image scanning, with solutions such as Aqua Security or Trivy, helps

reinforce security at the pipeline level. By scanning container images during the CI/CD process,

organizations protect against such vulnerabilities in production and guarantee the security of all

container implementations. Automated testing ensures that microservices security is always checked,

ensuring small teams keep up with changes and standards with each update.

Integration of DevSecOps ensures that security inspections are performed uniformly and do not

involve intervention from other people as far as possible (Lohrasbinasab et al., 2020). This automation

also provides Small Teams with the conventional integration of security considerations into prevalence

development lifecycles. Security can be built into the pipeline of DevOps, making microservices secure

without introducing a significant amount of overhead.

Figure 11: DevSecOps Tool Chain

6.3 Documentation and Training

Documentation and training facilitate the growth of adequate knowledge that may be used to establish

secure measures without requiring direction from other teams. Reports on security, like how to code

securely, formulate guidelines that the various teams need to adhere to, and hence, all the developers

will be encouraged to follow the right procedures. This consistency minimizes the chance of creating

openings due to improper configuration or adoptive code, which boosts the general security of

microservices.

Another kind of documentation is incident response playbooks, which help the team define

certain security incidents (Onwubiko & Ouazzane, 2020). These playbooks contain preprogrammed

sequential techniques for various security violations, including unauthorized access and data loss. It is

advantageous to have well-formed response procedures because teams are better equipped to reduce

response times and risks.

By training developers to respond to secure development practices, they know the secure

developments taking place, enhancing a secure practice organizational culture. When using this, teams

end up familiar with the risks likely to face a project, plus the necessary measures to adopt, and

therefore, security is integrated into the project development process. Potential attacks stem from

ignorance, but when organizations educate their workers and provide improved learning materials, all

workers can help set up a secure microservices environment.

7. Future Directions and Enhancements

ISSN: 2633-4828 Vol. 2 No.1, June, 2020

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 2 No.1, June, 2020
International Journal of Applied Engineering & Technology

154

Table 5: Future Enhancements for Microservices Security

Enhancement Description

Machine Learning for Anomaly

Detection

Uses ML models to detect unusual activity patterns in real-

time.

Adaptive Security Policies
Dynamically adjusts access controls based on real-time

contextual factors.

Zero Trust Architecture
Requires verification of all network interactions, regardless of

origin.

Advanced Threat Intelligence Uses proactive intelligence to counter sophisticated attacks.

As threats evolve, it is time to enhance the security frameworks and keep up with the changing

threats (Goswami, 2019). These improvements will require the integration of the means of the latest

methodologies in the field in the future amendments of this framework, including machine learning for

anomaly detection, adaptive security policies, and Zero Trust architecture. These advancements will

assist small organizations in maintaining organizational flexibility in anticipating and managing threats.

Therefore, incorporating these innovations means that small-scale deployments can be safe while

handling the difficulties of an advancing threat environment.

The ability to adapt to such methodologies greatly increases the effectiveness of security

measures, thereby giving reliable preemptive measures instead of relying on oversight. For instance, in

computing services, learning can extend the knowledge of service behavior beyond what can be

captured in initial pre-configuration; policies can be adjusted to the real context. More solidity is added

by the Zero Trust principles, which remove trust inside the network and thoroughly check every activity.

Combined, these approaches define the security model's foundation, which is highly adaptive and

secure.

These added values are most valuable for small organizations without a dedicated security team

and personnel because they introduce new, automatic features into their security systems. Less reliance

on people's input in a process, adaptive policies, and the zero-trust model give better levels of security

without a huge need for architectural shifts. Such future directions ensure that small organizations can

catch up with security standards as they continue strengthening their stances against new threats,

especially fangled ones.

7.1 Machine Learning for Anomaly Detection

If incorporated into developing threat identification systems, machine learning significantly enhances

anomaly detection. Current approaches involve structuring detections by rules, which results in missed

threats and false alarms. Machine learning mitigates these limitations, where systems learn and

differentiate the normal behavior of each microservice from the potentially malicious one. This adaptive

learning also helps minimize false positives while the actual threats are recognized and prioritized.

Incorporating machine learning in monitoring can benefit small organizations by enhancing

response time and making security monitoring t efficient. Machine learning models process large

amounts of data in real time and can manage anomalies that could be associated with them. This

capability is especially useful in a small organization where security work is done at the edges, and

security personnel cannot constantly monitor every action. Machine learning is an effective way of

implementing an automatic anomaly detection system, demonstrated by the following advantages:

In the future, existing technologies could be tailored to the needs of microservices, for instance,

using machine analytical understanding to identify advanced persistent threats or a better understanding

of the user's interactions amongst different microservices. Thus, over time, as the models get optimized,

the different microservices will be able to handle the environment each of them is in and respond much

faster and effectively to the detected anomalies. This level of possibility will improve the security of

ISSN: 2633-4828 Vol. 2 No.1, June, 2020

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 2 No.1, June, 2020
International Journal of Applied Engineering & Technology

155

small organizations, giving them a complex safeguard against threats without using many resources for

monitoring.

Figure 12: Anomaly detection for space information networks

7.2 Adaptive Security Policies

Adaptive security policies bring the concept of flexible security access control where permission is

dependent on certain parameters. As we have seen, prior security models can employ fixed accesses,

which can be either too conservative or generous concerning a particular context. In contrast, adaptive

policies consider factors such as the period of the day, usage pattern, and the location of a device or its

IP address to handle the authorization degree. Due to real-time updates and the granularity that adaptive

policies provide, they allow high control over users and access while not facilitating unauthorized

access and ensuring business continuity.

In microservices environments, adaptive security policies create an additional layer of the

protection mechanism by filtering out the access control based on the current risk levels. Such

interaction may be deemed suspicious when the user is using an unfamiliar IP address or accessing the

system from a different device type, as well as when the user is using the service during odd hours of

the day while normal and repeated login from a familiar IP address and device may not be subjected to

such procedures. This is advantageous because organizations can have strong security motivations in

place without hampering functionality and having limited ways of accessing the corresponding frames,

which is essential for small-scale technology adoption.

Adaptive policies are highly valuable, especially for small organizations, since they provide

security improvements without extra overhead (Chen & Wang, 2019). This is in contrast to the

predictable security, which only has fixed rules about threats, to give an organization the ability to better

adapt to the current environment (Kumar, 2019). Therefore, these can be modified over time with the

actual usage and is a self-learning, self-organizable, secure policy approach. This flexible approach

provides the small organization with the ability to afford to improve its security posture and, at the same

time, retain the flexibility that may be necessary in the face of volatility.

7.3 Zero Trust Architecture

Where traditional network security models assume all internal communications are trustworthy and

provide no security checks, Zero Trust Architecture (ZTA) requires user verification of all transactions

irrespective of their sources (Gill, 2018). Securing the networks was done concerning perimeter

security; the users within the nets were considered secure. However, the microservices model puts forth

countless points of internal and external contact; consequently, perimeter-based protection is

insufficient. Zero Trust Access means that organizations must authenticate and authorize every

connection demand, even if the connection is unconditioned inside the network.

This is because some methods of integrating Zero Trust can be done gradually but can also be

used by small organizations to create a more secure environment than the current one without significant

changes to the architecture of existing systems. For instance, achieving secure, strict identity

verification for high-risk services and other areas over time would help organizations balance security

and resource management. Another Zero Trust model is that of least privilege; what applies to each

ISSN: 2633-4828 Vol. 2 No.1, June, 2020

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 2 No.1, June, 2020
International Journal of Applied Engineering & Technology

156

service is the right amount of access it needs so as not to pose a threat (Sgandurra & Lupu, 2016). This

approach allows small deployments and avoids issues where microservices and user interactions are

multifaceted and decentralized.

Adopting Zero Trust enables small organizations to maintain the security of microservices

architecture while the organization expands. This is particularly important as organizations grow and

their micro-services-based architecture becomes more complex, Zero Trust guarantees that individual

bits are safe no matter what happens at the interface. In the long term, Zero Trust will transform into

the baseline from which the organizations employ nuanced security to counteract novel threats and the

complex nature of the growing microservices architectures.

Figure 13: Zero Trust Architecture (ZTA).

Conclusion

This microservices security framework may be easy to implement and can be used on different levels

to secure microservices that serve a few clients. High on modularity and light on concrete, organizations

can establish sound security measures and postures without the luxury of human resources and financial

capital most security agencies require. Recognizing pivotal security issues, like service-to-service

authentication and the central logging solution, they also maintain that the proposed framework aligns

with industry best practices for microservice security.

The framework can be adjusted depending on the risk appetite of a specific organization and

the resources available. It is fully compatible with a gradual implementation approach for security

development and is suitable for small teams with limited resources. If the organization matures over

time, it is feasible to include new changes in threats within the specified framework, such as machine

learning and Zero Trust principles for security.

More organizations may safely enter this territory with this framework, which offers guidelines

for small-scale adoption of microservices architectures. Fortifying anti-phishing resilience portrays a

hardy IT environment even for small parties, thus pushing an ethical, everyman-for-his-technology-

security model, making the security era equal and sustainable.

References;

1. Alsmadi, I., & Easttom, C. (2020). The NICE cyber security framework. Springer International

Publishing.

2. Andriyanto, A., & Doss, R. (2020). Problems and solutions of service architecture in small and

medium enterprise communities. arXiv preprint arXiv:2004.10660.

3. Chen, H., & Wang, Y. (2019). SSChain: A full sharding protocol for public blockchain without

data migration overhead. Pervasive and Mobile Computing, 59, 101055.

4. Di Francesco, P., Malavolta, I., & Lago, P. (2017, April). Research on architecting microservices:

Trends, focus, and potential for industrial adoption. In 2017 IEEE International conference on

software architecture (ICSA) (pp. 21-30). IEEE.

ISSN: 2633-4828 Vol. 2 No.1, June, 2020

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 2 No.1, June, 2020
International Journal of Applied Engineering & Technology

157

5. Esposito, C., Castiglione, A., Tudorica, C. A., & Pop, F. (2017). Security and privacy for cloud-

based data management in the health network service chain: a microservice approach. IEEE

Communications Magazine, 55(9), 102-108.

6. Farris, I., Taleb, T., Khettab, Y., & Song, J. (2018). A survey on emerging SDN and NFV security

mechanisms for IoT systems. IEEE Communications Surveys & Tutorials, 21(1), 812-837.

7. Frisell, M. (2018). Information visualization of microservice architecture relations and system

monitoring: A case study on the microservices of a digital rights management company-an

observability perspective.

8. Gill, A. (2018). Developing a real-time electronic funds transfer system for credit

unions. International Journal of Advanced Research in Engineering and Technology

(IJARET), 9(01), 162-184.https://iaeme.com/Home/issue/IJARET?Volume=9&Issue=1

9. Goswami, M. J. (2019). Utilizing AI for Automated Vulnerability Assessment and Patch

Management. EDUZONE.

10. Hsu, T. H. C. (2018). Hands-On Security in DevOps: Ensure continuous security, deployment, and

delivery with DevSecOps. Packt Publishing Ltd.

11. Jagelid, M. (2020). Container vulnerability scanners: An analysis.

12. Jayawardhana, P. R. (2019). Authorization for workloads in a dynamically scaling, heterogeneous

system (Doctoral dissertation).

13. Kanan, R., Elhassan, O., & Bensalem, R. (2018). An IoT-based autonomous system for workers'

safety in construction sites with real-time alarming, monitoring, and positioning

strategies. Automation in Construction, 88, 73-86.

14. Khakame, P. W. (2016). Development of a scalable microservice architecture for web services

using os-level virtualization (Doctoral dissertation, University of Nairobi).

15. Kitchin, R., & Dodge, M. (2020). The (in) security of smart cities: Vulnerabilities, risks,

mitigation, and prevention. In Smart cities and innovative Urban technologies (pp. 47-65).

Routledge.

16. Kleindienst, P. (2016). Building a real-world logging infrastructure with Logstash, Elasticsearch

and Kibana.

17. Konstantinidis, E. I., Billis, A. S., Mouzakidis, C. A., Zilidou, V. I., Antoniou, P. E., & Bamidis,

P. D. (2014). Design, implementation, and wide pilot deployment of FitForAll: an easy to use

exergaming platform improving physical fitness and life quality of senior citizens. IEEE journal

of biomedical and health informatics, 20(1), 189-200.

18. Kuan, S. (2018). Improving the Security of KMS on a Cloud Platform Using Trusted

Hardware (Master's thesis).

19. Kumar, A. (2019). The convergence of predictive analytics in driving business intelligence and

enhancing DevOps efficiency. International Journal of Computational Engineering and

Management, 6(6), 118-142. Retrieved https://ijcem.in/wp-content/uploads/THE-

CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-

INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf

20. Kumar, K. (2017). Dilemma of speed vs. scale in software system development best practices from

industry leaders (Doctoral dissertation, Massachusetts Institute of Technology).

21. Lohrasbinasab, I., Acharya, P. B., & Colomo-Palacios, R. (2020). BizDevOps: a multivocal

literature review. In Computational Science and Its Applications–ICCSA 2020: 20th International

Conference, Cagliari, Italy, July 1–4, 2020, Proceedings, Part VI 20 (pp. 698-713). Springer

International Publishing.

22. Nyati, S. (2018). Revolutionizing LTL Carrier Operations: A Comprehensive Analysis of an

Algorithm-Driven Pickup and Delivery Dispatching Solution. International Journal of Science and

Research (IJSR), 7(2), 1659-1666. https://www.ijsr.net/getabstract.php?paperid=SR24203183637

23. Nyati, S. (2018). Transforming Telematics in Fleet Management: Innovations in Asset Tracking,

Efficiency, and Communication. International Journal of Science and Research (IJSR), 7(10),

1804-1810. https://www.ijsr.net/getabstract.php?paperid=SR24203184230

https://iaeme.com/Home/issue/IJARET?Volume=9&Issue=1
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://www.ijsr.net/getabstract.php?paperid=SR24203183637
https://www.ijsr.net/getabstract.php?paperid=SR24203184230

ISSN: 2633-4828 Vol. 2 No.1, June, 2020

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 2 No.1, June, 2020
International Journal of Applied Engineering & Technology

158

24. Nyfløtt, M. S. (2017). Optimizing inter-service communication between microservices (Master's

thesis, NTNU).

25. Odyurt, U. (2014). Evaluation of Single Sign-On Frameworks, as a Flexible Authorization

Solution: OAuth 2.0 Authorization Framework.

26. Onwubiko, C., & Ouazzane, K. (2020). SOTER: A playbook for cybersecurity incident

management. IEEE Transactions on Engineering Management, 69(6), 3771-3791.

27. Päivärinta, K. (2019). Design and Implementation of Centralized APIs Platform and Application

Portal.

28. Pihlak, A. (2020). CONTINUOUS DOCKER IMAGE ANALYSIS AND INTRUSION

DETECTION BASED ON OPEN-SOURCE TOOLS.

29. Sgandurra, D., & Lupu, E. (2016). Evolution of attacks, threat models, and solutions for virtualized

systems. ACM Computing Surveys (CSUR), 48(3), 1-38.

30. Suomalainen, J. (2019). Defense-in-Depth Methods in Microservices Access Control (Master's

thesis).

31. Tang, T. D. D. (2017). Cloud-Native Implementation of a Microservice Architecture.

32. Vresk, T., & Čavrak, I. (2016, May). Architecture of an interoperable IoT platform based on

microservices. In 2016 39th International Convention on Information and Communication

Technology, Electronics and Microelectronics (MIPRO) (pp. 1196-1201). IEEE.

