AMS JOURNAL SAMPLE

AUTHOR ONE AND AUTHOR TWO
This paper is dedicated to our advisors.

Abstract

This paper is a sample prepared to illustrate the use of the American Mathematical Society's LATEX document class amsart and publicationspecific variants of that class for AMS-IATEX version 2.

This is an unnumbered first-Level section head
This is an example of an unnumbered first-level heading.

THIS IS A SPECIAL SECTION HEAD

This is an example of a special section head ${ }^{1}$.

1. This is a numbered first-LEVEL section head

This is an example of a numbered first-level heading.
1.1. This is a numbered second-level section head. This is an example of a numbered second-level heading.

This is an unnumbered second-level section head. This is an example of an unnumbered second-level heading.
1.1.1. This is a numbered third-level section head. This is an example of a numbered third-level heading.

This is an unnumbered third-level section head. This is an example of an unnumbered third-level heading.

Lemma 1.1. Let $f, g \in A(X)$ and let E, F be cozero sets in X.
(1) If f is E-regular and $F \subseteq E$, then f is F-regular.
(2) If f is E-regular and F-regular, then f is $E \cup F$-regular.
(3) If $f(x) \geq c>0$ for all $x \in E$, then f is E-regular.

The following is an example of a proof.

[^0]Proof. Set $j(\nu)=\max (I \backslash a(\nu))-1$. Then we have

$$
\sum_{i \notin a(\nu)} t_{i} \sim t_{j(\nu)+1}=\prod_{j=0}^{j(\nu)}\left(t_{j+1} / t_{j}\right)
$$

Hence we have

$$
\begin{align*}
\prod_{\nu}\left(\sum_{i \notin a(\nu)} t_{i}\right)^{|a(\nu-1)|-|a(\nu)|} & \sim \prod_{\nu} \prod_{j=0}^{j(\nu)}\left(t_{j+1} / t_{j}\right)^{|a(\nu-1)|-|a(\nu)|} \tag{1.1}\\
& =\prod_{j \geq 0}\left(t_{j+1} / t_{j}\right)^{\sum_{j(\nu) \geq j}(|a(\nu-1)|-|a(\nu)|)}
\end{align*}
$$

By definition, we have $a(\nu(j)) \supset c(j)$. Hence, $|c(j)|=n-j$ implies (5.4). If $c(j) \notin a, a(\nu(j)) c(j)$ and hence we have (5.5).

This is an example of an 'extract'. The magnetization M_{0} of the Ising model is related to the local state probability $P(a): M_{0}=$ $P(1)-P(-1)$. The equivalences are shown in Table 1.

TABLE 1

	$-\infty$	$+\infty$
$f_{+}(x, k)$	$e^{\sqrt{-1} k x}+s_{12}(k) e^{-\sqrt{-1} k x}$	$s_{11}(k) e^{\sqrt{-1} k x}$
$f_{-}(x, k)$	$s_{22}(k) e^{-\sqrt{-1} k x}$	$e^{-\sqrt{-1} k x}+s_{21}(k) e^{\sqrt{-1} k x}$

Definition 1.2. This is an example of a 'definition' element. For $f \in A(X)$, we define

$$
\begin{equation*}
\mathcal{Z}(f)=\left\{E \in Z[X]: f \text { is } E^{c} \text {-regular }\right\} \tag{1.2}
\end{equation*}
$$

Remark 1.3. This is an example of a 'remark' element. For $f \in A(X)$, we define

$$
\begin{equation*}
\mathcal{Z}(f)=\left\{E \in Z[X]: f \text { is } E^{c} \text {-regular }\right\} . \tag{1.3}
\end{equation*}
$$

Example 1.4. This is an example of an 'example' element. For $f \in A(X)$, we define

$$
\begin{equation*}
\mathcal{Z}(f)=\left\{E \in Z[X]: f \text { is } E^{c} \text {-regular }\right\} \tag{1.4}
\end{equation*}
$$

Exercise 1.5. This is an example of the xca environment. This environment is used for exercises which occur within a section.

The following is an example of a numbered list.
(1) First item. In the case where in G there is a sequence of subgroups

$$
G=G_{0}, G_{1}, G_{2}, \ldots, G_{k}=e
$$

such that each is an invariant subgroup of G_{i}.
(2) Second item. Its action on an arbitrary element $X=\lambda^{\alpha} X_{\alpha}$ has the form

$$
\begin{equation*}
\left[e^{\alpha} X_{\alpha}, X\right]=e^{\alpha} \lambda^{\beta}\left[X_{\alpha} X_{\beta}\right]=e^{\alpha} c_{\alpha \beta}^{\gamma} \lambda^{\beta} X_{\gamma} \tag{1.5}
\end{equation*}
$$

(a) First subitem.

$$
-2 \psi_{2}(e)=c_{\alpha \gamma}^{\delta} c_{\beta \delta}^{\gamma} e^{\alpha} e^{\beta}
$$

Figure 1. This is an example of a figure caption with text.

Figure 2
(b) Second subitem.
(i) First subsubitem. In the case where in G there is a sequence of subgroups

$$
G=G_{0}, G_{1}, G_{2}, \ldots, G_{k}=e
$$

such that each subgroup G_{i+1} is an invariant subgroup of G_{i} and each quotient group G_{i+1} / G_{i} is abelian, the group G is called solvable.
(ii) Second subsubitem.
(c) Third subitem.
(3) Third item.

Here is an example of a cite. See [1].
Theorem 1.6. This is an example of a theorem.
Theorem 1.7 (Marcus Theorem). This is an example of a theorem with a parenthetical note in the heading.

2. Some more list types

This is an example of a bulleted list.

- \mathcal{J}_{g} of dimension $3 g-3$;
- $\mathcal{E}_{g}^{2}=\{$ Pryms of double covers of $C=\square$ with normalization of C hyperelliptic of genus $g-1\}$ of dimension $2 g$;
- $\mathcal{E}_{1, g-1}^{2}=\left\{\right.$ Pryms of double covers of $C=\square_{P^{1}}^{H}$ with H hyperelliptic of genus $g-2\}$ of dimension $2 g-1$;
- $\mathcal{P}_{t, g-t}^{2}$ for $2 \leq t \leq g / 2=\left\{\right.$ Pryms of double covers of $C=\square_{C^{\prime \prime}}^{C^{\prime}}$ with $g\left(C^{\prime}\right)=t-1$ and $\left.g\left(C^{\prime \prime}\right)=g-t-1\right\}$ of dimension $3 g-4$.
This is an example of a 'description' list.
Zero case: $\rho(\Phi)=\{0\}$.
Rational case: $\rho(\Phi) \neq\{0\}$ and $\rho(\Phi)$ is contained in a line through 0 with rational slope.
Irrational case: $\rho(\Phi) \neq\{0\}$ and $\rho(\Phi)$ is contained in a line through 0 with irrational slope.

References

1. T. Aoki, Calcul exponentiel des opérateurs microdifferentiels d'ordre infini. I, Ann. Inst. Fourier (Grenoble) 33 (1983), 227-250.
2. R. Brown, On a conjecture of Dirichlet, Amer. Math. Soc., Providence, RI, 1993.
3. R. A. DeVore, Approximation of functions, Proc. Sympos. Appl. Math., vol. 36, Amer. Math. Soc., Providence, RI, 1986, pp. 34-56.

Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803

Current address: Department of Mathematics and Statistics, Case Western Reserve University, Cleveland, Ohio 43403

E-mail address: xyz@math.university.edu
Mathematical Research Section, School of Mathematical Sciences, Australian National University, Canberra ACT 2601, Australia

E-mail address: two@maths.univ.edu.au

[^0]: Date: January 1, 2001 and, in revised form, June 22, 2001.
 2000 Mathematics Subject Classification. Primary 54C40, 14E20; Secondary 46E25, 20C20.
 Key words and phrases. Differential geometry, algebraic geometry.
 The first author was supported in part by NSF Grant \#000000.
 Support information for the second author.
 ${ }^{1}$ Here is an example of a footnote. Notice that this footnote text is running on so that it can stand as an example of how a footnote with separate paragraphs should be written.

 And here is the beginning of the second paragraph.

