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1.Abstract: In this research paper, it is considered that two predators self-competing and competing 

with each other are feeding over susceptible and virus-infected phytoplankton populations. Predators 

are free from virus infection in nature i.e. Viruses do not affect the predator population. A mathematical 

model is comprised of phytoplankton and grazer populations like zooplankton, another predator that 

depends on infected as well as susceptible phytoplankton. The growth of the four species phytoplankton, 

infected phytoplankton, zooplankton, and a predator is given by ordinary non-linear differential 

equations with a set of parameters. The mathematical system is analyzed analytically. Equilibrium 

points and their stability are obtained.  

Keywords: Non-linear ordinary equations, local, global stability and numerical simulation. 

2. Introduction: The dynamics of the non-linear model are rich and sensitive concerning parameters. 

Viruses typically infect the body by targeting specific proteins on the surface of host cells. For example, 

the spike proteins of the coronavirus bind to the ACE2 receptor in human cells to enter and replicate. 

Once inside, the virus hijacks the cell’s machinery to produce more virus particles, leading to cell 

damage or death. These processes interfere with normal protein functions in cells, leading to disease 

symptoms and triggering the body's immune response to fight the infection. The length of time a virus 

remains in the body (the duration of infection) depends on several factors, including the strength of the 

immune response and the nature of the virus. Some viruses cause acute infections, lasting days to weeks, 

while others may establish chronic infections that last for months. Viruses can be recurring, especially 

if the immune system doesn't completely eliminate the virus or if the virus mutates (e.g., seasonal flu). 

Recurring infections can lead to long-term health effects, weakening the immune system, and several 

environmental changes. Many researchers have discussed the infected population. It has been seen that 

a non-linear differential equation system under certain parameters is obtained. Nature is nonlinear.  

From time-to-time various diseases arise and researchers try to find solutions to them by doing research. 

When we analytically solve these nonlinear differential equations under a certain feasible range of 

parameters, a rich dynamic is obtained. In this chapter, we tried to consider such a mathematical model 

in which a susceptible population is infected at a rate under certain parameters by disease based on 

previous research work listed in references. Zooplankton is taking food from susceptible plankton. A 

predator is taking food from infected susceptible plankton. We shall consider an epidemiological system 

consisting of four species, namely, the prey (phytoplankton) (which is susceptible) denoted by ′S′, the 

infected prey (which becomes infective by some viruses) denoted by ′I′ and the zooplankton called P1 

and a predator P2. Before making the mathematical model, we made some assumptions based on 

previous research papers listed in references [1-27]. 

3. Formulation of Mathematical Model 

(1) In the absence of virus disease, the phytoplankton cells S(t) grow to a logistic function with a 

carrying capacity K, with an Intrinsic birth rate r is given by the relation 
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dN

dt
= rS(1 −

S

K
)                                                                                   (3.1) 

(2) In the presence of viruses, we assume that the total concentration of phytoplankton cell N is divided 

into two classes, namely, susceptible phytoplankter, denoted by S(t). Therefore, at any time t the total 

(concentration) of the phytoplankton population is given by the relation 

                                           N(t) = S(t) + I(t)                                                                                 (3.2) 

(3)  The disease is spreading among the plankton population only. The infected populations do not 

recover. We assume that susceptible phytoplankton S  is capable of reproducing again with logistic law 

(3.1) and the infective phytoplankton I, is reproducing by infecting the susceptible population at a 

certain rate. 

(4)  A susceptible phytoplankton  S(t) becomes infected I(t) under the attack of many viruses. Let λ be 

the rate of force of infection. From the assumptions (3) and (4), the equation (3.1) can be written as: 

                                              
ds

dt
= rS (1 −

S+I

K
) − λSI                                                        (3.3) 

(5)  A grazer zooplankton population P1 predates the susceptible phytoplankton at a rate a.   

Then the equation (3.3) takes the form 

                                             
ds

dt
= rS (1 −

S+I

K
) − λSI − aSP1                                                           (3.4) 

(6)  The dynamics of grazer population zooplankton P1, predator P2 ,and infected phytoplankton           I(t) 

may be represented as follows 

                                            
dI

dt
 =  I(λS − kP1 − h) − bIP2                                                                   (3.5) 

Where k denotes the rate of capturing of infected prey by the zooplankton P1 and  b the rate of capturing 

of infected prey by predator P2,  h is the death rate of infected phytoplankton. 

Now we consider in this mathematical model zooplankton P1 and predator P2 ,are self-competitor and 

competing with each other which are shown by the relations:  

                                          
dP1

dt
= P1(−d1 + cS + k1I) − h1P1

2P2                                      (3.6) 

Where d1 is the death rate of P1, c is the growth rate of predators due to predation of susceptible 

phytoplankton,  k1 is the growth rate of predators due to predation of infected phytoplankton 

                                       
dP2

dt
= P2(−d2 + αS + βI) − h2P2

2P1                                                          (3.7) 

Where d2 is the death rate of P2 , α is the attacking rate of predator P2 to susceptible phytoplankton and  

β is the attacking rate of predator P2 due to the predation of I(t). 

4. The Mathematical Model 

Comprising the above equations from (3.1) to (3.7), the mathematical model can be written by the 

following differential equations describing the time evolution of the prey-predator system. 

                                   
dS

dt
= rS (1 −

S+I

K
) − λSI − aSP1   

                                   
dI

dt
 =  I(λS − kP1 − h) − bIP2   



ISSN: 2752-3829  Vol. 4 No.2, (December, 2024)  
 

Stochastic Modelling and Computational Sciences 
 
 

 

Copyrights @ Roman Science Publications Ins.       Stochastic Modelling and Computational Sciences 
3 

 

                                   
dP1

dt
= P1(−d1 + cS + k1I) − h1P1

2P2  

                                   
dP2

dt
= P2(−d2 + αS + βI) − h2P2

2P1                                                            (4.1) 

Here the parameters h1 and h2 are used as the parameter functions contain interspecific and intraspecific 

competition parameters self and among both predators. Both zooplankton and predators have self-

competition also. 

The system has to be analyzed with the following conditions: 

                                   S(0) > 0, I(0) ≥ 0, P1(0) ≥ 0, P2(0) ≥ 0     

5. Boundedness of the Mathematical Model  

Theorem: 5.1 Prove that the trajectories of non-linear dynamic models are bounded. 

Proof: Let us consider   

                η(t) = S(t) + I(t) + P1(t) + P2(t) 

                
dη(t)

dt
=

dS(t)

dt
+

dI(t)

dt
+

dP1(t)

dt
+

dP2(t)

dt
   

   
dη(t)

dt
+ η(t) = rS (1 −

S+I

K
 ) − λSI − aSP1 + I(λS − kP1 − h) − bIP2 + P1(−d1 + cS +

                               k1I) − h1P1
2P2 + P2(−d1 + αP1 + βI) − h2P2

2P1  

   
dη(t)

dt
+ η(t) = rS (1 −

S+I

K
) − λSI − aSP1 − IkP1 − hI − bIP2 − P1d1 + cSP1 + k1P1I −

                              d2P2 + αP1P2 + βIP2 − P1P2(h1P1 + h2P2) + S + I + P1 + P2 

   
dη(t)

dt
+ η(t) = rS (1 −

S+I

K
) + S − SP1(a − c) − P1I(k − k1) − I(h − 1) − IP2(b − β) −

                               P1(d1 − 1) − P2(d2 − 1) − P1P2(h1P1 + h2P2 − α) 

   
dη(t)

dt
+ η(t) = S [r (1 −

S

k
) + 1] − SP1(a − c) − P1I(k − k1) − I(h − 1) −

r

k
SI −

                               IP2(b − β′) − P1(d1 − 1) − P2(d2 − 1) − P1P2(h1P1 + h2P2 − α)    

                         d1 > 1, d2 > 1, b > β′, h > 1, k >  k1, a > c 

    
dη(t)

dt
+ η(t) ≤ S [r (1 −

S

k
) + 1] − P1P2(h1P1 + h2P2 − α)    

    
dη(t)

dt
+ η(t) ≤ max {S [r (1 −

S

k
) + 1]} 

    
dη(t)

dt
+ η(t) ≤

(r+1)2k

4r
= M ⇒   

dη(t)

dt
+ η(t) ≤ M ⇒   η(t) < M 

          0 ≤ S(t) + I(t) + P1(t) + P2(t) ≤ M 

Hence the system is bounded and therefore is dissipative. 

Theorem 5.2 (Positivity of the Solution of the Mathematical Model): The solution (S, I, P1, P2) is 

positive for all t greater than and equal to zero. 

Proof: We have from the mathematical model equations 

dS

dt
≥ −S(λI + aP1) ⇒

dS

S
≥ −M1dt ⇒ S(t) ≥ 0. Where max (λI + aP1) = M1 
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dI

dt
≥ −I(kP1 + h + bP2) ⇒

dI

I
≥ −M2dt ⇒ I(t) ≥ 0. Where max (kP1 + h + bP2) = M2 

dP1

dt
≥ −P1(d1 + h1P1P2) ⇒

dP1

P1
≥ −M3dt ⇒ P1(t) ≥ 0. Where max (d1 + h1𝑃1𝑃2) = 𝑀3 

𝑑𝑃2

𝑑𝑡
≥ −𝑃2(𝑑2 + ℎ2𝑃2𝑃1) ⇒

𝑑𝑃2

𝑃2
≥ −𝑀4𝑑𝑡 ⇒ 𝑃2(𝑡) ≥ 0. Where max (𝑑2 + ℎ1𝑃2𝑃1) = 𝑀4 

Therefore, the solution (𝑆, 𝐼, 𝑃1, 𝑃2) is positive for all 𝑡 greater than and equal to zero. 

6. Equilibria and Stability theory of Mathematical Model 

We have modelled a non-linear mathematical model (4.1), which has the following feasible 

equilibriums: 

 𝐸0(0,0,0,0),   𝐸1(𝑆
∗, 0,0,0),  𝐸2(𝑆

∗, 𝐼∗0,0),  𝐸3(𝑆
∗, 𝐼∗, 𝑃1

∗, 0),  𝐸4(𝑆
∗, 𝐼∗, 𝑃1

∗, 𝑃2
∗) 

We will discuss the nature of equilibriums 𝐸0, 𝐸1, 𝐸2, 𝐸3 and  𝐸4. 

Theorem 6.1.  The 𝐸0(0,0,0,0) is a trivial case. 

Proof:  From the first isocline of the system (4.1) 

                      
𝑑𝑆

𝑑𝑡
= 𝑟𝑆 (1 −

𝑆+𝐼

𝐾
) − 𝜆𝑆𝐼 − 𝑎𝑆𝑃1 = 0 ⇒

𝑑𝑆

𝑑𝑡
= 𝑆𝑔1(𝑆, 𝐼, 𝑃1) = 0 

Since we know that   𝑆 = 0  therefore, we have 𝑔1(𝑆, 𝐼, 𝑃1) ≠ 0. 

From the second isocline of the system (4.1) 

            
𝑑𝐼

𝑑𝑡
= 𝐼((𝜆𝑆 − 𝑘𝑃1 − ℎ) − 𝑏𝑃2) = 0 ⇒

𝑑𝐼

𝑑𝑡
= 𝐼𝑔2(𝑆, 𝑃1, 𝑃2) = 0 

Since 𝐼 = 0  therefore we have 𝑔2(𝑆, 𝑃1, 𝑃2) ≠ 0. 

From the third isocline of the system (4.1) 

          
𝑑𝑃1

𝑑𝑡
= 𝑃1(−𝑑1 + 𝑐𝑆 + 𝑘1𝐼) − ℎ1𝑃1

2𝑃2 = 0 ⇒
𝑑𝑃1

𝑑𝑡
= 𝑃1𝑔4(𝑆, 𝐼, 𝑃1, 𝑃2) = 0  

Since  𝑃1 = 0 therefore we have 𝑔3(𝑆, 𝐼, 𝑃1, 𝑃2) ≠ 0. 

From the fourth isocline of the system (4.1) we have 

           
𝑑𝑃2

𝑑𝑡
= 𝑃2[(𝑑2 + 𝛼𝑆 + 𝛽𝐼) − ℎ2𝑃2𝑃1] = 0 ⇒

𝑑𝑃2

𝑑𝑡
= 𝑃2𝑔4(𝑆, 𝐼, 𝑃1, 𝑃2) = 0    

Since  𝑃2 = 0 therefore we have 𝑔4(𝑆, 𝐼, 𝑃1, 𝑃2) ≠ 0.    

Theorem 6.2.  Prove that the point 𝐸0 is a saddle point. 

Proof: The variational matrix about 𝐸0 is given by 

                                   𝑉𝐸0
= [

𝑟 0 0 0
0 −ℎ 0 0
0 0 −𝑑1 0
0 0 0 −𝑑2

] 

Since the eigenvalues are 

 𝜆1 = 𝑟 > 0, 𝜆2 = −ℎ < 0, 𝜆3 = −𝑑1 < 0, 𝜆4 = −𝑑2 < 0 
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Thus 𝐸0 is a saddle point. Since the eigenvalues are positive and negative, therefore 𝐸0 also shows 

bifurcation. 

Theorem 6.3. Prove the equilibrium 𝐸1(𝑆
∗, 0,0,0) is the point 𝐸1(𝐾, 0,0,0). 

Proof: From the first isocline of the system (4.1) we have 

                     
𝑑𝑆

𝑑𝑡
= 𝑆 [𝑟 (1 −

𝑆+𝐼

𝐾
) − 𝜆𝐼 − 𝑎𝑃1] ⇒

𝑑𝑆

𝑑𝑡
= 𝑆𝑔1(𝑆, 𝐼, 𝑃1) = 0      

Since 𝑆 ≠ 0  therefore we have  

                      𝑔1(𝑆, 𝐼, 𝑃1) = 𝑟 (1 −
𝑆+𝐼

𝐾
) − 𝜆𝐼 − 𝑎𝑃1 = 0 

Putting 𝑃1 = 0 and 𝐼 = 0 we have 

                     (1 −
𝑆∗

𝐾
) − 0 − 0 = 0  ⇒ 𝑆∗ = 𝐾 

From the second isocline of the system  

                   
𝑑𝐼

𝑑𝑡
= 𝐼((𝜆𝑆 − 𝑘𝑃1 − ℎ) − 𝑏𝑃2) ⇒

𝑑𝐼

𝑑𝑡
= 𝐼𝑔2(𝑆, 𝑃1, 𝑃2) = 0 

Since 𝐼 = 0 therefore we have 𝑔2(𝑆, 𝑃1, 𝑃2) ≠ 0. 

From the third isocline of the system, we have 

                 
𝑑𝑃1

𝑑𝑡
= 𝑃1(−𝑑1 + 𝑐𝑆 + 𝑘1𝐼) − ℎ1𝑃1

2𝑃2 ⇒
𝑑𝑃1

𝑑𝑡
= 𝑃1𝑔4(𝑆, 𝐼, 𝑃1, 𝑃2) = 0  

Since  𝑃1 = 0 therefore we have 𝑔3(𝑆, 𝐼, 𝑃1, 𝑃2) ≠ 0. 

From the fourth isocline of the system, we have 

                
𝑑𝑃2

𝑑𝑡
= 𝑃2[(𝑑2 + 𝛼𝑆 + 𝛽𝐼) − ℎ2𝑃2𝑃1] ⇒

𝑑𝑃2

𝑑𝑡
= 𝑃2𝑔4(𝑆, 𝐼, 𝑃1, 𝑃2) = 0    

Since  𝑃2 = 0 therefore we have 𝑔4(𝑆, 𝐼, 𝑃1, 𝑃2) ≠ 0.    

Hence the equilibrium 𝐸1(𝑆
∗, 0,0,0) is the point 𝐸1(𝐾, 0,0,0). 

Theorem 6.4. Prove that equilibrium 𝐸1(𝐾, 0,0,0) is asymptotically stable if the following conditions 

are satisfied  𝐾 < 𝑀𝑖𝑛(
ℎ

𝜆
, 
𝑑1

𝑐
,
𝑑2

𝛼
). 

Proof: The variational matrix about 𝐸1(𝐾, 0,0,0) is given by                                                                                

            𝑉𝐸1
=

[
 
 
 
 𝑆

∗ (−
𝑟

𝐾
) 𝑆∗(−

𝑟

𝐾
− 𝜆) −𝑎𝑆∗ 0

0 𝜆𝑆∗ − ℎ 0 0
0 0 −𝑑1 + 𝑐𝑆∗ 0
0 0 0 −𝑑2 + 𝛼𝑆∗]

 
 
 
 

 

                   = [

−𝑟 −𝑟 − 𝜆𝐾 −𝑎𝐾 0
0 𝜆𝐾 − ℎ 0 0
0 0 −𝑑1 + 𝑐𝐾 0
0 0 0 −𝑑2 + 𝛼𝐾

] 

Since the eigenvalues are 

 𝜆1 = −𝑟 < 0, 𝜆2 = 𝜆𝐾 − ℎ < 0, 𝜆3 = −𝑑1 + 𝑐𝐾 < 0,  𝜆4 = −𝑑2 + 𝛼𝐾 < 0  
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The equilibrium 𝐸1 ≡ (𝐾, 0,0,0) is asymptotically stable if  

              (𝑖) 𝐾 <
ℎ

𝜆
                     (𝑖𝑖) 𝐾 <

𝑑1

𝑐
             (iii) 𝐾 <

𝑑2

𝛼
 

Combing(𝑖)-(𝑖𝑖𝑖), we get 𝐾 < 𝑀𝑖𝑛(
ℎ

𝜆
, 
𝑑1

𝑐
,
𝑑2

𝛼
) 

The equilibrium becomes a saddle point if the one of condition (𝑖)-(𝑖𝑖𝑖) violates. 

Theorem 6.5. Prove that equilibrium 𝐸2(𝑆
∗, 𝐼∗, 0,0) will exist and will be positive if  𝐾 >

ℎ

𝜆
, where 

𝑆∗ =
ℎ

𝜆
, 𝐼∗ =

𝑟(𝜆𝐾−ℎ)

𝜆(𝑟+𝜆𝑘)
 .  

Proof: After putting 𝑃2 = 0 𝑎𝑛𝑑 𝑃1 = 0 The first, second, and third isocline of the system (4.1) were 

reduced to  

                             
𝑑𝑆

𝑑𝑡
= 𝑆 [𝑟 (1 −

𝑆+𝐼

𝐾
) − 𝜆𝐼]                                                                          (𝑖)     

                              
𝑑𝐼

𝑑𝑡
= 𝐼(𝜆𝑆 − ℎ)                                                                                        (𝑖𝑖)  

                            
𝑑𝑃1

𝑑𝑡
= 𝑃1(−𝑑1 + 𝑐𝑆 + 𝑘1𝐼)                                                                        (𝑖𝑖𝑖)  

Since 𝑆 ≠ 0 therefore from (𝑖)  we have  𝑟(1 −
𝑆+𝐼

𝐾
) − 𝜆𝐼 = 0                                                       (𝑖𝑣)                                                                                    

Since 𝐼 ≠ 0 then from (𝑖𝑖)  we have   𝜆𝑆 − ℎ = 0                                                                (𝑣)  

Using (𝑖𝑣)  and (𝑣)  we get  𝑆∗ =
ℎ

𝜆
, 𝐼∗ =

𝑟(𝜆𝐾−ℎ)

𝜆(𝑟+𝜆𝑘)
 .  

Theorem 6.6. Prove that equilibrium 𝐸2(𝑆
∗, 𝐼∗, 0,0) is asymptotically stable provided the following 

conditions are satisfied 𝑐𝑆∗ + 𝑘1𝐼
∗ < 𝑑1, 𝛽𝐼∗ + 𝛼𝑃1

∗ < 𝑑2,  𝑚 < 𝑆∗𝑟 with 

𝑚2 = 𝑟2𝑆∗2 − 4𝑆∗𝐼∗𝜆𝐾2 (
𝑟

𝐾
+ 𝜆) > 0 

If the above conditions violate then we get 𝐸2 as a saddle point. 

Proof: The variational matrix about 𝐸2 is given by 

[
 
 
 
 𝑆

∗ (−
𝑟

𝐾
) 𝑆∗ (−

𝑟

𝐾
− 𝜆) −𝑎𝑆∗ 0

𝜆𝐼∗ 0 −𝐼∗𝑘 −𝑏𝐼∗

0 0 −𝑑1 + 𝑐𝑆∗ + 𝑘1𝐼
∗ 0

0 0 0 −𝑑2 + 𝛽𝐼∗ + 𝛼𝑃1
∗]
 
 
 
 

 

The eigenvalues of the above variational matrix are given by  

𝜎1, 𝜎2 = −
𝑆∗𝑟

2𝐾
±

1

2𝐾
√𝑟2𝑆∗2 − 4𝑆∗𝐼∗𝜆𝐾2 (

𝑟

𝐾
+ 𝜆)   , 𝜎3 = −𝑑1 + 𝑐𝑆∗ + 𝑘1𝐼

∗, 𝜎4 = −𝑑2 + 𝛽𝐼∗ + 𝛼𝑃1
∗. 

𝜎1, 𝜎2 = −
𝑆∗𝑟

2𝐾
±

𝑚

2𝐾
 , m= √𝑟2𝑆∗2 − 4𝑆∗𝐼∗𝜆𝐾2 (

𝑟

𝐾
+ 𝜆), 𝜎3 = −𝑑1 + 𝑐𝑆∗ + 𝑘1𝐼

∗, 𝜎4 = −𝑑2 + 𝛽𝐼∗ +

𝛼𝑃1
∗. 
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Theorem 6.7. Prove that equilibrium 𝐸3(𝑆
∗, 𝐼∗, 𝑃1

∗, 0) will exist and will be positive if the following 

conditions are satisfied (𝑖)  
𝑟𝑘

𝐾
+ 𝑎𝜆 > 𝑐 (

𝑟

𝐾
+ 𝜆) , (𝑖𝑖) 𝑎ℎ + 𝑟𝑘 > 𝑑1 (

𝑟

𝐾
+ 𝜆) , (𝑖𝑖𝑖) 𝑎ℎ𝑐 + 𝑟𝑘𝑐 >

𝑟𝑘𝑑1

𝐾
+ 𝑎𝜆𝑑1   (𝑖𝑣) 𝜆ℎ𝑐 +

𝑟ℎ𝑐

𝐾
+ 𝑟𝑘𝜆 >

𝑟𝑘ℎ

𝐾
+ 𝜆2𝑑1 +

𝑟𝜆𝑑1

𝐾
. 

Proof: After putting 𝑃2 = 0 the first, second, and third isoclines of the system (4.1) reduced to 

                       
𝑑𝑆

𝑑𝑡
= 𝑆 [𝑟 (1 −

𝑆+𝐼

𝐾
) − 𝜆𝐼 − 𝑎𝑃1]                                                                                     (𝑖)     

                          
𝑑𝐼

𝑑𝑡
= 𝐼(𝜆𝑆 − 𝑘𝑃1 − ℎ)                                                                                                    (𝑖𝑖)  

                       
𝑑𝑃1

𝑑𝑡
= 𝑃1(−𝑑1 + 𝑐𝑆 + 𝑘1𝐼)                                                                                                  (𝑖𝑖𝑖)  

Since 𝑆 ≠ 0 therefore from (𝑖) we have    𝑟(1 −
𝑆+𝐼

𝐾
) − 𝜆𝐼 − 𝑎𝑃1 = 0                                              (𝑖𝑣)             

Since 𝐼 ≠ 0 then from  (𝑖𝑖) we have           𝜆𝑆 − 𝑘𝑃1 − ℎ = 0                                             (𝑣)   

Since 𝑃1 ≠ 0 then from (𝑖𝑖𝑖)  we have     (−𝑑1 + 𝑐𝑆 + 𝑘1𝐼) = 0                                        (𝑣𝑖) 

Applying the Cramer rule to find the positive equilibrium from (𝑖𝑣) -(𝑣𝑖), we get  

    𝑆∗ =
−𝑘𝑑1(

𝑟

𝐾
+𝜆)+𝑎ℎ𝑘+𝑟𝑘2

𝐷
, 𝐼∗ =

−
𝑟𝑘𝑑1

𝐾
−𝑎𝜆𝑑1+𝑎ℎ𝑐+𝑟𝑘𝑐

𝐷
, 

 𝑃1
∗ =

−
𝑟𝑘ℎ

𝐾
−𝜆2𝑑1+𝜆ℎ𝑐−

𝑟𝜆𝑑1
𝐾

+
𝑟ℎ𝑐

𝐾
+𝑟𝑘𝜆

𝐷
  , 𝐷 =

𝑟𝑘2

𝐾
− 𝑐𝑘(

𝑟

𝐾
+ 𝜆) + 𝑎𝜆𝑘 

The Positive equilibrium 𝐸3 will be positive if the following conditions are satisfied 

𝐷 > 0 ⟹
𝑟𝑘

𝐾
+ 𝑎𝜆 > 𝑐 (

𝑟

𝐾
+ 𝜆) ,  𝑆∗ > 0 ⟹ 𝑎ℎ + 𝑟𝑘 > 𝑑1 (

𝑟

𝐾
+ 𝜆) , 𝐼∗ > 0 ⟹ 𝑎ℎ𝑐 + 𝑟𝑘𝑐

>
𝑟𝑘𝑑1

𝐾
+ 𝑎𝜆𝑑1 

𝑃1
∗ > 0 ⟹ 𝜆ℎ𝑐 +

𝑟ℎ𝑐

𝐾
+ 𝑟𝑘𝜆 >

𝑟𝑘ℎ

𝐾
+ 𝜆2𝑑1 +

𝑟𝜆𝑑1

𝐾
. 

Theorem 6.8. Prove that equilibrium 𝐸3(𝑆
∗, 𝐼∗, 𝑃1

∗, 0) is asymptotically stable provided the following 

conditions are satisfied.    
𝑟𝑆∗2

𝐾
{𝐼∗𝜆 (𝜆 +

𝑟

𝐾
) + 𝑎𝑐𝑃1

∗} > {𝐼∗𝑃1
∗𝑘(𝑐 + 𝑎𝜆𝑆∗} and 𝛽𝐼∗ + 𝛼𝑆∗ < 𝑑2 

Proof: The variational matrix about 𝐸3 is 𝑉𝐸3
 

=

[
 
 
 
 𝑆

∗ (−
𝑟

𝐾
) , 𝑆∗ (−

𝑟

𝐾
− 𝜆) −𝑎𝑆∗ 0

𝜆𝐼∗ 0 −𝐼∗𝑘 −𝑏𝐼∗

𝑐𝑃1
∗ 𝑘1𝑃1

∗ 0 −ℎ1𝑃1
∗2

0 0 0 −𝑑2 + 𝛽𝐼∗ + 𝛼𝑆∗]
 
 
 
 

 

We use the Routh Hurwitz Criterion to find the stability by using the above variational matrix. For this, 

we have the following characteristic equation, 

                              (−𝑑2 + 𝛽𝐼∗ + 𝛼𝑆∗ − 𝜇) [𝜇3 + 𝑆1𝜇
2 + 𝑆2𝜇 + 𝑆3] = 0  

Now we find the value of 𝑆1 , 𝑆2 and 𝑆3 as follow. 
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𝑆1 =
𝑟𝑆∗

𝐾
> 0, 𝑆2 = 𝐼∗𝑃1

∗𝑘2 + 𝑆∗𝐼∗𝜆 (𝜆 +
𝑟

𝐾
) + 𝑎𝑐𝑆∗𝑃1

∗ > 0,  

                          𝑆3 =
𝑟𝑆∗

𝐾
𝐼∗𝑃1

∗𝑘2 + 𝐼∗𝑃1
∗𝑘𝑐 + 𝑎𝜆𝑘𝑆∗𝑃1

∗𝐼∗ > 0 

Now by Routh-Hurwitz Criterion,  𝑆1 > 0, 𝑆2 > 0, 𝑆3 > 0,  𝑆1𝑆2 > 𝑆3. 

 𝑆1𝑆2 > 𝑆3 ⟹
𝑟𝑆∗2

𝐾
{𝐼∗𝜆 (𝜆 +

𝑟

𝐾
) + 𝑎𝑐𝑃1

∗} > {𝐼∗𝑃1
∗𝑘(𝑐 + 𝑎𝜆𝑆∗} 

Then 𝐸3 is asymptotically stable. 

Theorem 6.9. Existence of Positive equilibrium 𝐸4(𝑆
∗, 𝐼∗, 𝑃1

∗, 𝑃2
∗) when predators competing parameter 

to each other over Susceptible and Virus Infected Phytoplankton Populations are not equal. The positive 

equilibrium 𝐸4(𝑆
∗, 𝐼∗, 𝑃1

∗, 𝑃2
∗)  will exist and positive if susceptible population S will have fixed value 

in the following range domain  

𝑀𝑖𝑛(𝐹1, 𝐹2) < 𝑆 <
𝑟

𝐵𝐿
 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑  ℎ2𝑑1 > ℎ1𝑑2, ℎ2𝑐 > ℎ1𝛼, 

 𝑤ℎ𝑒𝑟𝑒 𝐿 = (
𝑟

𝐵𝐾
+

(ℎ2𝑐−ℎ1𝛼)

(𝛽ℎ1−𝑘ℎ2)
) , 𝐵 = 𝜆 +

𝑟

𝐾
  

Proof: From the first isocline of the system (3.8), we have 

                      
𝑑𝑆

𝑑𝑡
= 𝑟𝑆 (1 −

𝑆+𝐼

𝐾
) − 𝜆𝑆𝐼 − 𝑎𝑆𝑃1 = 0 ⇒

𝑑𝑆

𝑑𝑡
= 𝑆𝑔1(𝑆, 𝐼, 𝑃1) = 0 

Since  𝑆 ≠ 0  therefore, we have 𝑔1(𝑆, 𝐼, 𝑃1) = 0  

                      ⇒ 𝑟 (1 −
𝑆+𝐼

𝐾
) − 𝜆𝐼 − 𝑎𝑃1 = 0                                                                                       (𝑖)  

From the second isocline of the system (3.8), we have 

                     
𝑑𝐼

𝑑𝑡
= 𝐼((𝜆𝑆 − 𝑘𝑃1 − ℎ) − 𝑏𝑃2) = 0 ⇒

𝑑𝐼

𝑑𝑡
= 𝐼𝑔2(𝑆, 𝑃1, 𝑃2) = 0 

Since  𝐼 ≠ 0 therefore, we have  𝑔2(𝑆, 𝑃1, 𝑃2) = 0 

                    ⇒ (𝜆𝑆 − 𝑘𝑃1 − ℎ) − 𝑏𝑃2 = 0                                                                                          (𝑖𝑖)  

From the third isocline of the system (3.8), we have 

                   
𝑑𝑃1

𝑑𝑡
= 𝑃1[(−𝑑1 + 𝑐𝑆 + 𝑘1𝐼) − ℎ1𝑃1𝑃2] = 0 ⇒

𝑑𝑃1

𝑑𝑡
= 𝑃1𝑔3(𝑆, 𝑃1, 𝑃2, 𝐼) = 0 

Since   𝑃1 ≠ 0 therefore, we have  𝑔3(𝑆, 𝑃1, 𝑃2, 𝐼) = 0   

                  ⇒ (−𝑑1 + 𝑐𝑆 + 𝑘1𝐼) − ℎ1𝑃1𝑃2 = 0                                                                                     (𝑖𝑖𝑖) 

From the fourth isocline of the system (3.8), we have 

                 
𝑑𝑃2

𝑑𝑡
= 𝑃2[(𝑑2 + 𝛼𝑆 + 𝛽𝐼) − ℎ2𝑃2𝑃1] = 0 ⇒ 

𝑑𝑃2

𝑑𝑡
= 𝑃2𝑔4(𝑆, 𝐼, 𝑃1, 𝑃2) = 0    

Since  𝑃2 ≠ 0 therefore, we have  𝑔4(𝑆, 𝐼, 𝑃1, 𝑃2) = 0  

                  ⇒ (𝑑2 + 𝛼𝑆 + 𝛽𝐼) − ℎ2𝑃2𝑃1 = 0                                                                       (𝑖𝑣)  

From the isoclines (𝑖𝑖𝑖)  and (𝑖𝑣), taking the competing predator parameters and subtracting them from 

each other, then we have the equation 
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−(ℎ2𝑑1 − ℎ1𝑑2) + 𝑆(ℎ2𝑐 − ℎ1𝛼) + 𝐼(𝛽ℎ1 − 𝑘ℎ2) = 0 ⇒ 𝐼∗ =
−(ℎ2𝑑1−ℎ1𝑑2)+𝑆(ℎ2𝑐−ℎ1𝛼)

(𝛽ℎ1−𝑘ℎ2)
   (𝑣)        

𝐼∗ > 0 𝑤ℎ𝑒𝑛 𝑆 >
(ℎ2𝑑1 − ℎ1𝑑2)

(ℎ2𝑐 − ℎ1𝛼)
= 𝐹1(𝑠𝑎𝑦), 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑  ℎ2𝑑1 > ℎ1𝑑2 𝑎𝑛𝑑 ℎ2𝑐 > ℎ1𝛼  

From the isoclines (𝑖) and (𝑣), we get 

𝑃1
∗ =

1

𝐵𝑎
{
𝑟

𝐵
− 𝑆 (

𝑟

𝐵𝐾
+

(ℎ2𝑐 − ℎ1𝛼)

(𝛽ℎ1 − 𝑘ℎ2)
)} =

1

𝐵𝑎
{
𝑟

𝐵
− 𝑆𝐿} 

𝑇ℎ𝑢𝑠 𝑃1
∗ > 0 𝑤ℎ𝑒𝑛 

𝑟

𝑆𝐵
> 𝐿 , 𝑤ℎ𝑒𝑟𝑒 𝐿 = (

𝑟

𝐵𝐾
+

(ℎ2𝑐 − ℎ1𝛼)

(𝛽ℎ1 − 𝑘ℎ2)
) , 𝐵 = 𝜆 +

𝑟

𝐾
  

Substitute the value of 𝑃1
∗ In the isoclines (𝑖𝑖), we get 

𝑃2
∗ =

1

𝑏
{𝑆 (𝜆 +

𝐿𝑘

𝐵𝑎
) − (ℎ +

𝑘𝑟

𝐵2𝑎
)} , 𝑡ℎ𝑢𝑠 𝑃2

∗ > 0 𝑤ℎ𝑒𝑛 𝑆 >
(ℎ +

𝑘𝑟
𝐵2𝑎

)

(𝜆 +
𝐿𝑘
𝐵𝑎

)
=  𝐹2(𝑠𝑎𝑦) 

The positive equilibrium  𝐸4(𝑆
∗, 𝐼∗, 𝑃1

∗, 𝑃2
∗) will exist and be positive if susceptible population S will 

have a fixed value in the following range domain  

𝑀𝑖𝑛(𝐹1, 𝐹2) < 𝑆 <
𝑟

𝐵𝐿
 

Corollary 6.10. Existence of Positive equilibrium 𝐸4(𝑆
∗, 𝐼∗, 𝑃1

∗, 𝑃2
∗) when predators compete with each 

other over Susceptible and Virus Infected Phytoplankton Population have equal competition. The 

positive equilibrium 𝐸4(𝑆
∗, 𝐼∗, 𝑃1

∗, 𝑃2
∗) will exist and be positive if susceptible population S will have a 

fixed value in the following range domain 

𝑀𝑖𝑛 {
(𝑑1 − 𝑑2)

(𝑐 − 𝛼)
,

(
𝑘𝑟
𝑎

) +
𝑘𝐵(𝑑1 − 𝑑2)

(𝛽 − 𝑘)

𝜆 − 𝑘 {(
𝑟

𝑎𝐾) +
𝐵(𝑐 − 𝛼)

𝛽 − 𝑘
}
} < 𝑆 < 𝐾 {1 +

𝐵𝑎(𝑑1 − 𝑑2)

𝑟(𝛽 − 𝑘)
} / {1 +

𝐾𝑎(𝑐 − 𝛼)

𝑟(𝛽 − 𝑘)
} 

𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑  𝑑1 > 𝑑2 𝑎𝑛𝑑 𝑐 > 𝛼 

Proof: In the theorem 3.5.6 substituting   ℎ2 = ℎ1. 

Theorem 6.11 Prove that equilibrium  𝐸4(𝑆
∗, 𝐼∗, 𝑃1

∗, 𝑃2
∗)  is asymptotically stable provided the following 

conditions are satisfied   𝑆1 =
𝑟𝑆∗

𝐾
+ ℎ1𝑃1

∗𝑃2
∗ + ℎ2𝑃1

∗𝑃2
∗ > 0,  

𝑆2 =
𝑟𝑆∗

𝐾
𝑃1

∗𝑃2
∗(ℎ1 + ℎ2) + 𝑆∗𝐼∗𝜆 (𝜆 +

𝑟

𝐾
) + 𝑎𝑐𝑆∗𝑃1

∗ + 𝑏 𝛽𝑃2
∗𝐼∗ + 𝑘𝑘1𝑃1

∗𝐼∗ > 0, 𝑆3 = 𝐿 − 𝑀 > 0, 

 𝑆4 = 𝑄 − 𝑅 > 0, 𝑄𝑆1
2 + 𝐿2 + 𝑀2 < 𝑆1

2(𝑆2
2 + 𝑅). Where   𝐿 =

𝑟𝑆∗

𝐾
(𝐼∗𝑃1

∗𝑘𝑘1 + 𝑏𝐼∗𝑃2
∗𝛽) +

𝑏𝐼∗𝛽𝑃2
∗2ℎ1𝑃1

∗ + 𝑘1𝑃1
∗2ℎ2𝑃2

∗𝐼∗𝑘 + 𝑆∗𝜆ℎ2𝑃1
∗𝐼∗𝑃2

∗ (𝜆 +
𝑟

𝐾
) + 𝑆∗𝜆ℎ1𝑃1

∗𝐼∗𝑃2
∗ (𝜆 +

𝑟

𝐾
) + 𝑎𝑐𝑆∗ℎ2𝑃2

∗𝑃1
∗2 +

𝑎𝑆∗𝜆 𝐼∗𝑘1𝑃1
∗, 

𝑀 = 𝐼∗𝑃1
∗2𝑘ℎ1𝑃2

∗𝛽 + 𝑏𝐼∗𝑃2
∗2𝑘ℎ2𝑃1

∗ + 𝑆∗𝛼𝑃2
∗𝑏𝐼∗ (𝜆 +

𝑟

𝐾
) + 𝑆∗𝑐𝑃1

∗𝐼∗𝑘 (𝜆 +
𝑟

𝐾
) + 𝑎𝛼ℎ1𝑆

∗𝑃1
∗𝑃2

∗, 
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𝑄 =
𝑟𝑆∗

𝐾
(𝐼∗𝑃2

∗𝑘𝑘1ℎ2𝑃1
∗2 + 𝑏𝐼∗𝑃1

∗𝛽ℎ1𝑃2
∗2

)+𝑆∗ (𝜆 +
𝑟

𝐾
) {𝛼ℎ1𝑘𝐼∗𝑃2

∗𝑃1
∗2 + 𝑏𝑐ℎ2𝐼

∗𝑃1
∗𝑃2

∗2 +

𝑏𝛼ℎ1𝐼
∗𝑃1

∗𝑃2
∗2

} + 𝑎𝑆∗{𝜆𝑘1ℎ2𝑃1
∗2𝐼∗𝑃2

∗ + 𝑏𝑐𝛽𝐼∗𝑃1
∗𝑃2

∗}, 

𝑅 =
𝑟𝑆∗

𝐾
(𝑏𝐼∗𝑃1

∗𝑘1ℎ2𝑃2
∗2 + 𝐼∗𝑃2

∗𝛽ℎ1𝑘𝑃1
∗2

)+𝑆∗ (𝜆 +
𝑟

𝐾
) {𝑘𝑐ℎ2𝐼

∗𝑃1
∗2𝑃2

∗} + 𝑎𝑆∗{𝛽ℎ1𝜆𝑃1
∗2𝐼∗𝑃2

∗ +

𝑏𝛼𝑘1𝐼
∗𝑃1

∗𝑃2
∗. 

Proof: The variational matrix about 𝐸4(𝑆
∗, 𝐼∗, 𝑃1

∗, 𝑃2
∗) is 𝑉𝐸4

 

[
 
 
 
 −

𝑟

𝐾
𝑆∗, 𝑆∗ (−

𝑟

𝐾
− 𝜆) −𝑎𝑆∗ 0

𝜆𝐼∗ 0 −𝐼∗𝑘 −𝑏𝐼∗

𝑐𝑃1
∗ 𝑘1𝑃1

∗ −ℎ1𝑃1
∗𝑃2

∗ −ℎ1𝑃1
∗2

𝛼𝑃2
∗ 𝛽𝑃2

∗ −ℎ2𝑃2
∗2

−ℎ2𝑃1
∗𝑃2

∗]
 
 
 
 

  

We use the Routh Hurwitz Criterion to find the stability by using the above variational matrix. For this, 

we have the following characteristic equation, 

                   𝜇4 + 𝑆1𝜇
3 + 𝑆2𝜇

2 + 𝑆3𝜇 + 𝑆4 = 0     

Now we find the value of 𝑆1 , 𝑆2, 𝑆3 and 𝑆4 as follow. 𝑆1 =
𝑟𝑆∗

𝐾
+ ℎ1𝑃1

∗𝑃2
∗ + ℎ2𝑃1

∗𝑃2
∗ > 0, 

 𝑆2 =
𝑟𝑆∗

𝐾
𝑃1

∗𝑃2
∗(ℎ1 + ℎ2) + 𝑆∗𝐼∗𝜆 (𝜆 +

𝑟

𝐾
) + 𝑎𝑐𝑆∗𝑃1

∗ + 𝑏 𝛽𝑃2
∗𝐼∗ + 𝑘𝑘1𝑃1

∗𝐼∗ > 0,     

𝑆3 = 𝐿 − 𝑀 > 0 𝑖𝑓 𝐿 > 𝑀   Where 

𝐿 =
𝑟𝑆∗

𝐾
(𝐼∗𝑃1

∗𝑘𝑘1 + 𝑏𝐼∗𝑃2
∗𝛽) + 𝑏𝐼∗𝛽𝑃2

∗2
ℎ1𝑃1

∗ + 𝑘1𝑃1
∗2

ℎ2𝑃2
∗𝐼∗𝑘 + 𝑆∗𝜆ℎ2𝑃1

∗𝐼∗𝑃2
∗ (𝜆 +

𝑟

𝐾
) +

𝑆∗𝜆ℎ1𝑃1
∗𝐼∗𝑃2

∗ (𝜆 +
𝑟

𝐾
) +𝑎𝑐𝑆∗ℎ2𝑃2

∗𝑃1
∗2 + 𝑎𝑆∗𝜆 𝐼∗𝑘1𝑃1

∗ 

𝑀 = 𝐼∗𝑃1
∗2𝑘ℎ1𝑃2

∗𝛽 + 𝑏𝐼∗𝑃2
∗2𝑘ℎ2𝑃1

∗ + 𝑆∗𝛼𝑃2
∗𝑏𝐼∗ (𝜆 +

𝑟

𝐾
) + 𝑆∗𝑐𝑃1

∗𝐼∗𝑘 (𝜆 +
𝑟

𝐾
) + 𝑎𝛼ℎ1𝑆

∗𝑃1
∗𝑃2

∗ 

𝑆4 =
𝑟𝑆∗

𝐾
(𝐼∗𝑃2

∗𝑘𝑘1ℎ2𝑃1
∗2 + 𝑏𝐼∗𝑃1

∗𝛽ℎ1𝑃2
∗2

) −
𝑟𝑆∗

𝐾
(𝑏𝐼∗𝑃1

∗𝑘1ℎ2𝑃2
∗2 + 𝐼∗𝑃2

∗𝛽ℎ1𝑘𝑃1
∗2

)  + 𝑆∗ (𝜆 +
𝑟

𝐾
) {𝛼ℎ1𝑘𝐼∗𝑃2

∗𝑃1
∗2 + 𝑏𝑐ℎ2𝐼

∗𝑃1
∗𝑃2

∗2 + 𝑏𝛼ℎ1𝐼
∗𝑃1

∗𝑃2
∗2 − 𝑘𝑐ℎ2𝐼

∗𝑃1
∗2𝑃2

∗} + 𝑎𝑆∗{𝜆𝑘1ℎ2𝑃1
∗2𝐼∗𝑃2

∗ −

𝛽ℎ1𝜆𝑃1
∗2𝐼∗𝑃2

∗ + 𝑏𝑐𝛽𝐼∗𝑃1
∗𝑃2

∗ − 𝑏𝛼𝑘1𝐼
∗𝑃1

∗𝑃2
∗  

𝑆4 = 𝑄 − 𝑅 > 0 𝑖𝑓 𝑄 > 𝑅;  where  

 𝑄 =
𝑟𝑆∗

𝐾
(𝐼∗𝑃2

∗𝑘𝑘1ℎ2𝑃1
∗2 + 𝑏𝐼∗𝑃1

∗𝛽ℎ1𝑃2
∗2

)+𝑆∗ (𝜆 +
𝑟

𝐾
) {𝛼ℎ1𝑘𝐼∗𝑃2

∗𝑃1
∗2 + 𝑏𝑐ℎ2𝐼

∗𝑃1
∗𝑃2

∗2 +

𝑏𝛼ℎ1𝐼
∗𝑃1

∗𝑃2
∗2

} + 𝑎𝑆∗{𝜆𝑘1ℎ2𝑃1
∗2𝐼∗𝑃2

∗ + 𝑏𝑐𝛽𝐼∗𝑃1
∗𝑃2

∗} 

𝑅 =
𝑟𝑆∗

𝐾
(𝑏𝐼∗𝑃1

∗𝑘1ℎ2𝑃2
∗2 + 𝐼∗𝑃2

∗𝛽ℎ1𝑘𝑃1
∗2

)+𝑆∗ (𝜆 +
𝑟

𝐾
) {𝑘𝑐ℎ2𝐼

∗𝑃1
∗2𝑃2

∗} + 𝑎𝑆∗{𝛽ℎ1𝜆𝑃1
∗2𝐼∗𝑃2

∗ +

𝑏𝛼𝑘1𝐼
∗𝑃1

∗𝑃2
∗ 

Now by the Routh-Hurwitz Criterion for stability, 𝑆1 > 0, 𝑆2 > 0, 𝑆3 > 0, 𝑆4 > 0,  𝑆1𝑆2𝑆3 > 𝑆1
2𝑆4 +

𝑆3
2. Then  𝐸4(𝑆

∗, 𝐼∗, 𝑃1
∗, 𝑃2

∗)  is asymptotically stable. 

7. Locally asymptotically stable & globally asymptotically stable 

Theorem 7.1. The flow of the nonlinear harvesting model (4.1) contracts volume uniformly for positive 

non-zero equilibrium 𝐸4(𝑆
∗, 𝐼∗, 𝑃1

∗, 𝑃2
∗).  
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Proof: Because the divergence of the vector field for the positive non-zero equilibrium 

𝐸4(𝑆
∗, 𝐼∗, 𝑃1

∗, 𝑃2
∗)  is 

 
𝜕

𝜕𝑃1

𝑑𝑃1

𝑑𝑡
+

𝜕

𝜕𝑃2
 
𝑑𝑃2

𝑑𝑡
+

𝜕

𝜕𝑆
 
𝑑𝑆

𝑑𝑡
+

𝜕

𝜕𝐼
 
𝑑𝐼

𝑑𝑡
= −[ℎ1𝑃1𝑃2 + ℎ2𝑃1𝑃 +

𝑟𝑆

𝐾
] < 0 

Hence the result. 

Theorem 7.2.  If the positive non-zero equilibrium 𝐸4(𝑆
∗, 𝐼∗, 𝑃1

∗, 𝑃2
∗) is locally asymptotically stable, 

then the positive non-zero equilibrium 𝐸4(𝑆
∗, 𝐼∗, 𝑃1

∗, 𝑃2
∗) will be globally asymptotically stable with the 

condition  𝑐(𝑟 + 𝜆𝐾) =
𝛼𝛽

𝛼1𝑏
𝑎𝐾𝜆. 

Proof: Assume  𝑆 = 𝑆∗ + 𝑢, 𝐼 = 𝐼∗ + 𝑣, 𝑃1 = 𝑃1
∗ + 𝑤, 𝑃2 = 𝑃2

∗ + 𝑥 , where 𝑢, 𝑣, 𝑤 and 𝑥 are small 

perturbations. 

Let 𝑉(𝑡) be a positive definite function for arbitrarily chosen positive constants 𝐷1, 𝐷2, 𝐷3 𝑎𝑛𝑑 𝐷4 such 

that 

 𝑉(𝑡) = 𝐷1 (𝑢 − 𝑆∗ 𝑙𝑜𝑔(1 +
𝑢

𝑆∗) + 𝐷2 (𝑣 − 𝐼∗ 𝑙𝑜𝑔(1 +
𝑣

𝐼∗
) + 𝐷3 (𝑤 − 𝑃1

∗ 𝑙𝑜𝑔(1 +
𝑤

𝑃1
∗) + 𝐷4 (𝑥 −

𝑃2
∗ 𝑙𝑜𝑔(1 +

𝑥

𝑃2
∗) 

𝑑𝑉(𝑡)

𝑑𝑡
=

𝜕𝑉(𝑡)

𝜕𝑢

𝑑𝑢

𝑑𝑡
+

𝜕𝑉(𝑡)

𝜕𝑣

𝑑𝑣

𝑑𝑡
+

𝜕𝑉(𝑡)

𝜕𝑤

𝑑𝑤

𝑑𝑡
+

𝜕𝑉(𝑡)

𝜕𝑥

𝑑𝑥

𝑑𝑡
= − [

𝐷1𝑟𝑢
2

𝐾
+ 𝐷4ℎ2𝑃1

∗𝑥2 + 𝐷3ℎ1𝑃2
∗𝑤2] 

−(𝑃2 − 𝑃2
∗)(𝑃1 − 𝑃1

∗)[𝐷3ℎ1𝑃1
∗ + 𝐷4ℎ2𝑃2

∗ + 𝐷3ℎ1(𝑃1 − 𝑃1
∗) + 𝐷4ℎ2(𝑃2 − 𝑃2

∗) < 0.  

provided  𝐷1 (𝜆 +
𝑟

𝐾
) = 𝐷2𝜆,  𝐷1𝑎 = 𝐷3𝑐, 𝐷2𝑘 = 𝐷3𝑘1, 𝐷2𝑏 = 𝐷4𝛽. 

Therefore, the dynamics of the mathematical model about the non-zero positive equilibrium is globally 

asymptotically stable under the conditions  

(1) The non-zero positive equilibrium is locally asymptotically stable. 

 (2)   𝑐(𝑟 + 𝜆𝐾) =
𝛼𝛽

𝛼1𝑏
𝑎𝐾𝜆. 

8. Numerical Analysis: A numerical simulation of a given mathematical model under the set of certain 

values of parameters is carried out. The mathematical model is sensitive to the change in parametric 

values. We draw Figure 1 for the considered set of parameters 

r = 0.82; 𝜆 = 0.61; a = 0.021; K = 11.6; k = 0.0235; b = 0.037; h = 0.048; c = 0.225; k1 = 0.42; α = 0.22; 

d1 = 0.025;  α1 = 0.015;  β = 0.014;  h1 = 0.46;  d2 = 0.031;  

         

Figure 1 
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In Figure 1 it is seen that in the 3-D projection of the mathematical model, the trajectories converge to 

a limit cycle. Thus, we concluded that the system is periodic stable. Consider again a set of parameter 

values under the derived analytical results and draw Figure 2 

r = 0.62; λ = 0.81; a = 0.021; K = 9.6; k = 0.0235; b = 0.037; h = 0.048; c = 0.0225; k1 = 0.042; α = 

0.022; d1 = 0.025;  α1 = 0.022;  β = 0.014;  h1 = 0.026;  d2 = 0.031;  

 

     

Figure 1 

In Figure 2 it is seen that in the 3-D projection of the mathematical model, the trajectories have 

quasiperiodic solution. Thus, we concluded that the system has no stable solution. Consider again a set 

of parameter values under the derived analytical results and draw figure 3: 

r = 0.62; λ = 0.81; a = 0.021; K = 9.6; k = 0.0235; b = 0.037; h = 0.048; c = 0.0225; k1 = 0.042; α = 

0.022; d1 = 0.025;  α1 = 0.042;  β = 0.014;  h1 = 0.026;  d2 = 0.031;  

     

In Figure 3, in this case, also it is seen that in the 3-D projection of the mathematical model, the 

trajectories have a quasiperiodic solution. Thus, we concluded that the system has no stable solution. 

9. Conclusion: The proposed and analyzed model for four varieties namely, susceptible phytoplankton, 

infected phytoplankton, predator zooplankton, and second small predator. The phytoplankton grows 

according to logistic growth. We analyzed in this paper the existence of equilibria. We have analyzed 

the stability of the model. we have shown that the eigenvalues are positive and negative, therefore E0 

also shows saddle bifurcation. The equilibrium E1 ≡ (K, 0,0,0) is asymptotically stable if K <
h

λ
, K <

d1

c
 . f the conditions K <

h

λ
, K <

d1

c
  violates then this equilibrium E1 become a saddle point. The 

equilibrium E3(S
∗, I∗, P1

∗, 0) is feasible if P1
∗ > 0 and 

K(rKc+rd1+aλKk)

rKc+λc+rk+aλKk
< min (

d1

k1
,
λd1−ch

kλ
). We also 

analyzed the stability of the system when the predators are assumed to be zero. Then the equilibrium 

E3(S
∗, I∗, P1

∗, 0) is asymptotically stable under certain conditions. Lastly, we analyzed the existence of 

positive equilibrium points under certain feasible conditions. Hence, we conclude that the non-linear 

dynamical model is bounded and has local behavior about E0, E1, E3. The equilibrium E0 also shows 

bifurcation. The existence of positive non-zero equilibrium is obtained. A numerical simulation of the 

derived results is tried to analyze under a certain range of parameters. The range of parameters for global 

stability of the non-zero equilibrium is found analytically. 
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