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Abstract. By the Uchida’s basic idea, the products of the first order and sec-
ond order normal solutions (Uchida’s hyper exponential functions) generate
the fully general solutions of the second order linear equations. However, the
second order normal solutions are known for very few concrete functions only.
Meanwhile, of course, the first order normal solutions are general and trivial.
For the importance of the second order linear ordinary differential equations
with a singularity we would like to consider some general and concrete ordi-
nary differential equations. On this line, by the concept of division by zero
calculus, we would like to consider the typical special singularities. For the
first order differential equation, we consider the typical cases of the function
y = |x− a|ν and for the second order differential equations y = (x− a)ν that
satisfy y′ = ν

(x−a)
y and y′′ = ν(ν−1)

(x−a)2
y, respectively.

David Hilbert:
The art of doing mathematics consists in finding that special case which

contains all the germs of generality.
Oliver Heaviside:
Mathematics is an experimental science, and definitions do not come first,

but later on.

1. Introduction

In order to represent the paper in a self contained manner, we set first simply
the needed basic materials.

K. Uchida ([23]) has a long love for the solutions of the differential equations
dny

dx
= f(x)y

and he is appointing out the importance of the solutions. He called the solutions
hyper exponential functions (Uchida’s hyper exponential functions). He considered
the solutions for some functions f(x) and derived many beautiful computer graph-
ics with their elementary properties ([24]). We see the few concrete solutions from
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[16] and [24] for n = 2. Of course, the case n = 1 is trivial and the n > 3 cases are
rare examples, and the case n = 2 is important.

His fundamental results are stated as follows:
Proposition 1.1. For the solutions

u′ = f(x)u

and
v′′ = g(x)v,

the product y = uv is the solution of the differential equation of
y′′ +A(x)y′ +B(x)y = 0 (1.1)

with
A(x) = −2f(x)

and
B = f(x)2 − f ′(x)− g(x).

The general solution of (1.1) is given by u and linearly independent solutions v1
and v2 in the form

y = u(C1v1 + C2v2).

For the general inhomogenous equation
y′′ +A(x)y′ +B(x)y = Q(x), (1.2)

we have a special solution

y = u(x)v2(x)

∫
u(t)−1v1(t)Q(t)dt− u(x)v1(x)

∫
u(t)−1v2(t)Q(t)dt,

if the integrals exist.

Note that in Proposition 1.1, the functions f and g can be solved conversely in
terms of the functions A and B;

f(x) = −A(x)

2
, g(x) =

A(x)2

4
+

A′(x)

2
−B(x). (1.3)

Next, we state the essence of the division by zero calculus.

For any Laurent expansion around z = a,

f(z) =

−1∑
n=−∞

Cn(z − a)n + C0 +

∞∑
n=1

Cn(z − a)n, (1.4)

we will define
f(a) = C0. (1.5)

For the correspondence (1.5) for the function f(z), we will call it the division
by zero calculus. By considering derivatives in (1.4), we can define any order
derivatives of the function f at the singular point a; that is,

f (n)(a) = n!Cn.

Here, however, we will use the general definition of the division by zero calculus:
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For a function y = f(x) which is n order differentiable at x = a, we will define
the value of the function, for n > 0

f(x)

(x− a)n

at the point x = a by the value
f (n)(a)

n!
.

For the important case of n = 1,

f(x)

x− a
|x=a = f ′(a). (1.6)

In particular, the values of the functions y = 1/x and y = 0/x at the origin
x = 0 are zero. We write them as 1/0 = 0 and 0/0 = 0, respectively. Of
course, the definitions of 1/0 = 0 and 0/0 = 0 are not usual ones in the sense:
0 · x = b and x = b/0. Our division by zero is given in this sense and is not given
by the usual sense in [20].

For the case of non differentiable functions, we shall define the values at a
singular point by using the formal results 1/0 = 0 and 0/0 = 0. In this case, we
shall consider the results as conventions and we will check the results. At this
moment, for odd function satisfying f(−x) = −f(x), the result f(0) = 0 may be
natural from f(0) = −f(0).

The first order normal solutions are trivial, but we will introduce typically
interesting solutions with typical singularities.

First, for the function y = |x| we obtain:
From the expression

y := exp

(∫ x dt

t

)
= exp (log |x|) = |x|,

y′ = |x| 1
x
=

1

x
y

and
y′(0) = 0

by the division by zero calculus. Next, for some general case of the function

y =
1

m
(|x|+ x) ,

we have
y′ =

1

m

(
|x|
x

+ 1

)
and

y′ =
1

x
y.

Then, we obtain
y′(0) =

1

m
.

For a C1 function y = f(x) except for an isolated point x = a having f ′(a− 0)
and f ′(a+ 0), we shall introduce its natural differential coefficient at the singular
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point x = a. Surprisingly enough, the differential coefficient is given by the division
by zero calculus and it will give the gradient of the natural tangential line of the
function y = f(x) at the point x = a.

We obtain the very pleasant theorem
Theorem 1.1. At the point x = a, we introduce the definition

f ′(a) =
1

2
(f ′(a− 0) + f ′(a+ 0)) .

Then, f ′(a) has the sense of the gradient of the natural tangential line at the point
x = a of the function y = f(x) and it is given by the division by zero calculus at
the point in the sense that: For the function

F (x) =
f ′(a− 0) + f ′(a+ 0)

2
(|x− a|+ (x− a))− f ′(a− 0)|x− a|,

F ′(a) = f ′(a)

in the sense of the division by zero calculus.

Anyhow, the definition

y′ = |x| 1
x

may be understood as the natural one as the derivative containing
the origin x = 0 by the division by zero calculus.

In particular, note that the division by zero calculus is beyond continuity and
differentiability of a function to determine the value at a singular point.

Indeed, consider the function

f(x) =

{
x2 sin 1

x , (x ̸= 0)

0 (x = 0).
(1.7)

Then, we obtain also the result f(0) = 0 by the division by zero calculus. However,
for its differential

f ′(x) =

{
2x sin 1

x − cos 1
x , (x ̸= 0)

0 (x = 0),
(1.8)

this function is differentiable at x = 0, however, we have f ′(0) = 1 by the division
by zero calculus.

In the division by zero calculus, we consider mathematics except singular points
first, and next we consider the values at isolated singular points by the division
by zero calculus.

For the first order normal solutions with singularities (for the negative ν), we
shall consider the functions

y = Uν(x) = |x− a|ν , ν ̸= 0 (1.9)
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satisfying
y′ =

ν

x− a
y. (1.10)

Next we will consider the second order normal solutions with singularities (for
the negative ν). For the functions

y = Vν,1(x) = (x− a)ν , (1.11)
we obtain the normal equations

y′′ =
ν(ν − 1)

(x− a)2
y, ν ̸= 0, 1. (1.12)

Then we see that the functions

Y = Vν,2(x) =
ν(ν − 1)

µ(µ− 1)
(x− a)µ (1.13)

are linearly independent solutions for ν ̸= µ ( ̸= 0, 1). In the general theory of
Uchida, we shall use these fundamental solutions for the second order of the normal
equation.

In order to consider some general linear second order ordinary differential equa-
tions, for the first order normal solution we shall consider the function for a con-
tinuous function y = e(x)

y = E(x) = exp

(∫ x

e(t)dt

)
satisfying

y′ = e(x)y. (1.14)
Meanwhile, for the second order normal solution we shall consider the function

for non-vanishing C2 function
y = S(x)

satisfying

y′′ =
S′′(x)

S(x)
y. (1.15)

For a linearly independent solution, we shall consider the function

S2(x) = S(x)

∫ x dt

S(t)2
.

2. General Formulas

By the Uchida’s results and the above concrete solutions, we obtain the fol-
lowing general formulas by assuming the existence of the integrals. Anyhow, we
can determine the structure of linear second order ordinary differential equations
having one singular pole as the solutions in some general situation.

I: For

A(x) = −2e(x)
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and
B(x) = e(x)2 − e′(x)− S′′(x)

S(x)
,

we have for
u = E(x),

v1 = S(x)

and
v2 = S(x)

∫ x dt

S(t)2
,

we have the complete solution.

II: For

A(x) = −2
ν

x− a
and

B(x) =
ν2 + ν

(x− a)2
− S′′(x)

S(x)
,

we have for
u = Uν(x),

v1 = S(x)

and
v2 = S(x)

∫ x dt

S(t)2
,

we have the complete solution.

III: For

A(x) = −2e(x)

and
B(x) = e(x)2 − e′(x)− ν(ν − 1)

(x− a)2
,

we have for
u = E(x),

v1 = Vν,1(x)

and
v2 = Vν,2(x)

we have the complete solution.

IV: For

A(x) = −2
ν

x− a
and

B(x) =
ν2 + ν

(x− a)2
− ν′(ν′ − 1)

(x− a)2
,
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we have for
u = Uν(x),

v1 = Vν′,1(x)

and
v2 = Vν′,2(x),

we have the complete solution.

3. Singular Point and Fractional Power

Note that the Uchida’s decomposition theorem is valid even for the case that u
and v (so, A and B) have singular points, because the equalities (identities) used
are done by using derivatives and formal algebraic identities. In particular, for
integer order power and derivatives, there is no problem. However, for a fractional
order ν when we consider that: for

y = Vν,1(x) = (x− a)ν , (3.1)
we obtain the normal equations

y′′ =
ν(ν − 1)

(x− a)2
y, ν ̸= 0, 1, (3.2)

we have the serious problem for the definition (x− a)ν . Here, we are considering
mathematics on the real number field, however, for the real power (not integer) of
ν we should restrict as x− a > 0 otherwise the definition of (x− a)ν is unclear by
its definition. In this case as well-known, its derivative is well-known as

((x− a)ν)
′
= ν(x− a)ν−1, ν > 0, ν < 0

and other formulas.
In this sense, the above results should be considered in this principle.
Meanwhile, for the result (

1

xn

)
x=0

= 0

for non-zero integers n, this result still is valid for any non zero real number ν.
This property may be derived as follows:
For the Laplace transform of the function

tn−1e−at

(n− 1)!
, n = 1, 2, 3, ...,

we have
1

(s+ a)n
.

Then, for s = −a, by the division by zero calculus (DBZC), we have[
1

(s+ a)n

]
s=−a

= 0.

Then, how will be the corresponding Laplace transform∫ ∞

0

tn−1e−at

(n− 1)!
eatdt =

∫ ∞

0

tn−1

(n− 1)!
dt
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? Note that this integral is zero, because infinity may be represented by 0. For
many geometrical examples and analytical meanings, see the papers cited in the
references. For example [1, 4, 15, 18].

Conversely, from this argument for the general function for any positive ν

Γ(ν)

(s+ a)ν

that is the Laplace transform of the function
tν−1e−at,

we can derive the result [
Γ(ν)

(s+ a)ν

]
s=−a

= 0.

Indeed, since this result is not defined by DBZC for general positive ν, this result
now was derived here, by this logic.

4. Many Second Order Normal Solutions

At this moment, it seems that the second order normal solutions are known
only for few concrete examples as we see from [16] and at the same time, we
know many linear independent solutions of the second order ordinary differential
equations, as we see from the same hand book. From the general Proposition
1.1, we see that conversely from linear independent solutions of the second order
ordinary differential equations, we can find linear independent normal second order
solutions. Therefore, now we can find many and many kind normal solutions for
the second order.

For example, for the differential equation

y′′ +

(
2a+

b

x

)
y′ + a

(
a+

b

x

)
y = 0, (4.1)

we obtain the general solutions

y =

{
eax(C1 + C2x

1−b), b ̸= 1

eax(C1 + C2 log |x|), b = 1,
(4.2)

([16], page 222, 72). From

f(x) = −a− b

2x
,

we have the first order normal solution
y = e−axx− b

2 .

Therefore, for the functions

g(x) =
b

2x2

(
b

2

)
,

we obtain the linear independent second order normal solutions

x
1
2 b
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and
x1− 1

2 b.

Precisely, here, for non integer b, we are considering the equations for x > 0 and
for the singular point at x = 0 we have to give the interpretation by the concept
of the division by zero calculus as in the above.

Next, for the differential equation

y′′ +
n

x
y′ +

b

x2n
y = 0, n ̸= 1,

we have the general solutions,

y =

 C1 sin
( √

b
n−1x

1−n
)
+ C2 cos

( √
b

n−1x
1−n

)
, b > 0

C1 exp
(√

−b
n−1 x

1−n
)
+ C2 exp

(√
−b

n−1 x
1−n

)
, b < 0

(4.3)

([16], page 220, 65).
Then, from

f(x) = − n

2x
,

we have the first order normal solution
y = x−n

2 .

Therefore, for the function

g(x) =
n

4x2
(n− 2)− b

x2n
,

we obtain the linear independent second order normal solutions

y =

 x
n
2 sin

( √
b

n−1x
1−n

)
, x

n
2 cos

( √
b

n−1x
1−n

)
, b > 0

x
n
2 exp

(√
−b

n−1 x
1−n

)
, x

n
2 exp

(√
−b

n−1 x
1−n

)
, b < 0.

(4.4)

For non integer power, we consider the results for positive x > 0 and at the
singular point, we give the interpretation by the division by zero calculus.

Next, for the Euler equation

y′′ +
a

x
y′ +

b

x2
y = 0,

we have the general solutions, for

µ =
1

2
|(1− a)2 − 4b|1/2,

y =


|x| 1−a

2 (C1|x|µ + C2|x|−µ), (1− a)2 > 4b

|x| 1−a
2 (C1 + C2 log |x|), b = 1, (1− a)2 = 4b

|x| 1−a
2 (C1 sin(µ log |x|µ + C2 cosµ log |x|), (1− a)2 < 4b,

(4.5)

([16], page 226, 123).
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Then, from

f(x) = − a

2x
,

we have the first order normal solution

y = x− a
2 .

Therefore, for the function

g(x) =
1

4x2
(a2 − 2a− 4b),

we obtain the linear independent second order normal solutions

y =


|x|µ+ 1

2 , |x|−µ+ 1
2 , (1− a)2 > 4b

|x| 12 , |x| 12 log |x|, b = 1, (1− a)2 = 4b

|x| 12 sin(µ log |x|), |x| 12 cos(µ log |x|), (1− a)2 < 4b.

(4.6)

5. Examples

We shall state examples in order to see the division by zero calculus at singular
points.

• For the function
y =

log |x|
|x|

. (5.1)

we have
y′ =

1

x|x|
(1− log |x|) (5.2)

and
y(0) = y′(0) = 0.

• For the function
y = |x| log |x|. (5.3)

we have
y′ =

|x|
x
(1 + log |x|) (5.4)

and
y(0) = y′(0) = 0.

• For the function
y = |x| coshx, (5.5)

we have
y′ =

|x|
x

coshx− |x| sinhx (5.6)

and
y(0) = y′(0) = 0.
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• For the function
y =

coshx

|x|
, (5.7)

we have
y′ =

1

|x|

(
sinhx− coshx

x

)
(5.8)

and
y(0) = y′(0) = 0.

• For the function
y =

sinhx

|x|
, (5.9)

we have
y′ =

1

|x|

(
coshx− sinhx

x

)
(5.10)

and
y(0) = y′(0) = 0.

• For the function
y = |x| sinx, (5.11)

we have
y′ =

|x|
x
(sinx+ |x| cosx) (5.12)

and
y(0) = y′(0) = 0.

For the function
y = |x| cosx, (5.13)

we have
y′ =

|x|
x
(cosx− |x| sinx) (5.14)

and
y(0) = y′(0) = 0.

• For the function
y =

sinx

|x|
, (5.15)

we have
y′ =

1

|x|

(
cosx− sinx

x

)
(5.16)

and
y(0) = y′(0) = 0.

• For the function
y =

cosx

|x|
, (5.17)

we have
y′ = − 1

|x|

(
sinx

cosx

x

)
(5.18)

and
y(0) = y′(0) = 0.
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• For the function
y =

1

x
+

1

|x|
, (5.19)

we have
y′ = − 1

x

(
1

x
+

1

|x|

)
= − 1

x
y (5.20)

and
y(0) = y′(0) = 0.
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