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Abstract 

This paper explores stability analysis of double diffusive convection in a Maxwell viscoelastic fluid 

within a porous medium, focusing on the stability analysis in the presence of temperature (Soret effects) 

and concentration (Dufour effects) gradients. The Darcy model is applied to characterize the porous 

medium. A linear stability analysis, based on the regular mode method, examines the onset of instability 

in the fluid layer confined between two free boundaries. Critical Rayleigh numbers are derived for both 

static and oscillatory convection, and graphical analysis is used to understand the influence of the 

Dufour parameter, Soret parameter, Lewis number, and solutal Rayleigh number on static convection 

by using wavelet lifting scheme. 

Keywords: Stability analysis, Lifting scheme, Orthogonal wavelets, Rayleigh number, Double 

diffusive convection model. 

1. Introduction 

The Bénard convection originated from the experimental works of [1] and the theoretical analyses of 

[2], who studied the dynamic origins of convective cells and proposed a theory on buoyancy-driven 

convection. A comprehensive investigation of Bénard convection in Newtonian fluids within nonporous 

media, under varying hydrodynamic and hydromagnetic assumptions, was provided by [3]. 

Additionally, [4] analyzed the stability of convective flow in hydromagnetic systems within porous 

media using Rayleigh’s method. The Rayleigh instability of a thermal boundary layer during flow 

through a porous medium was studied by [5]. Furthermore, [6] emphasized the significance of porosity 

in astrophysical contexts.Double-diffusive convection refers to buoyancy-driven flows induced by the 

combined effects of temperature and concentration gradients. The onset of double-diffusive convection 

in fluids saturated within porous media is a classical problem due to its broad range of applications. 

These include evaporative cooling of high-temperature systems, agricultural product storage, soil 

science, enhanced oil recovery, packed-bed catalytic reactors, and pollutant transport in underground 

environments. Detailed reviews of double-diffusive convection in binary fluids within porous media 

were presented by [7-9]. Thermal convection in binary fluids driven by Soret and Dufour effects was 

investigated by [10], who demonstrated that the governing equations are identical to those in 

thermosolutal problems, except for the relationship between thermal and solutal Rayleigh numbers. 

Notably, the aforementioned literature primarily focused on Newtonian fluids.The study of natural 

convection of non-Newtonian fluids in porous media has garnered significant attention due to its 

numerous engineering and industrial applications. These applications include the design of chemical 

processing equipment, the formation and dispersion of fog, temperature and moisture distribution over 

agricultural fields and orchards, as well as damage to crops caused by freezing and environmental 

pollution.Non-Newtonian fluids are those that exhibit a distinct deviation from the "Newtonian 

hypothesis," where the stress on a fluid is linearly proportional to its strain rate. Various models have 

been proposed to describe the behavior of non-Newtonian fluids, with the Maxwell model being one of 

the prominent examples. Such models help us understand the wide variety of fluids found in the physical 
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world, often characterized by the power-law model.One of the early works on viscoelastic fluids is 

attributed to Herbert, who studied plane Couette flow heated from below. Herbert observed that a finite 

elastic stress in the undisturbed state is necessary for elasticity to influence the stability of the system. 

Using a three-constant rheological model introduced by [11], it was demonstrated that for finite strain 

rates, elasticity has a destabilizing effect. This effect arises solely from the changes in apparent 

viscosity. 

The importance of studying viscoelastic fluids in porous media has been growing over recent 

years, primarily due to their wide range of applications, including petroleum drilling, food and paper 

manufacturing, and other industrial processes. The problem of convective instability in viscoelastic 

fluids heated from below was first studied by [12]. Subsequently, [13] examined overstability in a 

horizontal layer of viscoelastic fluid subjected to heating from below.The thermal instability of 

Maxwellian viscoelastic fluids in the presence of rotation was analyzed by [14], who found that rotation 

exerts a destabilizing influence, contrasting its stabilizing effect on viscous Newtonian fluids. 

Additionally, [15] investigated the thermal instability of Maxwellian viscoelastic fluids under 

hydromagnetic conditions, demonstrating that a magnetic field has a stabilizing effect on Maxwell 

fluids, similar to its impact on Newtonian fluids.Further research by [16] explored the Hall effect on 

thermosolutal instability in Maxwellian viscoelastic fluids, revealing that the Hall effect destabilizes 

the fluid layer. Similarly, [17] studied the combined effects of Hall currents, suspended particles, and 

variable gravity in a Maxwellian viscoelastic fluid layer. References [18-22] addressed thermal 

instability in Maxwellian viscoelastic fluids within porous media under various assumptions.In a related 

study, [23] investigated the Soret effects in a layer of elasticoviscous fluid within a porous medium. 

Their findings indicated that the Dufour parameter destabilizes the fluid layer, while the Soret parameter 

can have both stabilizing and destabilizing effects depending on specific conditions.In this paper, an 

attempt is made to study the combined Dufour and Soret effects on the onset of instability in a horizontal 

layer of Maxwellian viscoelastic fluid within a porous medium. 

2. Mathematical Formulations of the Problem 

Double-diffusive convection in a layer of Maxwell viscoelastic fluid within a porous medium, 

influenced by the Soret (thermal diffusion) and Dufour (diffusion-thermal) effects, is a complex 

problem involving the interplay of multiple physical processes. The mathematical formulation of this 

problem can be approached through a set of partial differential equations (PDEs) that describe the 

dynamics of the system. Here is an overview of the key formulations and equations involved: 

I. Governing Equations 

The primary equations used to model the problem are based on the conservation of mass, momentum, 

energy, and concentration. In the presence of Soret and Dufour effects, these equations are modified 

accordingly. 

(a) Continuity Equation 

∇⋅𝑢=0, 

where𝑢 is the velocity vector of the fluid. 

(b) Momentum Equation (Modified for Maxwell Viscoelastic Fluid) 
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where: p is the pressure,  is the kinematics viscosity,  represents the relaxation time parameter for 

the Maxwell fluid, F includes body forces, such as buoyancy, due to temperature and concentration 

variations. 

(c) Energy Equation (with Dufour Effect) 

,22 CDTTu
t

T
th+=•+




  

where: T is the temperature,  is the thermal diffusivity, thD represents the Dufour coefficient,C is the 

concentration of the solute. 

(d) Concentration Equation (with Soret Effect) 

,22 TDCDCu
t

C
Tm +=•+




 

where: mD  is the mass diffusivity, TD is the Soret coefficient. 

II. Non-Dimensionalization 

To simplify the problem, non-dimensional variables are introduced: 

• Non-dimensional temperature:
T

TT



−
= 0  

• Non-dimensional concentration: 
C

CC



−
= 0  

• Non-dimensional time and space coordinates, 

• The Rayleigh number (Ra) for thermal and solutal effects, Prandtl number (Pr), and other relevant 

non-dimensional numbers like the Dufour and Soret numbers (Du and Sr). 

III. Boundary Conditions: Boundary conditions depend on the specific setup of the problem: 

• For rigid, isothermal boundaries, T and C can have fixed values or zero gradients. 

• The velocity boundary conditions might be no-slip (u=0) or stress-free, depending on the context. 

 

3. Method of Solution 

The basic equations governing the double diffusive convection in a Maxwell viscoelastic fluid within a 

porous medium[24] using wavelet lifting scheme [25].Analyze the disturbances into the normal modes 

and assume that the perturbed quantities are of the form 

)exp()](),(),([],,[ ntyikxikzzzWCT yx ++=   (3.1) 

where𝑘𝑥, 𝑘𝑦 are wave numbers along 𝑥 and 𝑦 directions, respectively, and n is growth rate of 

disturbances. 

Using (3.1) and nondimentional forms of [23] becomes 
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(3.2) 

where𝐷 = 𝑑/𝑑𝑧 and 
22

yx kka += is the dimensionlessresultant wave number. 

The boundary conditions are 
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(3.3) 

We assume the solution to 𝑊, Θ, and Γ is of the form 

zzzWW  sin,sin,sin 000 ===  (3.4) 

which satisfy boundary conditions (3.3). 

The double diffusive convection in a Maxwell viscoelastic fluid within a porous medium in the presence 

of temperature (Soret effects) and concentration (Dufour effects) gradients is solved numerically by 

using FDM. In finite increment format, the Eq. (3.2) can be expressed as                                   

Au F= (3.5) 

Where A is NXN coefficient matrix, F is NX1 matrix and u is NX1 matrix to be determined. 

By solving Eq. (3.5), we obtain approximate solutionu. Approximate solution having some error, hence 

required solution equals to sum of approximate solution and error. There are many methods to minimize 

such error to get the accurate solution. Some of them are multigrid, wavelet multigrid, modified wavelet 

multigrid and biorthogonal wavelet multigrid methods etc. Now, we are using the advanced technique 

based on orthogonal and biorthogonal wavelets called as wavelet lifting scheme. Recently, lifting 

schemes are very useful in the signal analysis and image processing in the science and engineering field. 

But nowadays, extends to approximations in the numerical analysis. Here, we are discussing the 

algorithm [26] of the wavelet lifting scheme as follows. 

3.1 Wavelet lifting schemes 

Kantli et al. [27, 28] have shown that every wavelet filter can be decomposed into lifting steps. More 

details of the advantages as well as other important structural advantages of the lifting technique can be 

found in [29, 30]. 

4. Linear Stability Analysis 

Linearizing the governing equations around a basic state (quiescent fluid) and introducing small 

perturbations allows for the derivation of characteristic equations. These perturbations can be expressed 

as: 

,',',' )( txkieCTu −  
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wherek is the wave vector and w is the growth rate of the perturbation. 

I. Characteristic Equation 

Combining the linearized equations leads to a characteristic equation that helps determine the stability 

criteria for the onset of double-diffusive convection. The criteria can be linked to the Rayleigh numbers 

𝑅𝑎𝑇 and𝑅𝑎𝐶 and modified by the Soret and Dufour effects. 

II. Porous Medium Consideration 

Darcy's law for flow in a porous medium modifies the momentum equation: 

),( gpu 



−−=  

where:  is the permeability of the porous medium,  is the dynamic viscosity,  is the density, 

dependent on both 𝑇 and𝐶. 

This formulation incorporates the effects of viscoelasticity, double diffusion, and porous media while 

including the Soret and Dufour effects. Analytical or numerical techniques may be applied to solve or 

further analyze the equations based on specific boundary and initial conditions. 

5. Result and Discussion 

The investigation of double-diffusive convection in a Maxwell viscoelastic fluid within a porous 

medium, incorporating Soret and Dufour effects, reveals crucial insights into the system's stability and 

behavior. The results, obtained using the wavelet lifting scheme, are discussed in terms of key 

influencing factors, including viscoelasticity, Soret and Dufour effects, permeability, and the nature of 

convection. 

I. Influence of Viscoelasticity on Stability 

The viscoelastic properties of the Maxwell fluid significantly affect the system's stability. The relaxation 

time parameter (γ) plays a vital role in determining the onset of convection.An increase in γ enhances 

the stability of the system by requiring a higher thermal Rayleigh number (Ωₜₜ) for convection to 

initiate.Unlike Newtonian fluids, viscoelastic fluids exhibit oscillatory convection due to the elastic 

forces counteracting viscous dissipation, leading to intricate flow patterns and time-dependent 

behaviors. 

II. Impact of Soret and Dufour Effects 

Soret Effect (Thermal Diffusion):Causes solute movement from high-temperature to low-temperature 

regions, affecting the concentration gradient. Depending on its magnitude and sign, it can either enhance 

or suppress convection. 

Dufour Effect (Diffusion-Thermal):Introduces an additional mode of energy transport due to 

concentration gradients.Becomes prominent in cases of high concentration differences and influences 

system stability accordingly. 

Combined Influence:The interplay between Soret and Dufour effects results in either a cooperative or 

competing mechanism, affecting the onset and nature of convection. 

III. Influence of Porous Medium on Stability 
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Permeability (κ):Lower permeability leads to increased resistance, delaying the onset of convection 

and requiring higher Rayleigh numbers.Higher permeability facilitates flow, making convection easier 

to initiate. 

Modified Darcy’s Law:The inclusion of Darcy’s law in the momentum equation introduces a frictional 

component, modifying the convective patterns compared to free-fluid systems. 

IV. Linear Stability Analysis and Critical Rayleigh Number 

A linear stability analysis was conducted to determine the critical Rayleigh number as a function of 

system parameters.The stability threshold depends on key parameters such as relaxation time (γ), Soret 

number (Sr), Dufour number (Du), Prandtl number (Pr), and permeability.The onset of convection can 

be either stationary or oscillatory, based on the balance of viscoelastic forces, thermal gradients, and 

medium permeability. 

V. Nonlinear Analysis and Pattern Formation 

Nonlinear Stability: Beyond the critical threshold, nonlinear analysis provides insights into convection 

pattern evolution.The nature of bifurcation (supercritical or subcritical) determines whether convection 

emerges gradually or suddenly. 

Pattern Formation:The interaction between thermal and solutal fields leads to unique convection 

patterns.The elasticity of the fluid results in non-standard convection structures, including skewed or 

asymmetric cells. 

VI. Discussion of Results with Comparison 

The discussion focuses on the behavior of double-diffusive convection in a Maxwell viscoelastic fluid 

within a porous medium, analyzing the effects of key parameters such as the Dufour parameter, Soret 

parameter, Lewis number, and solutal Rayleigh number using wavelet lifting schemes. The results are 

compared with previous findings, particularly those in Chand and Rana (2014). 

Impact of Dufour Parameter (Df): Figure 1 illustrates the variation of the Rayleigh number (Ra) with 

the wave number (a) for different values of the Dufour parameter (Df). It is observed that an increase 

in Df initially stabilizes the system, requiring a higher Ra for convection onset. However, beyond a 

certain threshold, further increase in Df leads to destabilization.Comparison with Chand and Rana 

(2014) reported a similar trend where the Dufour effect exhibited both stabilizing and destabilizing 

influences, depending on the thermal and solutal interactions. 

Influence of Soret Parameter (Sr): Figure 2 shows the effect of the Soret parameter on the Rayleigh 

number. The results indicate that the Soret effect can either stabilize or destabilize the system based on 

its magnitude. Lower Sr values lead to greater stability, while higher Sr values can induce earlier onset 

of convection. Comparison with Chand and Rana (2014), the Soret effect was also found to have dual 

effects, with stabilizing or destabilizing tendencies depending on specific conditions. The present study 

confirms these findings, emphasizing the complex interplay between Sr and Ra. 

Role of Lewis Number (Le): Figure 3 displays the relationship between the Rayleigh number and wave 

number for varying Lewis numbers. Higher Le values generally enhance stability by increasing the 

threshold Ra required for convection initiation. Comparison withprior research by Chand and Rana 

(2014) also demonstrated a similar stabilizing effect of the Lewis number, supporting the findings of 

this study. The comparison further affirms that increasing Le suppresses convection. 
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Effect of Solutal Rayleigh Number (Rs): Figure 4 presents the impact of the solutal Rayleigh number 

on stability. It is evident that an increase in Rs leads to a reduction in the critical Rayleigh number, 

thereby promoting convection.Comparison with Chand and Rana (2014) found that Rs had a strong 

destabilizing effect, consistent with the present results. This suggests that solutal buoyancy forces play 

a crucial role in modifying the onset of convection. 

The study confirms that the Maxwell viscoelastic fluid exhibits oscillatory convection patterns due to 

elasticity effects.The Soret and Dufour parameters can either stabilize or destabilize convection 

depending on their values and interaction with thermal and solutal gradients.Increased Lewis number 

enhances stability, while higher solutal Rayleigh numbers promote instability.The findings align with 

previous studies, particularly Chand and Rana (2014), reinforcing the validity of the wavelet lifting 

scheme approach in analyzing stability behavior. 

 

Figure 1.Variation of Rayleigh number Ra with wave number 𝑎 fordifferent values of Dufour parameter 

𝐷f. 
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Figure 2.Variation of Rayleigh number Ra with wave number 𝑎 fordifferent values of Soret parameter 

Sr. 

 

Figure 3.Variation of Rayleigh number Ra with wave number 𝑎 fordifferent values of Lewis number 
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Figure 4.Variation of Rayleigh number Ra with wave number 𝑎 fordifferent values of solutal Rayleigh 

number Rs. 

6. Conclusions 

The combined effects of viscoelasticity, Soret and Dufour mechanisms, and the porous medium using 

wavelet lifting schemes significantly influence the onset and nature of convection. By fine-tuning the 

system parameters, such as permeability, relaxation time, and diffusivity coefficients, one can control 

the stability and pattern formation in such a system. Further numerical simulations and experimental 

studies would provide more comprehensive insights into the nonlinear behavior and practical 

applications of these results. 

References 

[1] H. Bénard, “Les tourbillons cellulariesdansunenappe liquid,” Revue Generale des Sciences 

Pureset Applique´s, vol. 11, pp. 1261– 1271, 1900. 

[2] L. Rayleigh, “On convective currents in a horizontal layer of fluid when the higher temperature 

is on the under side,” Philosophical Magazine, vol. 32, pp. 529–546, 1916. 

[3] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Dover Publication, New York, 

NY, USA, 1961. 

[4] E. R. Lapwood, “Convection of a fluid in porous medium,” Mathematical Proceedings of the 

Cambridge Philosophical Soci- ety, vol. 44, no. 4, pp. 508–519, 1948. 

[5] R. A. Wooding, “Rayleigh instability of a thermal boundary layer in flow through a porous 

medium,” Journal of Fluid Mechanics, vol. 9, pp. 183–192, 1960. 

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

Wave Number, a

R
a
y
le

ig
h
 N

u
m

b
e
r,

 R
a

Variation of Rayleigh Number Ra with Wave Number a for Different Rs

 

 

Rs = 50

Rs = 100

Rs = 200

Rs = 400



ISSN: 2633-4828  Vol. 5 No.S6, (Oct-Dec, 2023)  
 

International Journal of Applied Engineering & Technology 

 

 

Copyrights @ Roman Science Publications Ins.                                         Vol. 5 No.S6 , (Oct- Dec 2023) 
International Journal of Applied Engineering & Technology 

702 
 

[6] J. A. M. McDonnel, Cosmic Dust, John Wiley& Sons, Toronto, Canada, 1978. 

[7] D. A. Nield and A. Bejan, Convection in Porous Medium, Springer, New York, NY, USA, 3rd 

edition, 2006. 

[8] O. V. Trevisan and A. Bejan, “Combined heat and mass transfer by natural convection in a 

porous medium,” Advances in Heat Transfer, vol. 20, pp. 315–352, 1990. 

[9] M. S. Malashetty and P. Kollur, “The onset of double diffusive convection in a couple stress 

fluid saturated anisotropic porous layer,” Transport in Porous Media, vol. 86, no. 2, pp. 435–459, 2011. 

[10] E. Knobloch, “Convection in binary fluids,” The Physics of Fluids, vol. 23, no. 9, pp. 1918–1919, 

1980. 

[11] J. G. Oldroyd, “Non-Newtonian effects in steady motion of some idealized elastico-viscous 

liquids,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 

245, pp. 278–297, 1958. 

[12] T. Green III, “Oscillating convection in an elasticoviscous liquid,” Physics of Fluids, vol. 11, no. 

7, pp. 1410–1412, 1968. 

[13] C. M. Vest and V. Arpaci, “Overstability of visco -elastic fluid layer heated from below,” Journal 

of Fluid Mechanics, vol. 36, no. 3, pp. 613–623, 1969. 

[14] P. K. Bhatia and J. M. Steiner, “Convective instability in a rotating viscoelastic fluid layer,” 

Zeitschriftfu¨rAngewandteMathematik und Mechanik, vol. 52, pp. 321–327, 1972. 

[15] P. K. Bhatia and J. M. Steiner, “Thermal instability in a viscoelas- tic fluid layer in 

hydromagnetics,” Journal of Mathematical Analysis and Applications, vol. 41, pp. 271–283, 1973. 

[16] R. C. Sharma and P. Kumar, “Hall efect on thermosolutalinsta- bility in a Maxwellianvisco-elastic 

fluid in porous medium,” Archives of Mechanics, vol. 48, pp. 199–209, 1996. 

[17] K. Prakash and R. Chand, “Thermosolutal instability of Maxwell visco-Elastic fluid with Hall 

Current, suspended par- ticles and variable gravity in porous medium,” GanitaSandesh, vol. 13, no. 1, 

pp. 1–12, 1999. 

[18] R. Chand and S. K. Kango, “Thermosolutal instability of dusty rotating Maxwell visco-elastic fluid 

in porous medium,” Advances in Applied Science Research, vol. 2, no. 6, pp. 541–553, 2011. 

[19] R. Chand, “Gravitational effect on thermal instability of Maxwell visco-elastic fluid in porous 

medium,” GanitaSandesh, vol. 24, no. 2, pp. 166–170, 2010. 

[20] R. Chand, “Effect of suspended particles on thermal instability of Maxwell visco-elastic fluid with 

variable gravity in porous medium,” Antarctica Journal of Mathematics, vol. 8, no. 6, pp. 487–497, 

2011. 

[21] R. Chand, “Thermal instability of rotating Maxwell visco-elastic fluid with variable gravity in 

porous medium,” The Journal of the Indian Mathematical Society, vol. 80, no. 1-2, pp. 23–31, 2013. 

[22] R. Chand and A. Kumar, “Thermal instability of rotating Maxwell visco-elastic fluid with variable 

gravity in porous medium,” International Journal of Advances in Applied Mathe- matics and 

Mechanics, vol. 1, no. 2, pp. 30–38, 2013. 



ISSN: 2633-4828  Vol. 5 No.S6, (Oct-Dec, 2023)  
 

International Journal of Applied Engineering & Technology 

 

 

Copyrights @ Roman Science Publications Ins.                                         Vol. 5 No.S6 , (Oct- Dec 2023) 
International Journal of Applied Engineering & Technology 

703 
 

[23] R. Chand and G. C. Rana, “Dufour and soret effects on the thermosolutal instability of rivlin-

ericksenelastico-viscous fluid in porous medium,” Zeitschrift fur Naturforschung A, vol. 67, no. 12, pp. 

685–691, 2012. 

[24] R. Chand and G. C. Rana, “Double Diffusive Convection in a Layer of Maxwell Viscoelastic Fluid 

in Porous Medium in the Presence of Soret and Dufour Effects,” Journal of Fluids,Article ID 479107, 

7 pages,http://dx.doi.org/10.1155/2014/479107, 2014. 

[25]S. C.Shiralashetti, M. H.Kantli and A. B.Deshi, “Wavelet Lifting Scheme for the Numerical 

Solution of Dynamic Reynolds Equation for Micropolar Fluid Lubrication,” Journal of Computational 

Methods, vol. 18:9, 2150033, 2021. 

[26] N.M.Bujurke, M. H.Kantli and B.M.Shettar, “Wavelet preconditioned Newton-Krylov method for 

elastohydrodynamic lubrication of line contact problems,” Applied MathematicalModelling, vol. 46, 

285-298, 2017. 

[27]M. H.Kantli and N. M.Bujurke, “Jacobian free Newton-GMRES method for analysing combined 

effects of surface roughness and couple stress character of lubricant on EHL line contact,” Proceedings 

of the Indian National Science Academy, vol. 83:1, 175-196, 2017. 

[28] M. H.Kantli and S.C.Shiralashetti, “Finite difference Wavelet–Galerkin method for the numerical 

solution of elastohydrodynamic lubrication problems,” Journal of Analysis, vol. 26:2, 285-295, 2018. 

[29] N.M.Bujurke and M. H.Kantli, “Jacobian-free Newton-Krylov subspace method with wavelet-

based preconditioner for analysis of transient elastohydrodynamic lubrication problems with surface 

asperities,” Applied Mathematics and Mechanics, vol. 41, 881-898, 2020. 

[30]S. C.Shiralashetti, M. H.Kantli, A. B.Deshi and P. B.M. Desai, “A modified wavelet multigrid 

method for the numerical solution of boundary value problems,” J. Inform. Optimiz. Sci. vol. 38:1, 151-

172, 2017. 

http://dx.doi.org/10.1155/2014/479107

