GEOMETRY AND DIVISION BY ZERO CALCULUS

HIROSHI OKUMURA

Abstract

We demonstrate several results in plane geometry derived from division by zero and division by zero calculus. The results show that the two new concepts open an entirely new world of mathematics.

1. Introduction

The lack of division by zero has been a serious glaring omission in our mathematics. While recent publications [3], [7], [8], [22], [29] have offered a final solution to this [3]:

$$
\begin{equation*}
\frac{z}{0}=0 \text { for any element } z \text { in a field. } \tag{1.1}
\end{equation*}
$$

In this article we show several results in plane geometry obtained from division by zero given by (1.1) and division by zero calculus, which is a generalization of division by zero.

For a meromorphic function $W=f(z)$, we consider the Laurent expansion of f around $z=a$:

$$
W=f(z)=\sum_{n=-\infty}^{n=-1} C_{n}(z-a)^{n}+C_{0}+\sum_{n=1}^{\infty} C_{n}(z-a)^{n}
$$

Then we define $f(a)=C_{0}$. This is a generalization of (1.1) called division by zero calculus [29]. Now we can consider the value $f(a)=C_{0}$ at an isolated singular point a.

We consider some families of circles in the plane, each of the members is represented by a Cartesian equation $f_{z}(x, y)=0$ with parameter $z \in \mathbb{R}$. Here, we assume that if x and y are fixed, $f_{z}(x, y)$ is a meromorphic function in z. Then, for the Laurent expansion of the function $f_{z}(x, y)$ at $z=a$ for fixed x, y, the corresponding coefficient $C_{n}(a ; x, y)$ is depending on also x and y.

In this setting we will see some mysterious relation with the equation

$$
f_{z}(x, y)=0
$$

and the equations

$$
C_{n}(a ; x, y)=0
$$

for fixed a. However we will see that the equation $C_{n}(a ; x, y)=0$ implies some meaningful things even for an integer $n \neq 0$ also in the case in which division

[^0]by zero does not occur for $z=a$. Moreover we will show that the equation $C_{n}(a ; x, y)=0$ gives some notable and meaningful figures, which have never been considered before. On the other hand, we have no idea why the coefficients of the Laurent expansion show such meaningful and marvelous facts at the present time of writing. Therefore we can only show such results with little explanations in this paper.

For lines and circles, (1.1) gives a totally new insight, which are essential to our paper. The results are stated as follows:

Proposition 1.1 ([8],[29]). The following statements are true.
(i) We can regard a line as a circle with its radius 0 , when we consider a line as a special case of a circle.
(ii) We can consider that orthogonal figures touch to each other, in a natural interpretation.

Proof. Any circle in the plane has an equation

$$
e\left(x^{2}+y^{2}\right)+2 f x+2 g y+h=0
$$

and has radius

$$
\begin{equation*}
\sqrt{\frac{f^{2}+g^{2}-e h}{e^{2}}} \tag{1.2}
\end{equation*}
$$

While the equation represents a line in the case $e=0$, and (1.2) equals 0 in this case by (1.1). This proves (i). For tangential figures, their angle θ of two tangential lines at the common point is zero and $\tan (\theta)=0$. However $\tan (\pi / 2)=0$, by (1.1) and by the division by zero calculus and so in this sense, we can say (ii).

2. Triangle with parallel sides

Let us consider a triangle $A B C$ in the plane with $a=|B C|, b=|C A|$ and $c=|A B|$. Let θ_{a} (resp. θ_{b}) be the angle between $\overrightarrow{B A}$ and $\overrightarrow{A C}$ (resp. $\overrightarrow{B C}$) (see Figure 1). We fix the points A and B and the angle θ_{b}, and consider the side length, the circumradius and so forth of the triangle $A B C$ in the case $\theta_{a}=\theta_{b}$ by the definition of division by zero (1.1) (see Figure 2). We use a rectangular coordinate system such that A and B have coordinates $(p, 0)$ and $(q, 0)$, respectively such that $p-q=c$, where we assume that the point C lies on the region $y>0$.

Figure 1.

Figure 2.
2.1. Side length and area. The lines $A C$ and $B C$ have equations $y \cos \theta_{a}=$ $(x-p) \sin \theta_{a}$ and $y \cos \theta_{b}=(x-q) \sin \theta_{b}$, respectively. Therefore the point C, which is the point of intersection of the two line, has coordinates

$$
\begin{equation*}
\left(x_{c}, y_{c}\right)=\left(\frac{p \sin \theta_{a} \cos \theta_{b}-q \cos \theta_{a} \sin \theta_{b}}{\sin \left(\theta_{a}-\theta_{b}\right)}, \frac{c \sin \theta_{a} \sin \theta_{b}}{\sin \left(\theta_{a}-\theta_{b}\right)}\right) \tag{2.1}
\end{equation*}
$$

Therefore from $a=\sqrt{\left(x_{c}-q\right)^{2}+y_{c}^{2}}$ and $b=\sqrt{\left(x_{c}-p\right)^{2}+y_{c}^{2}}$, we get

$$
\begin{equation*}
a=\frac{c \sin \theta_{a}}{\sin \left(\theta_{a}-\theta_{b}\right)}, \quad b=\frac{c \sin \theta_{b}}{\sin \left(\theta_{a}-\theta_{b}\right)} . \tag{2.2}
\end{equation*}
$$

If $\theta_{a}=\theta_{b}$, then $\sin \left(\theta_{a}-\theta_{b}\right)=0$, and we get $a=b=0$ by (1.1). The y-coordinate in (2.1) shows that the height corresponding to the base $A B$ equals 0 if $\theta_{a}=\theta_{b}$. Therefore we have:

Theorem 2.1. The side length of the parallel sides of a triangle equals 0. Also the area of a triangle with parallel sides equals 0 .

Also (2.1) shows that the point C coincides with the origin $(0,0)$ if $\theta_{a}=\theta_{b}$.
2.2. Circumradius. Let R be the circumradius of the triangle $A B C$.

Theorem 2.2. The circumradius of a triangle with parallel sides equals 0 .
Proof. We use the identity

$$
R=\frac{a b c}{\sqrt{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}}
$$

Substituting (2.2), in the above equation, we have

$$
R=\frac{c}{2 \sin \left(\theta_{a}-\theta_{b}\right)} .
$$

Therefore we get $R=0$ if $\theta_{a}=\theta_{b}$.
Let r be the inradius of $A B C$. We consider the following identity:

$$
R=\frac{r}{\cos A+\cos B+\cos C-1}
$$

The identity is true in the case $\theta_{a}=\theta_{b}$, because the left side equals $R=0$ by Theorem 2.2, and the denominator of the right side equals $\cos A+\cos B+\cos C-$ $1=\cos \left(\pi-\theta_{b}\right)+\cos \theta_{b}+\cos 0-1=0$. Therefore the right side also equals 0 by (1.1).
2.3. Excircle. We consider the excircle of the triangle $A B C$ touching $C A$ from the side opposite to B (see Figure 3).
Theorem 2.3 ([11]). If $\theta_{a}=\theta_{b}$, then the radius of the excircle of the triangle $A B C$ touching $C A$ from the side opposite to B equals 0 .

Proof. The center of the excircle coincides with the point of intersection of the lines represented by $y=\tan \frac{\theta_{a}}{2}(x-p)$ and $y=\tan \frac{\theta_{b}}{2}(x-q)$, and has coordinates

$$
\left(\frac{p \tan \frac{\theta_{a}}{2}-q \tan \frac{\theta_{b}}{2}}{\tan \frac{\theta_{a}}{2}-\tan \frac{\theta_{b}}{2}}, c \frac{\sin \frac{\theta_{a}}{2} \sin \frac{\theta_{b}}{2}}{\sin \frac{\theta_{a}-\theta_{b}}{2}}\right),
$$

where the y-coordinate gives the exradius. While the y-coordinate equals 0 if $\theta_{a}=\theta_{b}$. The proof is complete.

Figure 3.
Notice that the center of the excircle coincides with the origin if $\theta_{a}=\theta_{b}$.
Remark 2.4. The essential fact of this section is that the point of intersection of two parallel lines coincides with the origin [8], [29].

3. Pompe's theorem

Generalizing a problem in Wasan geometry (Japanese old geometry), W. Pompe gives the following theorem [6] (see Figure 4):

Figure 4.

Theorem 3.1 ([28]). For an equilateral triangle $A B C$, let D be a point on the side $A B$. For points P and Q lying on the sides $A C$ and $B C$, respectively, satisfying
$\angle P D C=\angle Q D C=\pi / 6$, let $\alpha=\angle A D P$ and $\beta=\angle B D Q$. If r_{1} and r_{2} are the inradii of the triangles $A D P$ and $B D Q$, respectively, then we have

$$
\begin{equation*}
\frac{r_{1}}{r_{2}}=\frac{\sin 2 \alpha}{\sin 2 \beta} \tag{3.1}
\end{equation*}
$$

In this section we consider the case $\beta=\pi / 2$ in the sense of division by zero and division by zero calculus. In this case the point D coincides with B, then the triangle $B Q D$ degenerates to the point B, i.e., $r_{2}=0$ (see Figure 5). In this case the left side of (3.1) equals $r_{1} / 0=0$. Also the right side equals $\sin 2 \alpha / \sin 2 \pi=$ $\sin 2 \alpha / 0=0$. Therefore (3.1) holds by (1.1).

On the other hand the right side of (3.1) is a function of β; $\sin 2(2 \pi / 3-$ $\beta) / \sin 2 \beta$. By the Laurent expansion of this about $\beta=\pi / 2$:

$$
\frac{\sin 2(2 \pi / 3-\beta)}{\sin 2 \beta}=\cdots-\frac{\sqrt{3}}{4}\left(\beta-\frac{\pi}{2}\right)^{-1}+\frac{1}{2}+\frac{1}{\sqrt{3}}\left(\beta-\frac{\pi}{2}\right)+\cdots,{ }^{1}
$$

we get

$$
\frac{r_{1}}{r_{2}}=\frac{\sin 2 \alpha}{\sin 2 \beta}=\frac{1}{2}
$$

in the case $\beta=\pi / 2$. The large circle in Figure 6 has radius $r_{2}=2 r_{1}$ and center $B=Q$. It is orthogonal to the lines $A B, B C$ and the perpendicular to $A B$ at B. Therefore the circle still touches the three lines by Proposition 1.1, i.e., it is the circle of radius $2 r_{1}$ touching the lines $A B, B C$ and the perpendicular to $A B$ at B.

Figure 5.

Figure 6.

4. A circle touching a circle and its tangent

For a circle α of radius a, let O be a point lying on α. We use a rectangular coordinate system with origin O such that the center of α has coordinates $(0, a)$.

Let β be a fixed circle of radius b touching α and the x-axis in the first quadrant for a positive real number b (see Figure 7). Let γ be another circle of radius r touching α and the x-axis in the first quadrant. We consider the case γ has radius b by division by zero calculus. The circle γ is represented by the equation

$$
\begin{equation*}
\gamma(x, y)=(x-2 \sqrt{a r})^{2}+(y-r)^{2}-r^{2}=0 \tag{4.1}
\end{equation*}
$$

[^1]We now consider the Laurent expansion of $\gamma(x, y)$ about $r=b$:

$$
\gamma(x, y)=\sum_{n=-\infty}^{\infty} C_{n}(r-b)^{n}
$$

Figure 7.
4.1. The case $b \neq 0$ by division by zero calculus. We assume $b \neq 0$. Then we get ${ }^{2}$
(i) $\cdots=C_{-3}=C_{-2}=C_{-1}=0$,
(ii) $C_{0}=(x-2 \sqrt{a b})^{2}+(y-b)^{2}-b^{2}$,
(iii) $C_{1}=-4 a\left(\frac{x}{2 \sqrt{a b}}+\frac{y}{2 a}-1\right)$,
(iv) $C_{n}=\frac{2 \sqrt{a b}\left(-\frac{1}{b}\right)^{n}\left(\frac{1}{2}\right)_{n-1}}{\Gamma(n+1)} x$ for $n=2,3,4, \cdots$, where $(x)_{n}$ is the Pochhammer symbol, i.e., $(x)_{n}=x(x+1)(x+2) \cdots(x+n-1)$.

Therefore the equation $C_{0}=0$ represents the circle β. The equation $C_{1}=0$ represents the line joining the farthest point on α from the x-axis and the point of tangency of β and the x-axis. Let s_{0} be this line. The equation $C_{n}=0$ represents the y-axis for $n=2,3,4, \cdots$. The figures represented by $C_{0}=0, C_{1}=0, C_{n}=0$ ($n=2,3,4, \cdots$) are denoted in Figure 8 in red.

For a circle δ of radius r and a line l whose distance from the center of δ equals d, we call d / r the cosine of the angle formed by δ and l and denote by $\cos (l, \delta)$:

$$
\begin{equation*}
\cos (l, \delta)=\frac{d}{r} \tag{4.2}
\end{equation*}
$$

If they intersect, it is actually the cosine of the angle between them.
The line s_{0} passes through the point of tangency of α and β, because α and β are similar and the internal center of similitude coincides with the point of tangency of α and β, while the farthest point on α from the x-axis and the point of tangency of β and the x-axis are corresponding by the similarly. The circle β and the y-axis touch α and the x-axis by Proposition 1.1, but the line s_{0} does not, but makes the same angle with them, where the cosine of the angle equals $\sqrt{b /(a+b)}$.

[^2]

Figure 8.
4.2. The case $b=0$ by division by zero. We consider the case $b=0$ by division by zero. The equation (4.1) is arranged as follows in three ways;

$$
\begin{aligned}
& \left(x^{2}+y^{2}\right)-4 \sqrt{a r} x+2 r(2 a-y)=0 \\
& \frac{x^{2}+y^{2}}{\sqrt{r}}-4 \sqrt{a} x+2 \sqrt{r}(2 a-y)=0 \\
& \frac{x^{2}+y^{2}}{r}-4 \sqrt{\frac{a}{r}} x+2(2 a-y)=0
\end{aligned}
$$

Therefore in the case $r=0$, we have $x^{2}+y^{2}=0, x=0, y=2 a$ by (1.1), which represent the origin O, the y-axis and the tangent of α at the farthest point on α from the x-axis. The three figures are described in Figure 9 in red.

Figure 9: $b=0$.
The line s_{0} in the previous subsection corresponds to the tangent of α at the farthest point from the x-axis. For the line s_{0} is represented by the equation $x /(2 \sqrt{a b})+y /(2 a)=1$, and by (1.1) it coincides with $y /(2 a)=1$ when $b=0$. Or simply consider the line represented by $x / p+y / q=1$ in the case $p=0$.

5. A circle touching a circle and its secant

Let ε be a circle of diameter $A U$ and center O, where $|A O|=a$, and let t be a secant of ε meeting in points T and U. We use a rectangular coordinate system with origin O such that A has coordinates $(a, 0)$, and T lies in the region $y>0$. For a point Z of coordinates $(z, 0)$ on the line $A U$, let F be the foot of perpendicular from Z to t. We assume that δ_{z} is the circle touching t at F and the minor arc of ε cut by t if Z lies between A and U, otherwise δ_{z} is the circle touching ε externally and the line t at F from the side opposite to the minor arc of ε (see Figures 10 and 11). We consider the circle δ_{a}, i.e., we would like to consider the case in which the point F coincides with the point T. A similar situation is considered in [23].

Figure 10.

Figure 11.
Let θ be the angle between the line t and the x-axis and $m=\tan \theta$. Then t has an equation $t(x, y)=(x+a) m-y=0$ and $Z F$ has an equation $z_{F}(x, y)=$
$(x-z)+m y=0$. Assume that δ_{z} has radius r and center of coordinates (p, q). Firstly assume Z lying between A and U. If q^{\prime} is the y-coordinate of the point of intersection of t and the perpendicular from the center of δ_{z} to the x-axis, then there is a positive real number k such that $q=q^{\prime}+k$. Then $t(p, q)=t\left(p, q^{\prime}\right)-k=$ $-k<0$. Therefore we have

$$
\begin{equation*}
t(p, q) / \sqrt{1+m^{2}}=-r, \quad z_{F}(p, q)=0 \quad \text { and } \quad p^{2}+q^{2}=(a-r)^{2} \tag{5.1}
\end{equation*}
$$

Let

$$
v=\frac{a^{2}-z^{2}}{2 a \sqrt{1+m^{2}}} \text { and } w=\frac{(a+z)^{2}}{2 a\left(1+m^{2}\right)} .
$$

Solving (5.1) for p, q and r, we have

$$
\begin{equation*}
(p, q)=\left(w-m v-\frac{a^{2}+z^{2}}{2 a}, v+m w\right), \text { and } r=-m v+\frac{a^{2}-z^{2}}{2 a} . \tag{5.2}
\end{equation*}
$$

If Z does not lie between A and U, we have $t(p, q) / \sqrt{1+m^{2}}=r, z_{F}(p, q)=0$ and $p^{2}+q^{2}=(a+r)^{2}$, which are obtained from (5.1) by changing the signs of r. Therefore the solutions of these three equations are also obtained from (5.2) by changing the sign of r.

Therefore in any case, the circle δ_{z} is represented by the following equation using (5.2) with parameter z :

$$
\delta_{z}(x, y)=(x-p)^{2}+(y-q)^{2}-r^{2} .
$$

We now consider the Laurent expansion of $\delta_{z}(x, y)$ about $z=a$:

$$
\delta_{z}(x, y)=\sum_{n=-\infty}^{\infty} C_{n}(z-a)^{n}
$$

Then we get
(i) $\cdots=C_{-3}=C_{-2}=C_{-1}=0, \quad$ (ii) $C_{0}=(x-a \cos 2 \theta)^{2}+(y-a \sin 2 \theta)^{2}$,
(iii) $C_{1}=2(-(\cos 2 \theta+\sin \theta) x+(\cos \theta-\sin 2 \theta) y+(1-\sin \theta) a)$,
(iv) $C_{2}=(x \sin \theta-y \cos \theta-a)(\sin \theta-1) / a$,
(v) $C_{3}=C_{4}=C_{5}=\cdots=0$.

Therefore the equation $C_{0}=0$ represents the point T. The equation $C_{1}=0$ represents the line $T V$, where V is the midpoint of the major arc of ε cut by t, whose coordinates are $(a \sin \theta,-a \cos \theta)$. The equation $C_{2}=0$ represents the tangent of the circle ε at the point V. The figures obtained by $C_{n}=0(n=0,1,2)$ are described in Figure 12 in red.

The line $T V$ forms the same angle with ε and t, which equals $\theta+\phi$, where $\phi=\angle T V O$. While $2 \phi+\theta=\pi / 2$, i.e., $\phi=(\pi / 2-\theta) / 2$. Therefore the same angle equals $\pi / 4+\theta / 2$. We can consider that the point T and the tangent of ε at V touch both ε and t, but the line $T V$ does not. However it forms the same angle $\pi / 4+\theta / 2$ with ε and t.

Figure 12.

6. Arbelos

For a point C on the segment $A B$ such that $|B C|=2 a,|C A|=2 b$ and $|A B|=$ $2 c$, let α, β and γ be circles of diameters $B C, C A$ and $A B$, respectively. Each of the two congruent figures surrounded by the three circles is called an arbelos in a narrow sense and the radical axis of α and β is called the axis. Notice that $c=a+b$. We use a rectangular coordinate system with origin C such that A has coordinates $(-2 b, 0)$ (see Figure 13).

Figure 13.
If a circle touches one of given two circles internally and the other externally, we say that the circle touches the two circles in the opposite sense, otherwise in the same sense. The two circles touching α and γ in the opposite sense and the axis from the side opposite to A are congruent to the two circles touching β and γ in the opposite sense and the axis from the side opposite to B, and have common radius
$r_{\mathrm{A}}=a b / c$. It is believed that the congruent circles were studied by Archimedes and circles of radius r_{A} are said to be Archimedean.
6.1. The twin circles of Archimedes. Usually the arbelos is described by three semicircle as the upper half part of the figure as in Figure 13. In this case the two Archimedean circles touching γ and one of α and β in the opposite sense are called the twin circles of Archimedes. The circle of center of coordinates ($m a, 0$) (resp. $(-n b, 0)$) and passing through the point C is denoted by α_{m} (resp. β_{n}) for real numbers m and n. A circle touching γ internally and touching α_{m} and β_{n} in the region $y \geq 0$ is said to touch the three circles appropriately if the points of tangency of this circle and each of α_{m}, γ and β_{n} lie counterclockwise (see Figure 14). We consider the next theorem.

Figure 14.

Theorem $6.1([27])$. Assume $(m, n) \neq(0,1),(1,0)$. A circle touching α_{m}, β_{n} and γ appropriately is Archimedean if and only if

$$
\begin{equation*}
\frac{1}{m}+\frac{1}{n}=1 \tag{6.1}
\end{equation*}
$$

The theorem characterizes the Archimedean circles touching γ internally, but the twin circles of Archimedes are excluded. In this subsection, we show that the twin circles can be included in the theorem by division by zero. We consider the case $(m, n)=(1,0)$. The circle β_{n} has an equation $(x+n b)^{2}+y^{2}=(n b)^{2}$ or

$$
\begin{equation*}
x^{2}+y^{2}+2 n b x=0 \tag{6.2}
\end{equation*}
$$

Therefore we get $x^{2}+y^{2}=0$ if $n=0$, i.e., β_{0} coincides with the origin. On the other hand (6.2) implies

$$
\frac{x^{2}+y^{2}}{n}+2 b x=0
$$

Therefore we get $x=0$ if $n=0$ by (1.1). Therefore $n=0$ implies that β_{0} is the origin or the y-axis. Since the origin is a part of the y-axis, we can consider that β_{0} is the y-axis. While α_{1} coincides with the circle α. Hence $(m, n)=(1,0)$ satisfies (6.1) and we get one of the twin circles of Archimedes touching α. Similarly in the case $(m, n)=(0,1)$ we get the other Archimedean circle touching $\beta_{1}=\beta$ and the axis.
6.2. Parametric representation. Let $d=\sqrt{a b} / c$. We use the next theorem.

Theorem 6.2. The following statements hold.
(i) A circle touches the circles α and β in the same sense if and only if its has radius r_{z}^{γ} and center of coordinates $\left(x_{z}^{\gamma}, y_{z}^{\gamma}\right)$ given by

$$
q_{z}^{\gamma}=\frac{a b c}{c^{2} z^{2}-a b}, \quad r_{z}^{\gamma}=\left|q_{z}^{\gamma}\right| \quad \text { and } \quad\left(x_{z}^{\gamma}, y_{z}^{\gamma}\right)=\left(\frac{b-a}{c} q_{z}^{\gamma}, 2 z q_{z}^{\gamma}\right)
$$

for a real number $z \neq \pm d$.
(ii) A circle touches the circles β and γ in the opposite sense if and only if it has radius r_{z}^{α} and center of coordinates $\left(x_{z}^{\alpha}, y_{z}^{\alpha}\right)$ given by

$$
r_{z}^{\alpha}=\frac{a b c}{a^{2} z^{2}+b c} \quad \text { and } \quad\left(x_{z}^{\alpha}, y_{z}^{\alpha}\right)=\left(-2 b+\frac{b+c}{a} r_{z}^{\alpha}, 2 z r_{z}^{\alpha}\right)
$$

for a real number z.
(iii) A circle touches the circles γ and α in the opposite sense if and only if it has radius r_{z}^{β} and center of coordinates $\left(x_{z}^{\beta}, y_{z}^{\beta}\right)$ given by

$$
r_{z}^{\beta}=\frac{a b c}{b^{2} z^{2}+c a} \quad \text { and } \quad\left(x_{z}^{\beta}, y_{z}^{\beta}\right)=\left(2 a-\frac{c+a}{b} r_{z}^{\beta}, 2 z r_{z}^{\beta}\right)
$$

for a real number z.
Proof. Let γ_{z} be the circle of radius and center described in (i). Then we have $\left(x_{z}^{\gamma}-a\right)^{2}+\left(y_{z}^{\gamma}\right)^{2}=\left(a+q_{z}^{\gamma}\right)^{2}$. Therefore γ_{z} and α touch internally or externally according as $q_{z}^{\gamma}<0$ or $q_{z}^{\gamma}>0$. Similarly γ_{z} and β touch internally or externally according as $q_{z}^{\gamma}<0$ or $q_{z}^{\gamma}>0$. Hence γ_{z} touches α and β in the same sense. Conversely we assume that a circle γ^{\prime} of radius $r>0$ touches α and β in the same sense. Then there is a real numbers z such that $r_{ \pm z}^{\gamma}=r$. Therefore we have $\gamma^{\prime}=\gamma_{z}$ or $\gamma^{\prime}=\gamma_{-z}$. This proves (i). The rest of the theorem can be proved similarly.

Essentially the same formulas as Theorem 6.2 can be found in [30], not so simple though. Simpler expression in the case z being an integer can be found in $[4,5]$. We denote the circle of radius r_{z}^{α} and center of coordinates $\left(x_{z}^{\alpha}, y_{z}^{\alpha}\right)$ by α_{z}. Also the equation representing the circle α_{z} is denoted by $\alpha_{z}(x, y)=0$, where

$$
\begin{equation*}
\alpha_{z}(x, y)=\left(x-x_{z}^{\alpha}\right)^{2}+\left(y-y_{z}^{\alpha}\right)^{2}-\left(r_{z}^{\alpha}\right)^{2} . \tag{6.3}
\end{equation*}
$$

The circles β_{z} and γ_{z} and the equations $\beta_{z}(x, y)=0$ and $\gamma_{z}(x, y)=0$ are defined similarly, respectively. The circles α_{0}, β_{0} and γ_{0} coincide with the circles α, β and γ, respectively. While $\alpha_{1}=\beta_{1}=\gamma_{1}$ (resp. $\alpha_{-1}=\beta_{-1}=\gamma_{-1}$) is the incircle of the arbelos in the region $y \geq 0$ (resp. $y \leq 0$). The Archimedean circles touching α and γ in the opposite sense coincide with the circles $\beta_{ \pm \sqrt{\frac{c}{b}}}$. Also the Archimedean circles touching β and γ in the opposite sense coincide with the circles $\alpha_{ \pm \sqrt{\frac{c}{a}}}$.

The circle γ_{z} touches α and β internally (resp. externally) if and only if $|z|<d$ (resp. $|z|>d$), which is also equivalent to $q_{z}^{\gamma}<0$ (resp. $q_{z}^{\gamma}>0$). The external common tangents of α and β are also denoted by $\gamma_{ \pm d}$ and have the following equations [25, 26]:

$$
\begin{equation*}
\gamma_{ \pm d}(x, y)=(a-b) x \mp 2 \sqrt{a b} y+2 a b=0 . \tag{6.4}
\end{equation*}
$$

Theorem 6.3. The following statements hold.
(i) Circles or a circle and a line γ_{z} and γ_{w} touch if and only if $|z-w|=1$.
(ii) Circles α_{z} and α_{w} touch if and only if $|z-w|=1$.
(iii) Circles β_{z} and β_{w} touch if and only if $|z-w|=1$.

Proof. If γ_{z} and γ_{w} are circles, then the part (i) follows from

$$
\left(x_{z}^{\gamma}-x_{w}^{\gamma}\right)^{2}+\left(y_{z}^{\gamma}-y_{w}^{\gamma}\right)^{2}-\left(q_{z}^{\gamma}+q_{w}^{\gamma}\right)^{2}=\frac{4 a^{2} b^{2} c^{2}\left((z-w)^{2}-1\right)}{\left(c^{2} z^{2}-a b\right)\left(c^{2} w^{2}-a b\right)}
$$

We consider the case in which γ_{z} touches γ_{d}. In this case γ_{z} touches γ_{d} from the same side as the point C and touches α and β externally and $q_{z}^{\gamma}>0$ (see Figure 15). Let p be the y-coordinate of the point of intersection of γ_{d} and the perpendicular from the center of γ_{z} to the x-axis. Then there is a real number $k>0$ such that $p=y_{z}^{\gamma}+k$. Hence we have

$$
\gamma_{d}\left(x_{z}^{\gamma}, y_{z}^{\gamma}\right)=\gamma_{d}\left(x_{z}^{\gamma}, p-k\right)=\gamma_{d}\left(x_{z}^{\gamma}, p\right)+2 \sqrt{a b} k=2 \sqrt{a b} k>0
$$

by (6.4). Therefore γ_{z} touches γ_{d} if and only if $\gamma_{d}\left(x_{z}^{\gamma}, y_{z}^{\gamma}\right) / c=q_{z}^{\gamma}$. While we have

$$
\frac{\gamma_{d}\left(x_{z}^{\gamma}, y_{z}^{\gamma}\right)}{c}-q_{z}^{\gamma}=\frac{2 a b c(z-(d+1))(z-(d-1))}{\left(c^{2} z^{2}-a b\right)} .
$$

Therefore γ_{z} touches γ_{d} if and only if $z=d \pm 1$. The case γ_{z} touching γ_{-d} is proved similarly. This proves (i). The circles α_{z} and α_{w} touch if and only if they touch externally. Therefore the part (ii) follows from

$$
\left(x_{z}^{\alpha}-x_{w}^{\alpha}\right)^{2}+\left(y_{z}^{\alpha}-y_{w}^{\alpha}\right)^{2}-\left(r_{z}^{\alpha}+r_{w}^{\alpha}\right)^{2}=\frac{4 a^{2} b^{2} c^{2}\left((z-w)^{2}-1\right)}{\left(a^{2} z^{2}+b c\right)\left(a^{2} w^{2}+b c\right)}
$$

The part (iii) is proved similarly.

Figure 15.
6.3. Center of similitude of two circles. In this subsection we demonstrate fundamental results on the centers of similitude of two of the three circles α, β and γ, which have been getting little concern on the study of the arbelos. The results were discovered from the consideration of circles touching the two circles using the parametric representation stated in the previous subsection by division by zero calculus. We omit the proofs since they are straightforward.

Let S_{a} (resp. S_{b}) be the internal center of similitude of the circles β (resp. α) and γ, and let S_{c} be the external center of similitude of the circles α and β. The
points have coordinates

$$
\begin{equation*}
S_{a}:\left(\frac{-2 b^{2}}{b+c}, 0\right), S_{b}:\left(\frac{2 a^{2}}{c+a}, 0\right), S_{c}:\left(\frac{2 a b}{b-a}, 0\right) \tag{6.5}
\end{equation*}
$$

The perpendiculars to $A B$ at the three points are denoted by s_{a}, s_{b} and s_{c}, respectively. If $a=b, S_{c}$ and s_{c} coincide with the origin and the axis, respectively by (1.1). Recall (4.2).

Theorem 6.4. The following relations hold.
(i) $\cos \left(s_{a}, \beta\right)=\cos \left(s_{a}, \gamma\right)=\frac{a}{b+c}$.
(ii) $\cos \left(s_{b}, \gamma\right)=\cos \left(s_{b}, \alpha\right)=\frac{b}{c+a}$.
(iii) $\cos \left(s_{c}, \alpha\right)=\cos \left(s_{c}, \beta\right)=\frac{c}{|b-a|}$ if $a \neq b$.

Figure 16: $a=b$.
Let σ_{a} be the circle of center S_{a} passing through the point A. Similarly the circles σ_{b} and σ_{c} are defined. The circle σ_{c} is represented by the equation $4 a b x /(a-$ $b)+x^{2}+y^{2}=0$ or $4 a b x+(a-b)\left(x^{2}+y^{2}\right)=0$. This implies that $x^{2}+y^{2}=0$ or $x=0$ if $a=b$, i.e., σ_{c} coincides with the y-axis if $a=b$. Some results on the point S_{c} and the circle σ_{c} can be found in [18, 19]. For two circles δ_{1} and δ_{2} of radii r_{1} and r_{2}, we define the cosine of the angle made by the two circles by

$$
\begin{equation*}
\cos \left(\delta_{1}, \delta_{2}\right)=\frac{r_{1}^{2}+r_{2}^{2}-d^{2}}{2 r_{1} r_{2}} \tag{6.6}
\end{equation*}
$$

where d is the distance between the centers of the two circles.
Theorem 6.5. The following statements hold.
(i) The circle $\sigma_{a}\left(\right.$ resp. $\left.\sigma_{b}, \sigma_{c}\right)$ is orthogonal to the circle α_{z} (resp. $\left.\beta_{z}, \gamma_{z}\right)$ for any real number z.
(ii) $\cos \left(\sigma_{a}, \sigma_{b}\right)=\left|\cos \left(\sigma_{b}, \sigma_{c}\right)\right|=\left|\cos \left(\sigma_{c}, \sigma_{a}\right)\right|=\frac{1}{2}$.

Notice that Theorem 6.5(ii) holds in the case $a=b$ (see Figure 16). By Theorem $6.5(\mathrm{i})$, the circles α_{z} and $\alpha_{w}(z \neq w)$ are fixed by the inversion in the circle σ_{a}. Therefore their radical axis is also fixed, i.e., it passes through the point S_{a}. We get the next theorem, where recall Theorem 6.3 (see Figure 17).

Figure 17.

Theorem 6.6. The radical axis of α_{z} and α_{w} passes through the point S_{a} for real numbers z and $w(z \neq w)$. In particular, the point of tangency of α_{z} and α_{z+1} lies on the circle σ_{a} and the common tangent at the point passes through S_{a}. Similar statements hold for S_{b} and σ_{b} and also for S_{c} and σ_{c}.

Figure 18: Archimedean circles related to the circles $\gamma_{d \pm 1}$.

Theorem 6.7. The circles σ_{a}, σ_{b} and σ_{c} belong to the same pencil of circles and pass through the points of coordinates given by

$$
\begin{equation*}
\Sigma^{+}:\left(\frac{a b(b-a)}{c^{2}-a b}, \frac{\sqrt{3} a b c}{c^{2}-a b}\right), \quad \Sigma^{-}:\left(\frac{a b(b-a)}{c^{2}-a b},-\frac{\sqrt{3} a b c}{c^{2}-a b}\right) \tag{6.7}
\end{equation*}
$$

In this paragraph we consider some new Archimedean circles without division by zero and division by zero calculus. Assume $a \neq b$. The circle γ_{d-1} meets the axis in two points, and the closer point to C is denoted by F. Assume σ_{c} meets γ in a point G in the region $y<0$. Recall $r_{\mathrm{A}}=a b / c$. The following statements hold, where some of the statements can be found in [9] (see Figure 18):
(i) The distance from the point of tangency of γ_{d} and $\gamma_{d \pm 1}$ to $A B$ equals $2 r_{\mathrm{A}}$.
(ii) $|C F|=2 r_{\mathrm{A}}$,
(iii) $|F G|=2 r_{\mathrm{A}}$ and the Archimedean circle of diameter $F G$ touches γ at G.
(iv) There are two Archimedean circles whose center coincide with one of the closest points on $\gamma_{d \pm 1}$ to $A B$ such that they touch the lines γ_{d} and $A B$.

7. Circles touching two given circles forming the arbelos

In this section we consider the circles α_{z} and γ_{z} by division be zero calculus. The highlight of this section is that the line s_{a} (resp. s_{c}) is derived by considering α_{z} (resp. γ_{z}) by division by zero calculus.
7.1. The circle α_{z}. We consider the circle α_{z} represented by the equation (6.3). If we consider $\alpha_{z}(x, y)$ as a function of z, there is no singular case. We firstly consider the Laurent expansion of $\alpha_{z}(x, y)$ about $z=0$:

$$
\alpha_{z}(x, y)=\sum_{n=-\infty}^{\infty} C_{n} z^{n}
$$

Then we get
(i) $\cdots=C_{-3}=C_{-2}=C_{-1}=0$,
(ii) $C_{0}=(x-a)^{2}+y^{2}-a^{2}$,
(iii) $C_{2 n-1}=(-1)^{n} \frac{4 a^{2 n-1}}{(b c)^{n-1}} y$ for $n=1,2,3, \cdots$,
(iv) $C_{2 n}=(-1)^{n-1} \frac{2 a^{2 n}(b+c)}{(b c)^{n}}\left(x+\frac{2 b^{2}}{b+c}\right)$ for $n=1,2,3, \cdots$.

We consider the figures represented by the equation $C_{n}=0$. Then $C_{0}=0$ implies the equation $(x-a)^{2}+y^{2}=a^{2}$, which represents the circle α. The equations $C_{1}=C_{3}=C_{5}=\cdots=0$ imply $y=0$, which represents the line $A B$. And the equations $C_{2}=C_{4}=C_{6}=\cdots=0$ represent the line s_{a} by (6.5). The three figures represented by $C_{n}=0$ are described in Figure 19 in red. Notice that the circle α can be obtained in the usual way from the equation (6.3), but the lines s_{a} and $A B$ can not.

The line $A B$ is orthogonal to β and γ. Hence we can consider it touches the two circles by Proposition 1.1, i.e., $A B$ is eligible to be a figure touching β and γ. However the line s_{a} does not touch the two circles, but intersects at the same angle by Theorem 6.4.

Figure 19.
Let $w=1 / z$ and $\alpha_{w}(x, y)=\alpha_{z}(x, y)$. We consider the Laurent expansion of α_{w} about $w=0$:

$$
\alpha_{w}(x, y)=\sum_{n=-\infty}^{\infty} C_{n} w^{n}
$$

Then we have:
(i) $\cdots=C_{-3}=C_{-2}=C_{-1}=0, \quad$ (ii) $C_{0}=(x+2 b)^{2}+y^{2}$,
(iii) $C_{2 n-1}=(-1)^{n} \frac{4(b c)^{n}}{a^{2 n-1}} y$ for $n=1,2,3, \cdots$,
(iv) $C_{2 n}=(-1)^{n} \frac{2(b c)^{n}(b+c)}{a^{2 n}}\left(x+\frac{2 b^{2}}{b+c}\right)$ for $n=1,2,3, \cdots$.

Therefore the equation $C_{0}=0$ represents the point A instead of the circle α, and $C_{2 n-1}=0$ represents the line $A B$ for $n=1,2,3, \cdots$, and $C_{2 n}=0$ represents the line s_{a} for $n=1,2,3, \cdots$. The three figures obtained from $C_{n}=0$ are described in Figure 20 in red.

Figure 20.
7.2. The circle γ_{z} in the case $z=0$. The circle γ_{z} has an equation

$$
\gamma_{z}(x, y)=\left(x-x_{z}^{\gamma}\right)^{2}+\left(y-y_{z}^{\gamma}\right)^{2}-\left(r_{z}^{\gamma}\right)^{2}=0
$$

for a real number $z \neq \pm d$ by Theorem 6.2. We consider the Laurent expansion of $\gamma_{z}(x, y)$ about $z=0$:

$$
\gamma_{z}(x, y)=\sum_{n=-\infty}^{\infty} C_{n} z^{n}
$$

Then we get
(i) $\cdots=C_{-3}=\underset{-2}{C_{-2}}=C_{-1}=0$,
(ii) $C_{0}=(x-2 a)(x+2 b)+y^{2}$,
(iii) $C_{2 n-1}=\frac{4 c^{2 n-1}}{(a b)^{n-1}} y$ for $n=1,2,3, \cdots$,
(iv) For $n=1,2,3, \cdots$, we have

$$
\begin{aligned}
C_{2 n} & =-\frac{2 c^{2 n}(a-b)}{(a b)^{n}}\left(x-\frac{2 a b}{b-a}\right) \text { if } a \neq b \\
C_{2 n} & =-4^{n+1} a^{2} \text { if } a=b
\end{aligned}
$$

Figure 21: $a<b$.
The equation $C_{0}=0$ represents the circle γ. The equations $C_{1}=C_{3}=C_{5}=$ $\cdots=0$ represent the line $A B$. The equations $C_{2}=C_{4}=C_{6}=\cdots=0$ represent the line s_{c} if $a \neq b$. If $a=b$, they represent no figure. Notice that s_{c} does not touch α and β but we have $\cos \left(s_{c}, \alpha\right)=\cos \left(s_{c}, \beta\right)$ by Theorem 6.4.

Assume $a \neq b$. The three figures obtained from $C_{n}=0$ in this case are described in Figure 21 in red. The circles $\gamma_{\mp a / c}$ and $\gamma_{ \pm b / c}$ touch by Theorem 6.3. The points of tangency coincide with the points of intersection of s_{c} and σ_{c}. Therefore each of the points of tangency, S_{c} and C form three vertices of a square. The three center of the circles $\gamma_{ \pm b / c}$ and α lie on a perpendicular to $A B$ by Theorem 6.2. Also the centers of the circles $\gamma_{ \pm a / c}$ and β lie on a perpendicular to $A B$. If $a=b$, then $d=1 / 2$ and $\gamma_{ \pm b / c}=\gamma_{ \pm a / c}=\gamma_{ \pm 1 / 2}$ are the external common tangents of α and β parallel to $A B$.
7.3. $w=1 / z$ and $\gamma_{w}(x, y)=\gamma_{z}(x, y)$ in the case $w=0$. Let $w=1 / z$ and $\gamma_{w}(x, y)=\gamma_{z}(x, y)$. We consider the case $w=0$ using the Laurent expansion of $\gamma_{w}(x, y)$ about $w=0$:

$$
\gamma_{w}(x, y)=\sum_{n=-\infty}^{\infty} C_{n} w^{n}
$$

Then we get
(i) $\cdots=C_{-3}=C_{-2}=C_{-1}=0, \quad$ (ii) $C_{0}=x^{2}+y^{2}$,
(iii) $C_{2 n-1}=-\frac{4 a^{n} b^{n}}{c^{2 n-1}} y$ for $n=1,2,3 \cdots$,
(iv) For $n=1,2,3, \cdots$, we have

$$
\begin{aligned}
C_{2 n} & =\frac{2(a b)^{n}(a-b)}{c^{2 n}}\left(x-\frac{2 a b}{b-a}\right) \text { if } a \neq b, \\
C_{2 n} & =4^{1-n} a^{2} \text { if } a=b .
\end{aligned}
$$

Therefore $C_{0}=0$ does not represent the circle γ but the origin. The others are the same as those in subsection 7.2. The figures represented by $C_{n}=0$ in the case $a \neq b$ are denoted in Figure 22 in red .

Figure 22.
7.4. The circles $\gamma_{b / c}$ and $\gamma_{-a / c}$ in the case $a=b$. We have seen that the circles $\gamma_{b / c}$ and $\gamma_{-a / c}$ touch the line s_{c} if $a \neq b$ in subsection 7.2. We now consider the relation between $\gamma_{b / c}, \gamma_{-a / c}$ and s_{c} in the case $a=b$. If $a=b$, then $\gamma_{b / c}=$ $\gamma_{1 / 2}=\gamma_{d}$ and $\gamma_{-a / c}=\gamma_{-1 / 2}=\gamma_{-d}$. In this subsection we firstly assume $a=b$ and consider the circles $\gamma_{1 / 2}$ and $\gamma_{-1 / 2}$. Secondly we drop the assumption $a=b$ and consider $\gamma_{b / c}(x, y)$ and $\gamma_{-a / c}$ in the case $a=b$.

It seems that the figures obtained by the Laurent expansion of $\gamma_{z}(x, y)$ about $z= \pm 1 / 2$ in the case $a=b$ can be obtained if we consider the Laurent expansion of $\gamma_{z}(x, y)$ about $z= \pm d$ in the case $a \neq b$ then consider the resulting figure in the case $a=b$. We will see this result in subsection 7.5.

Assume $a=b$. We consider the Laurent expansion of $\gamma_{z}(x, y)$ about $z=1 / 2$:

$$
\gamma_{z}(x, y)=\sum_{n=-\infty}^{\infty} C_{n}\left(z-\frac{1}{2}\right)^{n}
$$

Then we get
(i) $\cdots=C_{-4}=C_{-3}=C_{-2}=0$,
(ii) $C_{-1}=a(a-y)$,
(iii) $C_{0}=x^{2}+\left(y-\frac{a}{2}\right)^{2}-\left(\frac{\sqrt{5} a}{2}\right)^{2}$,
(iv) $C_{n}=(-1)^{n+1}(a+y)$ for $n=1,2, \cdots$.

Figure 23.
Hence $C_{-1}=0$ represents the line $\gamma_{d}=\gamma_{1 / 2}$. The equation $C_{0}=0$ represents the circle of radius $\sqrt{5} a / 2$ and center of coordinates $(0, a / 2)$. The circle passes through the point of tangency of γ_{d} and each of α and β. The radical center of this circle and α and β coincides with the point of intersection of the axis and γ_{-d}. Since the point S_{c} coincides with the origin C and s_{c} coincides with the axis, the circle touches the line s_{c} by Proposition 1.1. The equations $C_{1}=C_{2}=C_{3}=\cdots=0$ represent γ_{-d}. The three figures obtained by $C_{n}=0$ touch the line s_{c} and are described in Figure 23 in red. Considering the Laurent expansion of $\gamma_{z}(x, y)$ about $z=-1 / 2$, we get the figures which are the reflection of the three figures in the line $A B$.

We now drop the assumption $a=b$ and consider $\gamma_{b / c}(x, y)$ as a function of b and its Laurent expansion about $b=a$:

$$
\gamma_{b / c}(x, y)=\sum_{n=-\infty}^{\infty} C_{n}(b-a)^{n}
$$

Then we get
(i) $\cdots=C_{-4}=C_{-3}=C_{-2}=0$,
(ii) $C_{-1}=4 a^{2}(a-y)$,
(iii) $C_{0}=(x-a)^{2}+(y-2 a)^{2}-a^{2}$, (iv) $C_{1}=C_{2}=C_{3}=\cdots=0$.

Therefore $C_{-1}=0$ represents γ_{d}. The equation $C_{0}=0$ represents the circle of radius a and center of coordinates $(a, 2 a)$. The two figures obtained by $C_{-1}=0$ and $C_{0}=0$ touch the line s_{c} and are described in Figure 24 in red.

We consider $\gamma_{-a / c}(x, y)$ as a function of b and its Laurent expansion about $b=a$:

$$
\gamma_{-a / c}(x, y)=\sum_{n=-\infty}^{\infty} C_{n}(b-a)^{n}
$$

Then we get
(i) $\cdots=C_{-4}=C_{-3}=C_{-2}=0, \quad$ (ii) $C_{-1}=-4 a^{2}(a+y)$,
(iii) $C_{0}=(x+a)^{2}+(y-2 a)^{2}-(\sqrt{13} a)^{2}$, (iv) $C_{1}=2(x-2 a)$.
(v) $C_{2}=C_{3}=C_{4}=\cdots=0$.

Therefore $C_{-1}=0$ represents γ_{-d}. The equation $C_{0}=0$ represents the circle of radius $\sqrt{13} a$ and the center of coordinates $(-a, 2 a)$. The circle passes through the point B and the point of tangency of α and γ_{-d}. The equation $C_{1}=0$ represents the tangent of α and γ at B. The three figures obtained by $C_{-1}=0, C_{0}=0$ and $C_{1}=0$ are described in Figure 24 in green. The circle represented by $C_{0}=0$ does not touch the line s_{c}, while the other two lines touch. The circle intersects γ, γ_{-d}, α and the tangents of γ at B at the same angle, whose cosine equals $3 / \sqrt{13}$, where recall (4.2) and (6.6).

Figure 24: $\gamma_{b / c}$ (red) and $\gamma_{-a / c}$ (green) in the case $b=a$.
7.5. The circle γ_{z} in the case $z=d$. We consider the circle γ_{z} in the singular case $z=d=\sqrt{a b} / c$ and consider the Laurent expansion of $\gamma_{z}(x, y)$ about $z=d$:

$$
\gamma_{z}(x, y)=\sum_{n=-\infty}^{\infty} C_{n}(z-d)^{n}
$$

Then we get
(i) $\cdots=C_{-4}=C_{-3}=C_{-2}=0$,
(ii) $C_{-1}=d((a-b) x-2 \sqrt{a b} y+2 a b)$,
(iii) $C_{0}=\left(x-\frac{a-b}{4}\right)^{2}+\left(y-\frac{\sqrt{a b}}{2}\right)^{2}-\left(\frac{\sqrt{a^{2}+18 a b+b^{2}}}{4}\right)^{2}$,
(iv) $C_{n}=-\frac{1}{2}\left(\frac{-1}{2 d}\right)^{n}((a-b) x+2 \sqrt{a b} y+2 a b)$ for $n=1,2,3, \cdots$.

Therefore the equation $C_{-1}=0$ represents the line γ_{d} given by (6.4). The equation $C_{0}=0$ represents a circle. The radius and the coordinates of its center are given by

$$
\begin{equation*}
\frac{\sqrt{a^{2}+18 a b+b^{2}}}{4}, \quad\left(\frac{a-b}{4}, \frac{\sqrt{a b}}{2}\right) . \tag{7.1}
\end{equation*}
$$

We denote this circle by $\bar{\gamma}$ and consider in detail in the next subsection. The equations $C_{1}=C_{2}=C_{3}=\cdots=0$ represent the line γ_{-d}. The figures obtained by $C_{n}=0$ are described in Figure 25 in red. It is obvious that the circle $\bar{\gamma}$ coincides with the circle obtained in 7.4 if $a=b$ (see Figure 23).

Figure 25.
7.6. The circle $\bar{\gamma}$. We consider the circle $\bar{\gamma}$ given in (7.1) in detail. Let I_{i} be the point of coordinates $(0, i \sqrt{a b})$ for an integer i. We use the next theorem (see Figure 25).

Theorem 7.1 ([25]). The following statements are true.
(i) The point of tangency of γ_{d} and each of α and β lies on $\bar{\gamma}$.
(ii) The radical center of the three circles α, β and $\bar{\gamma}$ coincides with the point I_{-1}.

The y-axis meets the circle γ and the lines $\gamma_{ \pm d}$ in the points $I_{ \pm 2}$ and $I_{ \pm 1}$, respectively. While the radical axis of γ and $\bar{\gamma}$ passes through the point I_{3}. Hence we have the next theorem (see Figure 26).

Theorem 7.2. The six points, where the y-axis meets $\gamma, \gamma_{ \pm d}$, the line $A B$, the radical axis of γ and $\bar{\gamma}$, are evenly spaced.

Figure 26.
The six points are described in Figure 26 in magenta. Let D be the center of the circle $\bar{\gamma}$, and let M be the midpoint of the segment joining C and the center of γ. It is well-known that the circle of diameter $C I_{2}$ passes through the point of tangency of γ_{d} and each of α and β and each of the two points lie on the segments $A I_{2}$ and $B I_{2}$. We have the next theorem, where recall (6.6) for the part (vii). The proofs are straightforward and are omitted.

Theorem 7.3. The following statements are true.
(i) The circle σ_{c} is orthogonal to $\bar{\gamma}$ and the circle of diameter $C I_{2}$. Hence the radical axis of $\bar{\gamma}$ and γ_{z} passes through S_{c} for any real number z.
(ii) The circle of radius $c / 4$ and center D passes though the points C, I_{1} and M, and touches the line γ_{d} at I_{1}.
(iii) The lines $C D$ and γ_{-d} are perpendicular.
(iv) The points D, I_{1} and M are collinear.
(v) The line $S_{c} I_{2}$, the circle of diameter $C I_{2}$ and the circle γ meet in a point.
(vi) The line $D I_{1}$, the tangent of $\bar{\gamma}$ at the point of tangency of γ_{d} and each of α and β, and the circle of diameter $I_{1} I_{3}$ meet in a point.
(vii) The circle $\bar{\gamma}$ intersects α and β at the same angle, whose cosine equals $\frac{c}{\sqrt{a^{2}+18 a b+b^{2}}}$.

The circle $\bar{\gamma}$ is an iconic figure which shows how essential and interest things division by zero calculus brings us, and used in both the front and the back covers of the book [29].
7.7. Another parametric representation. We consider the circles touching α and β in the same sense using another parametric equation:

Theorem 7.4 ([26]). A circle touching α and β in the same sense if and only if it is represented by the equation

$$
\begin{equation*}
\zeta_{z}(x, y)=\left(x-\frac{b-a}{z^{2}-1}\right)^{2}+\left(y-\frac{2 z \sqrt{a b}}{z^{2}-1}\right)^{2}-\left(\frac{c}{z^{2}-1}\right)^{2}=0 \tag{7.2}
\end{equation*}
$$

for a real number $z \neq \pm 1$.
We denote the circle by ζ_{z}.
7.7.1. Case 1 . We firstly consider the circle ζ_{z} in the case $z=0$ using the Laurent expansion of $\zeta_{z}(x, y)$ about $z=0$:

$$
\zeta_{z}(x, y)=\sum_{n=-\infty}^{\infty} C_{n} z^{n}
$$

Then we get
(i) $\cdots=C_{-3}=C_{-2}=C_{-1}=0, \quad$ (ii) $C_{0}=(x-2 a)(x+2 b)+y^{2}$,
(iii) $C_{2 n-1}=4 \sqrt{a b} y$ for $n=1,2,3, \cdots$,
(iv) $C_{2 n}=2((b-a) x-2 a b)$ for $n=1,2,3, \cdots$.

Therefore the figures represented by $C_{n}=0$ coincide with the figures represented by $C_{n}=0$ in 7.2 .
7.7.2. Case 2. Let $w=1 / z$ and $\zeta_{w}(x, y)=\zeta_{z}(x, y)$. We consider the case $w=0$ with the Laurent expansion of ζ_{w} about $w=0$:

$$
\zeta_{w}(w)=\sum_{n=-\infty}^{\infty} C_{n} w^{n}
$$

Then we have
(i) $\cdots=C_{-3}=C_{-2}=C_{-1}=0$,
(ii) $C_{0}=x^{2}+y^{2}$,
(iii) $C_{2 n-1}=-4 \sqrt{a b} y$ for $n=1,2,3, \cdots$.
(iv) $C_{2 n}=-2((b-a) x-2 a b)$ for $n=1,2,3, \cdots$.

Therefore the figures represented by $C_{n}=0$ coincide with the figures represented by $C_{n}=0$ in 7.3.
7.7.3. Case 3. We now consider the singular case $z=1$ using the Laurent expansion of $\zeta_{z}(x, y)$ about $z=1$:

$$
\zeta_{z}(x, y)=\sum_{n=-\infty}^{\infty} C_{n}(z-1)^{n}
$$

Then we get
(i) $\cdots=C_{-4}=C_{-3}=C_{-2}=0$,
(ii) $C_{-1}=(a-b) x-2 \sqrt{a b} y+2 a b$,
(iii) $C_{0}=\left(x-\frac{a-b}{4}\right)^{2}+\left(y-\frac{\sqrt{a b}}{2}\right)^{2}-\left(\frac{\sqrt{a^{2}+18 a b+b^{2}}}{4}\right)^{2}$,
(iv) $C_{n}=\left(\frac{-1}{2}\right)^{n+1}((a-b) x+2 \sqrt{a b} y+2 a b)$ for $n=1,2,3, \cdots$.

Therefore the figures represented by $C_{n}=0$ also coincide with the figures represented by $C_{n}=0$ in subsection 7.5 . This case was considered in [25].

8. Skewed arbelos

We fix the two circles α and β and consider the valuable circle ζ_{z} touching α and β in the same sense represented by (7.2). The lines $\gamma_{ \pm d}$ are denoted by $\zeta_{ \pm 1}$. In this section we consider two special circles in the case $z= \pm 1$ by division by zero and division by zero calculus. However for the sake of simplicity, we confine ourself to the case $|z| \leq 1$, and consider the special circles in the case $z=1$. See [21] for the case $|z|>1$.

Figure 27.
Let B_{z} be the point of tangency of the circles α and ζ_{z} (see Figure 27). Let η_{a} be the circle touching α internally and the tangents of β from B_{z}. The point A_{z} and the circle η_{b} are defined similarly. The circles η_{a} and η_{b} are congruent and have common radius

$$
\begin{equation*}
r_{\eta}=\left|1-z^{2}\right| r_{\mathrm{A}} \tag{8.1}
\end{equation*}
$$

and have centers of coordinates

$$
\begin{equation*}
\left(\left(1+z^{2}\right) r_{\mathrm{A}}, 2 z r_{\mathrm{A}} \sqrt{\frac{a}{b}}\right) \text { and }\left(-\left(1+z^{2}\right) r_{\mathrm{A}}, 2 z r_{\mathrm{A}} \sqrt{\frac{b}{a}}\right) \tag{8.2}
\end{equation*}
$$

respectively [21], where recall $r_{\mathrm{A}}=a b / c$.
Let r_{ζ} be the radius of the circles ζ_{z}. Since $r_{\zeta}=c /\left|z^{2}-1\right|$ by (7.2), we have

$$
r_{\eta} r_{\zeta}=a b \quad \text { if } \quad z \neq \pm 1
$$

If $z=1$, then the circle ζ_{z} coincides with the line ζ_{1}, and the circles η_{a} and η_{b} and the points B_{z} and A_{z} coincide with the points B_{1} and A_{1}, respectively. Therefore we get $r_{\zeta}=r_{\eta}=0$ by Proposition 1.1 (see Figure 28). We also have the same relation in the case $z=-1$. Therefore in any case we have:

Figure 28: $z=1$.
Theorem 8.1. $r_{\eta}=\frac{a b}{r_{\zeta}}$ holds for any real number z.
We now consider the circle η_{a} in the case $z=1$ by division by zero calculus. By (8.1) and (8.2), the circle is represented by the equation

$$
\eta_{a}(x, y)=\left(x-\left(1+z^{2}\right) r_{\mathrm{A}}\right)^{2}+\left(y-2 z r_{\mathrm{A}} \sqrt{\frac{a}{b}}\right)^{2}-\left(\left(1-z^{2}\right) r_{\mathrm{A}}\right)^{2}=0
$$

We consider the Laurent expansion of $\eta_{a}(x, y)$ about $z=1$:

$$
\eta_{a}(x, y)=\sum_{n=-\infty}^{\infty} C_{n}(z-1)^{n}
$$

Then we have
(i) $\cdots=C_{-3}=C_{-2}=C_{-1}=0$,
(ii) $C_{0}=\left(x-2 r_{\mathrm{A}}\right)^{2}+\left(y-2 r_{\mathrm{A}} \sqrt{a / b}\right)^{2}$,
(iii) $C_{1}=-4 r_{\mathrm{A}}((x-2 a)+\sqrt{a / b} y)$,
(iv) $C_{2}=-2 r_{\mathrm{A}}(x-2 a)$,
(v) $C_{3}=C_{4}=C_{5}=\cdots=0$.

Therefore $C_{0}=0$ represents the point of coordinates $\left(2 r_{\mathrm{A}}, 2 r_{\mathrm{A}} \sqrt{a / b}\right)$, which coincides with the point B_{1} (see Figure 29). $C_{1}=0$ represents the line $B B_{1}$. And $C_{2}=0$ represents the tangent of α at B. The three figures obtained by $C_{n}=0$ ($n=0,1,2$) are described in Figure 29 in red.

The line $B B_{1}$ passes through the point of intersection of the axis and the circle $\zeta_{0}=\gamma$, and the line meets the tangent of α at $B, \alpha, \zeta_{0}, \zeta_{1}$ and the axis at the same angle, whose cosine equals $\sqrt{b / c}$. Similar results are also obtained by considering the circle η_{b}, and the resulting figures are described in Figure 29 in yellow. Since
each of the three figures coincides with a line or a point, we get $r_{\eta}=0$. Therefore Theorem 8.1 is also true.

Figure 29: η_{a} and η_{b} are denoted by red and yellow, respectively.

9. The arbelos with overhang

In this section we consider another generalized arbelos called the arbelos with overhang [20]. Let A_{h} (resp. B_{h}) be a point on the half line $C A$ (resp. $C B$) with initial point C such that $\left|A_{h} C\right|=2(b+h)$ (resp. $\left|B_{h} C\right|=2(a+h)$) for a real number h satisfying $-\min (a, b)<h$. In [20] we have considered a generalized arbelos consisting of the three semicircles α_{h}, β_{h} and γ of diameters $B_{h} C, A_{h} C$ and $A B$, respectively, constructed on the same side of $A B$. The figure is denoted by $\left(\alpha_{h}, \beta_{h}, \gamma\right)$ and is called the arbelos with overhang h (see Figures 30 and 31). The usual arbelos is obtained from $\left(\alpha_{h}, \beta_{h}, \gamma\right)$ if $h=0$. The semicircles of diameters $B C$ and $A C$ constructed on the same side of $A B$ as γ are denoted by α and β, respectively. We use a rectangular coordinate system with origin C such that the farthest point on α from $A B$ has coordinates (a, a).

Assume $h \geq 0$, i.e., γ has a point in common with α_{h} and β_{h}. We define several touching circles for $\left(\alpha_{h}, \beta_{h}, \gamma\right)$ (see Figure 32): The incircle of the curvilinear triangle made by α, γ and the axis is denote by ε^{a}, i.e., ε^{a} is one of the twin circles of Archimedes of the arbelos formed by α, β and γ. The incircle of the curvilinear triangle made by α_{h}, γ and the axis is denote by ε_{0}^{a}. The incircle of the curvilinear triangle made by α, α_{h} and the radical axis of α_{h} and γ is denote by ε_{1}^{a}. The incircle of the curvilinear triangle made by α, α_{h} and γ is denoted by ε_{2}^{a}. The
circle touching both α and γ externally and the axis from the side opposite to B is denote by ε_{3}^{a}. The circles ε^{b} and $\varepsilon_{i}^{b}(i=0,1,2,3)$ are defined similarly. Recall $r_{\mathrm{A}}=a b / c$.

Figure 30: $h<0$.

Figure 31: $0<h$.

Figure 32.

Theorem 9.1 ([20]). The following statements hold.
(i) The circles ε_{0}^{a} and ε_{0}^{b} have the same radius

$$
e_{0}=\frac{a b}{a+b+h}
$$

(ii) The circles ε_{1}^{a} and ε_{1}^{b} have the same radius

$$
e_{1}=\left(\frac{1}{a}+\frac{1}{b}+\frac{h}{a b}+\frac{1}{h}\right)^{-1}=\left(\frac{1}{e_{0}}+\frac{1}{h}\right)^{-1}
$$

(iii) The circles ε_{2}^{a} and ε_{2}^{b} have the same radius

$$
e_{2}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{h}\right)^{-1}=\left(\frac{1}{r_{\mathrm{A}}}+\frac{1}{h}\right)^{-1}
$$

(iv) The circles ε_{3}^{a} and ε_{3}^{b} have the same radius

$$
e_{3}=\frac{a b}{h}
$$

9.1. Division by zero. We consider the case $h=0$ for the three pairs of congruent circles ε_{i}^{a} and $\varepsilon_{i}^{b}(i=1,2,3)$ and ε^{a} and ε^{b} by division by zero. By Theorem 9.1, we get

$$
\begin{equation*}
e_{1}^{-1}=e_{2}^{-1}+e_{3}^{-1} \tag{9.1}
\end{equation*}
$$

If $h=0$, then B_{h} and B coincide, and ε_{1}^{a} and ε_{2}^{a} also coincide with B, while ε_{3}^{a} coincides with the tangent of γ at B (see Figure 33). Similarly, ε_{1}^{b} and ε_{2}^{b} coincide with A, and ε_{3}^{b} coincides with the tangent of γ at A. Hence we have $e_{1}=e_{2}=e_{3}=0$ by Proposition 1.1. Hence (9.1) holds in this case.

We also get the following relation by Theorem 9.1:

$$
\begin{equation*}
e_{3}^{-1}+r_{\mathrm{A}}^{-1}=e_{0}^{-1} \tag{9.2}
\end{equation*}
$$

Assume $h=0$. Then we get $e_{3}=0$ as just we have seen. While the circles ε^{a} and ε^{b} coincide with the circles ε_{0}^{a} and ε_{0}^{b}, respectively (see Figure 33). Hence we get $e_{3}=0$, while $r_{\mathrm{A}}=e_{0}$. Therefore (9.2) is true in this case.

Figure 33: The case $h=0$
9.2. The circles ε_{1}^{a} and ε_{1}^{b} by division by zero calculus. We consider the circles ε_{i}^{a} and $\varepsilon_{i}^{b}(i=1,2)$ in the case $h=0$ by division by zero calculus. Firstly we consider the circles ε_{1}^{a} and ε_{1}^{b}. Let $\left(x_{1}^{a}, y_{1}^{a}\right)$ be the coordinates of the center of ε_{1}^{a}. The radical axis of α_{h} and γ has the equation $x=a_{x}=2 a b /(b+h)$ and $x_{1}^{a}=a_{x}-e_{1}$ holds. With this relation and $\left(x_{1}^{a}-a\right)^{2}+\left(y_{1}^{a}\right)^{2}=\left(e_{1}+a\right)^{2}$ and Theorem 9.1(ii), we get

$$
\left(x_{1}^{a}, y_{1}^{a}\right)=\left(\frac{a b(2 a+h)}{(a+h)(b+h)}, \frac{2 a}{b+h} \sqrt{\frac{b h(c+h)}{a+h}}\right) .
$$

Therefore we get the equation $\varepsilon_{1}^{a}(x, y)=\left(x-x_{1}^{a}\right)^{2}+\left(y-y_{1}^{a}\right)^{2}-\left(e_{1}\right)^{2}=0$ representing the circle ε_{1}^{a} in terms of a, b and h. Then we have

$$
\varepsilon_{1}^{a}(x, y)=\sum_{n=-\infty}^{\infty} C_{n} h^{n}=\left((x-2 a)^{2}+y^{2}\right)+
$$

Figure 34: $a<b$.
We denote the figure represented by $C_{n}=0$ by a_{n}^{1}. Then $a_{0}^{1}=B$. For $n=$ $1,2, \cdots$, the figure a_{n}^{1} coincides with the line represented by the equation

$$
\begin{gathered}
x=\frac{2 a}{n+2} \text { if } a=b, \\
x=\frac{2 a(a-b)}{2 a-\left(1+(b / a)^{n}\right) b} \text { if } a \neq b .
\end{gathered}
$$

From the last two equations, we see that a_{1}^{1} coincides with the line s_{b}. If $a \leq b$ (resp. $b<a$), the line a_{n}^{1} approaches to the axis (resp. the line represented by $x=2 a(a-b) /(2 a-b)$, when n increases, which is denoted by a_{∞}^{1} (see Figure 34).

For the circle ε_{1}^{b}, we get the equation $\varepsilon_{1}^{b}(x, y)=\left(x-x_{1}^{b}\right)^{2}+\left(y-y_{1}^{b}\right)^{2}-\left(e_{1}\right)^{2}=0$ representing the circle ε_{1}^{b} in a similar way, where

$$
\left(x_{1}^{b}, y_{1}^{b}\right)=\left(-\frac{a b(2 b+h)}{(a+h)(b+h)}, \frac{2 b}{a+h} \sqrt{\frac{a h(c+h)}{b+h}}\right) .
$$

Therefore we get

$$
\begin{gathered}
\varepsilon_{1}^{b}(x, y)=\sum_{n=-\infty}^{\infty} C_{n} h^{n}=\left((x+2 b)^{2}+y^{2}\right)+ \\
\sum_{n=1}^{\infty} \frac{(-1)^{n} 2\left(2 b^{n+1}+\left(b^{n}+\left(b^{n}+b^{n-1} a+b^{n-2} a^{2}+\cdots+a^{n}\right)\right) n\right)}{a^{n} b^{n-1}} h^{n}
\end{gathered}
$$

We denote the figure represented by $C_{n}=0$ by b_{n}^{1}. Then $b_{0}^{1}=A$, and b_{n}^{1} coincides with the line represented by the equation

$$
\begin{gathered}
x=-\frac{2 b}{n+2} \text { if } a=b, \\
x=-\frac{2 b(b-a)}{2 b-\left(1+(a / b)^{n}\right) a} \text { if } a \neq b
\end{gathered}
$$

for $n=1,2, \cdots$. From the two equations with (6.5), we see that the line b_{1}^{1} coincides with the line s_{a}. If $b \leq a$ (resp. $a<b$), the line b_{n}^{1} approaches to the axis (resp. the line represented by the equation $x=-2 b(b-a) /(2 b-a)$), when n increases, which is denoted by b_{∞}^{1}. The figures $a_{n}^{1}, b_{n}^{1}, a_{\infty}^{1}$ and b_{∞}^{1} are described in Figure 34 in red, where a_{n}^{2} and b_{n}^{2} will be explained later.
9.3. The circles ε_{2}^{a} and ε_{2}^{b} by division by zero calculus. We consider the circles ε_{2}^{a} and ε_{2}^{b}. Let $\left(x_{2}^{a}, y_{2}^{a}\right)$ be the coordinates of the center of ε_{2}^{a}. Solving the equations $\left(x_{2}^{a}-a\right)^{2}+\left(y_{2}^{a}\right)^{2}=\left(a+e_{2}\right)^{2}$ and $\left(x_{2}^{a}-(a+h)\right)^{2}+\left(y_{2}^{a}\right)^{2}=\left(a+h-e_{2}\right)^{2}$ for x_{2}^{a} and y_{2}^{a} with Theorem 9.1(iii), we have

$$
\left(x_{2}^{a}, y_{2}^{a}\right)=\left(\frac{a b(2 a+h)}{a b+c h}, \frac{2 a \sqrt{b c h(a+h)}}{a b+c h}\right)
$$

Therefore we get the equation $\varepsilon_{2}^{a}(x, y)=\left(x-x_{2}^{a}\right)^{2}+\left(y-y_{2}^{a}\right)^{2}-\left(e_{2}\right)^{2}=0$ representing the circle ε_{2}^{a}. Considering $\varepsilon_{2}^{a}(x, y)$ as a function of h, we have

$$
\varepsilon_{2}^{a}(x, y)=\sum_{n=-\infty}^{\infty} C_{n} h^{n}=\left((x-2 a)^{2}+y^{2}\right)+\sum_{n=1}^{\infty}(-1)^{n} \frac{2 c^{n-1}\left(2 a^{2}-(c+a) x\right)}{a^{n-1} b^{n}} h^{n}
$$

We denote the figure represented by $C_{n}=0$ by a_{n}^{2}. Then $a_{0}^{2}=B$ and $a_{1}^{2}=a_{2}^{2}=\cdots$ coincides with the line s_{b} by (6.5), which coincides with the line a_{1}^{1}.

For the circle ε_{2}^{b}, we similarly get the equation $\varepsilon_{2}^{b}(x, y)=\left(x-x_{2}^{b}\right)^{2}+\left(y-y_{2}^{b}\right)^{2}-$ $\left(e_{2}\right)^{2}=0$ representing the circle ε_{2}^{b}, where

$$
\left(x_{2}^{b}, y_{2}^{b}\right)=\left(-\frac{a b(2 b+h)}{a b+c h}, \frac{2 b \sqrt{a c h(b+h)}}{a b+c h}\right) .
$$

Therefore we get

$$
\varepsilon_{2}^{b}(x, y)=\sum_{n=-\infty}^{\infty} C_{n} h^{n}=\left((x+2 b)^{2}+y^{2}\right)+\sum_{n=1}^{\infty}(-1)^{n} \frac{2 c^{n-1}\left(2 b^{2}+(b+c) x\right)}{a^{n} b^{n-1}} h^{n}
$$

We denote the figure represented by $C_{n}=0$ by b_{n}^{2}. Then $b_{0}^{2}=A$, and $b_{1}^{2}=b_{2}^{2}=$ $b_{3}^{2}=\cdots$ coincides with the line s_{a} by (6.5), which also coincides with the line b_{1}^{1}. The figures a_{n}^{2} and b_{n}^{2} are described in green in Figure 34.

10. Centers of similitude of two circles revisited

Considering the unexpected figures derived from division by zero calculus for the arbelos, we see the importances of the centers of similitude of two circles forming the arbelos, some of which are demonstrated in subsection 6.3 and sections 7 and 9. However we do not consider the points S_{a} and S_{b} and the lines s_{a} and s_{b} in detail, while it seems that they have never been considered before on the study of the arbelos. In this section we consider S_{a} and s_{a} in detail. The proofs are straightforward with algebraic manipulation and are omitted.

Recall that α_{z} is the circle touching β and γ in the opposite sense represented by (6.3). The coordinates of the center of the circle $\alpha_{\sqrt{b c} / a}$ and its radius are given by $((a-2 b) / 2, \sqrt{b c})$ and $a / 2$ by Theorem 6.2 . Let K be the point of tangency of α and the Archimedean circle touching α and γ in the opposite sense, which is
denoted by $\beta_{\sqrt{c / b}}$ as stated after the proof of Theorem 6.2. We assume that the circle $\alpha_{\sqrt{b c} / a}$ touches β and γ at points L and M, respectively (see Figure 35). The points K, L and M have the following coordinates

$$
K:\left(\frac{2 a b}{b+c}, \frac{2 a \sqrt{b c}}{b+c}\right), \quad L:\left(-\frac{2 b^{2}}{b+c}, \frac{2 b \sqrt{b c}}{b+c}\right), \quad M:\left(-\frac{2 b^{2}}{b+c}, \frac{2 c \sqrt{b c}}{b+c}\right) .
$$

Let N be the point of intersection of the lines $A L$ and $B M$. Then N has coordinates $(a-b, \sqrt{b c})$. The line joining the farthest point on β from $A B$ in the region $y<0$ and the farthest point on γ from $A B$ in the region $y>0$ passes through the point S_{a}. We denote this line by v_{a}. Recall that σ_{a} is the circle of center S_{a} passing through A. The next theorem shows that the point S_{a} and the line s_{a} has many notable properties (see Figure 35 for the statements from (i) to (v) and see Figure 36 for the statements from (vi) to (viii)).

Figure 35.
Theorem 10.1. The following statements are true.
(i) The line s_{a} passes through the points L and M.
(ii) The circumcircle of the triangle $L M N$ coincides with the circle $\alpha_{\sqrt{b c} / a}$ and touches the perpendicular to $A B$ at the center of γ at the point N.
(iii) The points B, K, M and N are collinear.
(iv) The circles $\alpha_{ \pm b / a}$ and $\alpha_{ \pm c / a}$ and s_{a} touch at one of the farthest points on σ_{a} from $A B$.
(v) The perpendicular to $A B$ at the center of β (resp. γ) passes through the center of $\alpha_{ \pm c / a}\left(\right.$ resp. $\left.\alpha_{ \pm b / a}\right)$ and touches $\alpha_{ \pm \sqrt{b c} / a}$.
(vi) The perpendicular from K to $A B$ touches the circle σ_{a} at the point of intersection of σ_{a} and $A B$.
(vii) If $v=\sqrt{\left(b^{2}+c^{2}\right) /\left(2 a^{2}\right)}$, then the circles $\alpha_{ \pm v}$ have center on the line s_{a} and the line v_{a} coincides with one of the internal common tangents of the two circles. (viii) The circle touching σ_{a} internally at the point of intersection of α and σ_{a} in the region $y>0$ and touching $A B$ is Archimedean and touches $A B$ at the point C. The radical axis of this circle and the circle $\beta_{\sqrt{\frac{c}{b}}}$ passes through the point B.

Figure 36.

The Archimedean circle described in (viii) is the Bankoff triplet circle [1]. Recall that $\Sigma^{ \pm}$are the points of intersection of the circles σ_{a}, σ_{b} and σ_{c}, whose coordinates are given by (6.7) (see Figure 37). The next theorem shows that the circle α_{z} touching the Bankoff triplet circle is uniquely determined independently of a and b for a positive or negative real number z.

Theorem 10.2. The following statements are true.
(i) The circles $\alpha_{\frac{1+\sqrt{3}}{2}}$ and $\beta_{\frac{1+\sqrt{3}}{2}}$ touch the Bankoff triplet circle externally and their points of intersection lie on the circle σ_{c}, one of which coincides with Σ^{+}.
(ii) The circles $\alpha_{\frac{1-\sqrt{3}}{2}}$ and $\beta_{\frac{1-\sqrt{3}}{2}}$ touch the Bankoff triplet circle externally and their points of intersection lie on the circle σ_{c}, one of which coincides with Σ^{-}.

The coordinates of the remaining point of intersection of $\alpha_{\frac{1+\sqrt{3}}{2}}$ and $\beta_{\frac{1+\sqrt{3}}{2}}$ are

$$
\left(\frac{(6 \sqrt{3}+11) a b(b-a)}{13 a^{2}+3(5-2 \sqrt{3}) a b+13 b^{2}}, \frac{(9 \sqrt{3}+10) a b c}{13 a^{2}+3(5-2 \sqrt{3}) a b+13 b^{2}}\right)
$$

The coordinates of the remaining point of intersection of $\alpha_{\frac{1-\sqrt{3}}{2}}$ and $\beta_{\frac{1-\sqrt{3}}{2}}$ are

$$
\left(\frac{(6 \sqrt{3}-11) a b(a-b)}{13 a^{2}+3(5+2 \sqrt{3}) a b+13 b^{2}},-\frac{(9 \sqrt{3}-10) a b c}{13 a^{2}+3(5+2 \sqrt{3}) a b+13 b^{2}}\right) .
$$

Since γ and the Bankoff triplet circle are orthogonal to σ_{c}, they are fixed by the inversion in σ_{c}. This implies that the two circles $\alpha_{\frac{1+\sqrt{3}}{2}}$ and $\beta_{\frac{1+\sqrt{3}}{2}}$ are interchanged by the inversion. Therefore the two circles are the inverse to each other by the inversion in σ_{c}. Similarly the circles $\alpha_{\frac{1-\sqrt{3}}{2}}$ and $\beta_{\frac{1-\sqrt{3}}{2}}$ are the inverse to each other by the inversion in σ_{c}.

Figure 37.

11. Conclusion

We have shown that division by zero calculus gives us interesting and meaningful results in both singular case and non-singular case. We have seen that the
unexpected figures such as the circle $\bar{\gamma}$ and the line s_{a} are one of the most important and essential ones for the study on the arbelos, but those figures have finally got attention through the study using division by zero calculus.

Mathematicians usually may think that Laurent expansion belongs to analysis, but it seems that division by zero calculus using Laurent expansion is a very powerful tool even for the study of geometry. However we have no idea why we can get such notable figures by division by zero calculus at this time of writing. Thereby we hope that many mathematicians will join the study of division by zero calculus and will get the reason for this and also find huge number of marvelous things derived from division by zero calculus.

For more results brought by division by zero and division by zero calculus in geometry see [2], [10], [11], [12], [13], [14], [15], [16], [17], [22], [23], [24], [25], where all the papers except [14], [24] and [25] are considering problems in Wasan geometry (Japanese geometry) or related to this geometry.

Acknowledgment. The author wishes to acknowledge Saburou Saitoh, professor emeritus at Gunma University, for his kind help to improve this paper.

References

1. C. W. Dodge, T. Schoch, P. Y. Woo, P. Yiu, Those ubiquitous Archimedean circles, Math. Mag., 72 (1999) 202-213.
2. Y. Kanai, H. Okumura, A three tangent congruent circle problem, Sangaku J. Math., 1 (2017) 16-20.
3. M. Kuroda, H. Michiwaki, S. Saitoh, M. Yamane, New meanings of the division by zero and interpretations on $100 / 0=0$ and on $0 / 0=0$, Int. J. Appl. Math., $27(2)(2014) 191-198$.
4. G. Lucca, Some identities arising from inversion of Pappus chains in an arbelos, Forum Geom., 8 (2008) 171-174.
5. G. Lucca, Three Pappus chains inside the arbelos: some identities, Forum Geom., 7 (2007) 107-109.
6. T. Matsuura, H. Okumura, S. Saitoh, Division by zero calculus and Pompe's theorem, Sangaku J. Math., 3 (2019) 36-40.
7. H. Michiwaki, S. Saitoh, M. Yamada, New meanings of the division by zero and and interpretations on $100 / 0=0$ and $0 / 0=0$. International Journal of Applied Physics and Mathematics 6(1) (2016)
8. H. Michiwaki, H. Okumura, S. Saitoh, Division by Zero $z / 0=0$ in Euclidean Spaces, Int. J. Math. Computation, 28(1) (2017) 1-16.
9. H. Okumura, The arbelos in Wasan geometry, the inscribed semicircle in the arbelos, Sangaku J. Math., 5 (2021) pp.1-8.
10. H. Okumura, Solution to Problem 2017-1-6 with division by zero, Sangaku J. Math., 4 (2020) pp.73-76.
11. H. Okumura, A generalization of Problem 2019-4 and division by zero, Sangaku J. Math., 4 (2020) 45-52.
12. H. Okumura, A four circle problem and division by zero, Sangaku J. Math., 4 (2020) pp.1-8.
13. H. Okumura, Remarks on Archimedean circles of Nagata and Ootoba, Sangaku J. Math., 3 (2019) 119-122.
14. H. Okumura, An analogue of Pappus chain theorem with division by zero, Forum Geom., 18 (2018) 409-412.
15. H. Okumura, Is it really impossible to divide by zero?, Biostat Biometrics Open Acc J. 7(1) (2018): 555703. DOI: 10.19080/BBOJ.2018.07.555703.
16. H. Okumura, Solution to 2017-1 Problem 4 with division by zero, Sangaku J. Math., 2 (2018) 27-30.
17. H. Okumura, Wasan geometry with the division by 0, Int. J. Geom., 7(1) (2018) 17-20.
18. H. Okumura, Poristic triangles of the arbelos, Int. J. Geom., 6(1) (2017) 27-35
19. H. Okumura, The inscribed square of the arbelos, Glob. J. Adv. Res. Class. Mod. Geom., 4(1) (2015) 55-61.
20. H. Okumura, The arbelos with overhang, KoG, 18 (2014) 19-27.
21. H. Okumura, Archimedean circles of the collinear arbelos and the skewed arbelos, J. Geom. Graph., 17 (2013) 31-52.
22. H. Okumura, S. Saitoh, Wasan geometry and division by zero calculus, Sangaku J. Math., 2 (2018) 57-73.
23. H. Okumura and S. Saitoh, Applications of the division by zero calculus to Wasan geometry, Glob. J. Adv. Res. Class. Mod. Geom., 7(2) (2018) 44-49.
24. H. Okumura and S. Saitoh, Harmonic mean and division by zero, Forum Geom., 18 (2018) 155-159.
25. H. Okumura, S. Saitoh, Remarks for The Twin Circles of Archimedes in a Skewed Arbelos by Okumura and Watanabe, Forum Geom., 18 (2018) 97-100.
26. H. Okumura and M. Watanabe, The twin circles of Archimedes in a skewed arbelos, Forum Geom., 4 (2004) 229-251.
27. H. Okumura and M. Watanabe, The Archimedean circles of Schoch and Woo, Forum Geom., 4 (2004) 27-34.
28. W. Pompe, On a Sangaku Problem Involving the Incircles in a Square Tiling: Solutions to Problems 2019-2, Sangaku J. Math., 3 (2019), pp.32-35.
29. S. Saitoh, Introduction to the Division by Zero Calculus, 2021, Scientific Research Publ., Inc..
30. H. Tahir, On points of contact in infinite chain, The Australian Mathematical Society Gazette, 33 (2006) 273-281.

Takahanadai Maebashi Gunma 371-0123, Japan
Email address: hokmr@yandex.com

[^0]: 2000 Mathematics Subject Classification. Primary 51M04; Secondary 12E99, 41A58.
 Key words and phrases. arbelos, Archimedean circle, center of similitude, division by zero, division by zero calculus, Euclidean geometry, Laurent expansion, parametric representation, Wasan geometry.

[^1]: ${ }^{1}$ There are typos in the expansion in [6].

[^2]: ${ }^{2}$ We use Wolfram Mathematica to get C_{n}, but it does not behave properly sometimes.

