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Abstract. In this paper, we shall consider quotients g/f of general functions
f and g in some deep and natural meanings, in a natural setting. The general
theory of reproducing kernels will give the natural theory of the problem.
In particular, we will consider the division by any functions containing the
division by zero. We wish to know the meaning of the function g/f when the
function f has zero points, with the definition of g/f .

1. Introduction

In this paper, we shall consider quotients g/f of general functions f and g
in some deep and natural meanings, in a natural setting. The general theory of
reproducing kernels will give the natural theory of the problem. In particular,
we will consider the division by any functions containing the division by zero. We
wish to know the meaning of the function g/f when the function f has zero points,
with the definition of g/f .

First, what is a function y = f(x) on (a, b)? For even the typical functions
L2(a, b) having a good looking, we will not be able to get the functions as the
corresponding (mapping) from the points on (a, b) to some space on R or C,
indeed the points are too many to consider them. This question will be more clear
when we consider the inversions 1/f of the functions f of L2(a, b). Therefore, we
will realize a function as a member of some function space, and the function space
represents the functions as a global property over each point value.

The general theory of reproducing kernels will give the natural theory of the
problem for the quotients g/f of general functions f and g in some deep and
natural meanings.

This paper will have the natures of addition on the general paper [5] for the
reproducing kernel theory and of an extension of the papers [2, 4] and is impacted
by the recent norm inequalities by A. Yamada [20]. The paper will also represent
a very interesting nature of the theory of reproducing kernels such that for an
arbitrary mapping we considered some representation of its inversion [12] and
as its great extensions we obtained the explicit representation [3] of the implicit
functions in the theorem of implicit function existence.
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Furthermore, by using the theory of reproducing kernels, we can consider differ-
ential and integral equations with variable coefficients that are arbitrary func-
tions, based on general discretization principle and back ward transfor-
mation method. See [14], pages, 131, 147-148.

2. Quotients of Two Functions

Now, for some general two functions f, g on a set E, we will consider the quotient

g

f
. (2.1)

In order to consider such a function (2.1), we shall consider the related equation

f1(p)f(p) = g(p) on E (2.2)

for some function f1 on the set E. If the solution f1 in (2.2) on the set E exists, then
the solution f1 will give the meaning of the fractional (quotient) function (2.1).
So, the problem may be transformed to the very general and popular equation
(2.2).

Here, the serious problem is the case of the zero points of the function f ; because
we can not give the meaning of the function (2.1) there, intuitively. However,
except the zero points of f , the solution f1 gives the quotient (2.1) point wisely.

In this starting point, the function f is initially given. So, for analyzing the
equation (2.2), we must introduce a suitable function space containing the function
f1 and then we find the induced function space containing the product f1 · f .

This idea means that the function g has a natural restriction, because it is the
product of the function f and f1 of some general function space. (Children are
intrinsically influenced by their mothers. In fact, in Japanese, for g/f , f and g
are related to mother and child, respectively. f is the first and g is the next.)

Then, we will be able to consider the solution of the equation (2.2). Here, on
this line, we will show that we can discuss the above problem in a very general
setting. Indeed, this may be considered for an arbitrary function f on the set
E that is non-identically zero on the set E by using the theory of reproducing
kernels.

At first, we note that for an arbitrary function f(p), there exist many reproduc-
ing kernel Hilbert spaces containing the function f(p); the simplest reproducing
kernel is given by f(p)× f(q) on E ×E. In general, a reproducing kernel Hilbert
space HK(E) on E admitting a reproducing kernel K on E×E is uniquley deter-
mined by a positive definite Hermitian form (kernel; now f(p)×f(q)) and the space
is characterized by the very natural property that any point evaluation f(p) is a
bounded linear operator on HK(E) for any point p ∈ E. Therefore, secondary,
we shall consider such a reproducing kernel Hilbert space HK1

(E) admitting a
reproducing kernel K1 containing the functions f1(p).

Then, we note the very interesting fact that the products f1 · f determine a
natural reproducing kernel Hilbert space that is induced by HK1

(E) and HK(E).
In fact, the space in question is the reproducing kernel Hilbert space HK1K(E) that
is determined by the product K1 ·K and, furthermore, we obtain the fundamental
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and beautiful norm inequality
‖f1f‖HK1K(E) ≤ ‖f1‖HK1

(E)‖f‖HK(E). (2.3)

This important inequality (2.3) means that for the linear operator φf (f1) on
HK1

(E) (for a fixed function f), defined by
φf (f1)(p) ≡ f1(p)f(p), (2.4)

we obtain the inequality
‖φf (f1)‖HK1K(E) ≤ ‖f1‖HK1

(E)‖f‖HK(E). (2.5)

This means that the mapping (multiplicative operator) φf is a bounded linear
operator from HK1(E) into HK1K(E). See [14], Tensor Product of Reproducing
Kernels; pages 105-109.

3. Moore-Penrose Generalized Solution

As the very natural solution of the operator equation (2.2), we will consider the
best approximation, for any function g of the space HK1K(E)

inf
f1∈HK1

(E)

{
‖φf (f1)− g‖HK1K(E)

2
}
, (3.1)

that leads to the Moore-Penrose generalized solution of (2.2).
So, simply we will recall the essential and general properties of the best approx-

imation from [14], pages 166-169.
Let L be any bounded linear operator from a reproducing kernel Hilbert space

HK(E) admitting a kernel K : E × E → C into a Hilbert space H. We set
Kp = K(·, p).

For any member d of H, we will consider the best approximation problem
inf

f∈HK(E)
‖Lf − d‖H. (3.2)

Set
k(p, q) ≡ 〈L∗LKq, L

∗LKp〉HK(E) = L∗LL∗L[Kq](p) (3.3)
and

P = projHK(E)→ker(L)⊥ = proj
HK(E)→Ran(L∗L)

. (3.4)

(Change H by HK(E)).
Theorem A: Under the notations (3.3) and (3.4), we have

Hk(E) = {L∗Lf : f ∈ HK(E)} (3.5)
and the inner product is given by

〈L∗Lf,L∗Lg〉Hk(E) = 〈Pf, g〉HK(E) (3.6)
for f, g ∈ HK(E).

Theorem B: Equation (3.2) admits a solution if and only if L∗d ∈ Hk(E).
If this is the case, then we have L∗d = L∗Lf̃ for some f̃ ∈ HK(E) and f̃ is a
solution to (3.2).
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Let fd ∈ HK(E) be the element such that
L∗d = L∗Lfd (3.7)

with fd ∈ ker(L)⊥.
The extremal function fd(p) has the following representation:
Theorem C: Keep to the same assumption as above. Then we have

fd(p) = 〈L∗d, L∗LKp〉Hk(E) (p ∈ E). (3.8)

The adjoint operator L∗ of L, as we see from equality:
L∗d(p) = 〈L∗d,Kp〉HK(E) = 〈d, LKp〉H (p ∈ E), (3.9)

is represented by the known data d, L,K(p, q), and H. From Theorems A, B, C,
we see that the problem is well established by the theory of reproducing kernels.
That is, the existence, the uniqueness and the representation of the solutions in
the problem are well formulated. In particular, note that the adjoint operator is
represented in a good way; this fact will turn out very important in our frame-
work. The extremal function fd is the Moore-Penrose generalized inverse
(solution) L†d of the operator equation Lf = d. The criteria in Theorem A is
involved and the Moore-Penrose generalized inverse fd is, in general, not good.

Furthermore, we note that
Theorem D: The following are equivalent:
(1) L is injective;
(2) L∗L is injective;
(3) {L∗LKx}x∈E is complete in HK(E);
(4) L∗L : HK(E) → Hk(E) is isometry

([14], page178).

In particular, note that even the simple case, L∗ is still, in general, not injective,
and so we can not say that from L∗d = L∗Lf , Lf = d, the classical solution.

Now we shall apply the above general theory to our case. The situation will be
essentially simple.

At first,
φf

∗(g)(p) = (g, φfK1(·, p))HK1K2
(E) = (g, f(·)K1(·, p))HK1K2

(E)

and the existence of the best approximations is that g is represented in the product
for some function f1

g = f1f

and the best approximation function is f1 itself. In the present case,
Hk = {φf

∗φff1; f1 ∈ HK1(E)}.
For the multiplicative operator φff1 = f1f , practically we can assume that

it is injective. Furthermore, we assume that the operator
φf

∗φfφf
∗φf
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is an identity on the space HK1
(E).

Then, the above theory is clear all and we can obtain the surprising desired
result:

For the product g = f1f ; f1 ∈ HK1(E), f ∈ HK(E), we obtain the representation

f1(p) =
(
f(p2) (g(p1), f(p1)K1(p1, p2))HK1K(E) , f(p2)K1(p2, p)

)
HK1K(E)

. (3.10)

Indeed, we can see directly the formula as follows:
The operator

φf
∗φfφf

∗φf

is an identity on the space HK1
(E), by the assumption. And so in the identity
f1 = φf

∗φfφf
∗φff1

by setting
φff1 = f1f = g,

we obtain the desired result.
In particular, when g = 1 ∈ HK1K(E), we have the representation

1

f(p)
=

(
f(p2) (1, f(p1)K1(p1, p2))HK1K(E) , f(p2)K1(p2, p)

)
HK1K(E)

. (3.11)

Quotient was represented by Product.

Trivial cases:
In order to see the nature of the formula and to check the results, we will

examine the trivial cases.
For any functions f and f1:
We consider the kernels

K(p, q) = f(p)× f(q)

and
K1(p, q) = f1(p)× f1(q).

Then, any member of HK(E) is expressible in the form Cf(p) and
‖Cf(p)‖2HK(E) = |C|2.

For the space of HK1
(E), the structure is the similar. Therefore, any member

g ∈ HK1K(E) is expressible in the form g(p) = CC1f(p)f1(p) and
‖CC1f(p)f1(p)‖2HK1K(E) = |C|2|C1|2 = ‖Cf(p)‖2HK(E)‖C1f1(p)‖2HK1

(E)

and we see that the formula is right.

For any functions f and for some function space for f1:
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For the functions f1, we will consider a general reproducing kernel Hilbert space
HK1(E). Then, the space HK1K(E) is expressible in the form g(p) = Cf(p)F1(p)
with F1 ∈ HK1(E) and

‖Cf(p)F1(p)‖2HK1K(E) = |C|2‖F1‖2HK1
(E)

and we see that the formula is right.
The solution f1 for g = f1f may be represented as a quotient

f1 =
g

f

in our natural sense.

Since our case, for the zero points of the function f , the function f1
has the natural values, we will have a serious interest for the natural
values. Since the function f1 is a usual function, the zero of the function f is
canceled, however, how will be its property? How will its behave?

In those formulas, in general, the representations may not be used analytically.
Furthermore, the basic assumption of the identity is not, generally, valid. So, we
will consider some more practical and general formulas, by the Tikhonov regular-
ization.

4. By the Tikhonov Regularization

When the data contain error or noise in some practical cases, the exact theory
by the Moore-Penrose generalized solutions is not applicable, therefore, we shall
introduce the concept of the Tikhonov regularization with general data g.

We will consider the Tikhonov functional, for any g ∈ HK1K(E) and for any
positive α:

inf
f1∈HK1

(E)

{
α‖f1‖HK1

(E)
2 + ‖φf (f1)− g‖HK1K(E)

2
}
. (4.1)

The extremal function f1,α exists uniquely and always. If the limit

lim
α↓0

f1,α(p) on E

exists, then the limit function is the Moore-Penrose generalized solution for the
equation (2.2) in the sense of the best minimum norm.

Now we recall the fundamental results for the Tikhonov functionals.
See [14], pages 193-196 and pages 179-186.
Theorem E: Let α > 0. For a bounded linear operator L for a reproducing

kernel Hilbert space HK into a Hilbert space H, the following minimizing problem
admits a unique solution;

min
f∈HK

(
α ‖f‖HK

2 + ‖d− Lf‖H2
)
. (4.2)

Furthermore, the minimum is attained by

fd,α = (L∗L+ α)−1L∗d =

(∫
R

1

λ+ α
dEλ

)
L∗d (4.3)
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by using the spectral decomposition. Furthermore, d 7→ fd,α is almost the inverse
of L in the following sense:

lim
α↓0

fLg,α = g (4.4)

in HK(E) for all g ∈ HK(E) and when there exists the Moore-Penrose generalized
solution,

lim
α↓0

Lfd,α = d (4.5)

in H.
Theorem F: Let L : HK(E) → H be a bounded linear operator. Then define

an inner product
〈f1, f2〉HKλ

(E) = α 〈f1, f2〉HK
+ 〈Lf1, Lf2〉H (4.6)

for f1, f2 ∈ HK . Then (HK , 〈·, ·〉HKα (E)) is a reproducing kernel Hilbert space
whose reproducing kernel is given by:

Kα(p, q) = [(α+ L∗L)−1Kq](p). (4.7)
Here, Kα(p, q) satisfies

Kα(p, q) +
1

α
〈L[(Kα)q], L[Kp]〉H =

1

α
K(p, q), (4.8)

that is corresponding to the Fredholm integral equation of the second kind for many
concrete cases.

Theorem G: Under the same assumption as Theorems E and F,
f ∈ HK 7→ α ‖f‖HK(E)

2 + ‖Lf − d‖H2 ∈ R
attains the minimum only at fd,α ∈ HK(E) which satisifes

fd,α(p) = 〈d, L[(Kα)p]〉H. (4.9)
Furthermore, fd,α(p) satisfies

|fd,α(p)| ≤ ‖L‖HK(E)→H

√
K(p, p)

2α
‖d‖H. (4.10)

Note that when it is involved to realize the reproducing kernel Hilbert space
HK1K(E) and when we can look a reproducing kernel Hilbert space HK(E) ad-
mitting a reproducing kernel K satisfying

K1(p, q)K(p, q) � K(p, q) (p, q) ∈ E2

– the left minus the right is a positive definite quadratic form function – and its
structure is simple, from the properties

HK1K(E) ⊂ HK(E)

and
‖g‖HK1K(E) ≥ ‖g‖HK(E), g ∈ HK1K(E),

we see that in the above theory we can use the space HK(E) instead of the space
HK1K(E).

By the above general theorems, we can obtain the general results:
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For any g ∈ HK1K(E) and for any α > 0, the minimizing function function
f
(α)
1 ∈ HK1(E) of

inf
f1∈HK1

(E)

{
α‖f1‖HK1

(E)
2 + ‖φf (f1)− g‖HK1K(E)

2
}
, (4.11)

among the functions f1 ∈ HK1
(E) is given by

f
(α)
1 (p) = (g(·), f(·)Kα(·, p))HK1K(E). (4.12)

Here, the reproducing kernel Kα(·, p) is determined by the functional equation

Kα(p, q) +
1

α
(f(·)Kα(·, q), f(·)K1(·, p))HK1K(E) =

1

α
K1(p, q). (4.13)

The problem is the world of approximation and approximating spaces are clear
and beautiful, and so there is no problem as in stated in the above general the-
orems. The representation (4.12) is not direct by using the solution of (4.13).
However, the equation (4.13) is the Fredholm integral type in the second kind
and so, the solutions are effective and numerically stable, as we see from the real
inversion formula of the Laplace transform by taking a small α. See Chapter 4 of
[14].

In particular, H. Fujiwara solved the integral equation corresponding to (4.13)
for the real inversion formula of the Laplace transform with 6000 points discretiza-
tion with 600 digits precision based on the concept of infinite precision. Then,
the regularization parameters were α = 10−100, 10−400 surprisingly. H. Fujiwara
was successful in deriving numerically the inversion for the Laplace transform of
the distribution delta which was proposed by V. V. Kryzhniy as a difficult case.
This fact will mean that the above results valid for very general functions approx-
imated by the functions of the reproducing kernel Hilbert space.

5. Typical Examples

We shall give the typical examples.

5.1. Bergman and Szegö Kernels. For the Bergman kernel and the Szegö
kernel on a regular domain D on the complex z = x+ iy plane, we have the basic
and deep relation

K(z, u) >> 4πK̂(z, u)2

which was given by D. A. Hejhal [22]. This profound result using the Riemann
theta function was given on the long historical results as in

G.F.B. Riemann (1826-1866); F. Klein (1849-1925); S. Bergman; G. Szegö;
Z. Nehari; M.M. Schiffer; P.R. Garabedian (1949 published); D.A. Hejhal (1972
published).

It seems that any elementary proof is impossible, however, the result will, in
particular, mean a fairly simple and fundamental inequality:
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For two functions φ and ψ of H2(D), analytic Hardy space, we obtain the
generalized isoperimetric inequality

1

π

∫ ∫
D

|φ(z)ψ(z)|2dxdy ≤ 1

2π

∫
∂D

|φ(z)|2|dz| 1
2π

∫
∂D

|ψ(z)|2|dz|, (5.1)

and we can determine completely the case holding the equality here. In the thesis
[42] of the author published in 1979 the result was given. The author realized the
importance of the abstract and general theory of reproducing kernels by N. Aron-
szajn ([1]). In the paper, the core part was to determine the equality statement
in the above inequality, surprisingly enough, some deep and general independing
poof was appeared 26 years later in A. Yamada ([82]). A. Yamada was developed
deeply equality problems for some general norm inequalities derived by the theory
of reproducing kernels and it was published in the book appendix of [14]. Very
recently his theory is developing much more in [19].

Experiments:
On the unit disc, the Szegö kernel is given by

K(z, u) =
1

1− uz

with the norm √
1

2π

∫
∂D

|φ(z)|2|dz|.

We shall consider the case: K1 and K are the same Szegö kernel and so HKK(D)
is the Bergman space on the unit disc.

By the formula (3.10), we obtain, for m ≥ 1 and for
g = zm, f = z,

1

(m+ 1)2
zm−1.

That is, the identity assumption is not valid.
Therefore, we shall use the formula (3.8).
First, L∗LK(·, u) is

L∗LK(z, u) =

∞∑
n=0

1

n+ 2
znun

and

k(z, u) = L∗LL∗LK(z, u) =

∞∑
n=0

1

(n+ 1)2
znun.

Therefore, the reproducing kernel Hilbert space Hk is realized as follows:
Any member f ∈ Hk is expressible in the form

f(z) =

∞∑
n=0

Cn
1

(n+ 1)2
zn
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with
∞∑

n=0

|Cn|2
1

(n+ 1)2
<∞

and its norm is given by

||f ||2Hk
=

∞∑
n=0

|Cn|2
1

(n+ 1)2
.

By using the formula (3.8) directly for d = zm and f = z, we have the expected
right result

fd = zm−1.

Formally, we have the result even, for m = 0

fdz = 1

and
fd =

1

z
.

5.2. Sobolev Spaces. We have similar results and theory for the Sobolev spaces.
For example, let ρ be a positive continuous function on (a, b) satisfying ρ ∈ L1(a, b).
Let fj be complex-valued functions on (a, b) satisfying limx→a−0 fj(x) = 0. Then,
we have the inequality ∫ b

a

|(f1(x)f2(x))′|2
dx(∫ x

a
ρ(t)dt

)
ρ(x)

≤ 2

∫ b

a

|f ′1(x)|2
dx

ρ(x)

∫ b

a

|f ′2(x)|2
dx

ρ(x)
,

when the integrals in the last part are finite. Equality holds here if and only if
each fj is expressible in the form CjKρ(x, x2) for some constants Cj and for some
point x2 ∈ [a, b] which is independent of j. Here, Kρ(x, ·) is the reproducing kernel
of the Sobolev space with the norm√∫ b

a

|f ′1(x)|2
dx

ρ(x)
<∞

([8, 17]).
We will consider the first order Sobolev Hilbert spaces H(a, b;R), (a, b > 0),

as the basic reproducing kernel Hilbert space with finite norms√∫
R

(a2|f ′(x)|2 + b2|f(x)|2) dx

admitting the reproducing kernel KH(a,b;R)(x, x1)

KH(a,b;R)(x, x1) =
1

2ab
exp

(
− b

a
|x− x1|

)
.

See [14], pages 10-18 for the related basic materials.
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We will consider this space as in the Szegö space in (5.1). Note the identity

KH(a,b;R)(x, x1)
2 =

1

ab

1

2a(2b)
exp

(
− (2b)

a
|x− x1|

)
=

1

ab
KH(a,2b;R)(x, x1).

From the construction of the norms admitting the reproducing kernels correspond-
ing to the product and multiplication of a positive number for reproducing kernels,
we obtain the norm inequality as in (5.1).

(A) For any f, g ∈ H(a, b;R), we have the norm inequality∫
R

(
a2|(f(x)g(x))′|2 + 4b2|f(x)g(x)|2

)
dx

≤ 1

ab

∫
R

(
a2|f ′(x)|2 + b2|f(x)|2

)
dx

∫
R

(
a2|g′(x)|2 + b2|g(x)|2

)
dx.

Of course, we have

(A′) For any f, g ∈ H(a, b/2;R), we have the norm inequality∫
R

(
a2|(f(x)g(x))′|2 + b2|f(x)g(x)|2

)
dx

≤ 2

ab

∫
R

(
a2|f ′(x)|2 + b2

4
|f(x)|2

)
dx

∫
R

(
a2|g′(x)|2 + b2

4
|g(x)|2

)
dx.

Finite Interval Cases

If we note that the kernel on an interval [c, d],−∞ ≤ c < d ≤ +∞

KH(a,b;[c,d])(x, x1) =
1

2ab
exp

(
− b

a
|x− x1|

)
is the reproducing kernel on the Hilbert space H(a, b; [c, d]) with finite norms√∫

[c,d]

(a2|f ′(x)|2 + b2|f(x)|2) dx+ ab(|f(c)|2 + |f(d)|2) <∞

as in the whole space case, the results in (A) are valid in the corresponding way.
This fact for the norm may be confirmed directly by checking the reproducing prop-
erty of the kernel as in [14], pages 11-12. Meanwhile, the kernel KH(a,b;[c,d])(x, x1)
is the restriction to the interval [c, d] of the kernel KH(a,b;R)(x, x1) and so by
the general property of reproducing kernels, we see that any member f(x) of
H(a, b; [c, d]) is the restriction of a function h(x) in H(a, b;R) and its norm is
given by

||f ||H(a,b;[c,d]) = min ||h||H(a,b;R),

where the minimum is taken over all functions h in H(a, b;R) satisfying
f(x) = h(x) on [c, d].
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See [14], pages 78-80. In particular, note that any member f(x) of H(a, b; [c, d])
has a good property on the interval [c, d].

Generalizations For the First Order Sobolev Hilbert Spaces

From the products of different type kernels, we shall consider the corresponding
norm inequalities as generalizations.

First recall the result [14], page 16-17:
For the half-open interval I = [a, b), we consider a positive continuous function

ρ : I → (0,∞), such that
ρ ∈ L1[a, x] (x ∈ I) (5.2)

for all x ∈ I. Denote by AC(I) the set of all absolutely continuous functions on
an interval I.

Theorem: Let r ≥ 1 be a real number and let a positive continuous function ρ
satisfy (5.2). Let us set

W (t) ≡
∫ t

a

ρ(ξ) dξ and Kρ(s, t) ≡
∫ s∧t

a

ρ(v) dv =W ( s ∧ t ) (s, t ∈ I), (5.3)

where s ∧ t ≡ min(s, t). The reproducing kernel Hilbert space H(Kρ)r (I) and its
norm are given by:

H(Kρ)r (I) ≡
{
f ∈ AC(I) : f(a) = 0, f ′ ∈ L2(I,W 1−rρ−1 dt)

}
, (5.4)

and

‖f‖H(Kρ)r (I) ≡
(
1

r

∫
I

|f ′(t)|2W (t)1−rρ(t)−1 dt

) 1
2

,

respectively.
(For [14], page 17, in (1.59) put the factor 1

r .)
For any positive integers m,n

Kρ(s, t)
m+n = Kρ(s, t)

mKρ(s, t)
n,

and so we obtain the corresponding norm inequality∫ b

a

|(f1(x)f2(x))′|2
dx(∫ x

a
ρ(t)dt

)m+n−1
ρ(x)

≤
(

1

m
+

1

n

)∫ b

a

|f ′1(x)|2
dx(∫ x

a
ρ(t)dt

)m−1
ρ(x)

∫ b

a

|f ′2(x)|2
dx(∫ x

a
ρ(t)dt

)n−1
ρ(x)

.

We note that
Open problem: How will be the inequality for noninteger case m,n?

Meanwhile, from the identity

KH(a,b;R)(x, x1)KH(a′,b′;R)(x, x1) =
1

2

(
a

b
+
a′

b′

)
KH(aa′,ab′+a′b;R)(x, x1),

we obtain the corresponding inequality
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∫
R

(
(aa′)2|(f(x)g(x))′|2 + (ab′ + a′b)2|f(x)g(x)|2

)
dx

≤ 1

2

(
a

b
+
a′

b′

)∫
R

(
a2|f ′(x)|2 + b2|f(x)|2

)
dx

∫
R

(
(a′)2|g′(x)|2 + (b′)2|g(x)|2

)
dx.

Infinite Order Sobolev Spaces

Note that the kernel

K(z, u; t) =
1

2
√
2πt

exp

(
− 1

8t
(z − u)2

)
is the reproducing kernel for the Hilbert space with finite norms

√√√√ ∞∑
j=0

(2t)j

j!

∫
R
|∂jxf(x)|2dx =

√
1√
2πt

∫∫
C
|f(x+ iy)|2 exp

(
−y

2

2t

)
dxdy. (5.5)

These mean that for the restriction to the real line, the Hilbert space is an infi-
nite order Sobolev Hilbert space and on the complex plane the space is composed
of entire functions ([14], pages 141-145). We thus have the identity

K(z, u; t/2) = 4
√
πtK(z, u; t)2

and we have the corresponding norm inequality.

For the isometric inequality (5.1) for the Bergman and Szegö spaces, note their
representations ([14], pages 146-147).

We write S(r) ≡ {z ∈ C : 0 < arg(z) < r} for the open sector and its boundary
∂S(r) ≡ {z ∈ C : z = 0 or arg(z) = ±r}.

(Note that we defined as
arg 0 = 0

as a result of the division by zero in [15].)

Theorem H: Let r ∈ (0, π/2). For an analytic function f on the open sector
S(r), we have the identity∫∫

S(r)

|f(x+ iy)|2dxdy = sin(2r)

∞∑
j=0

(2 sin r)2j

(2j + 1)!

∫
R
x2j+1|f (j)(x)|2dx. (5.6)

Conversely, if any f ∈ C∞(∂S(r)) has a convergent sum in the right-hand side in
(5.6), then the function f(x) can be extended analytically onto the sector S(r) in
the form f(z) and the identity (5.6) is valid.

In the Szegö space, we have the following formula:
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Theorem I: Let r ∈ (0, π/2). For any member f in the Szegö space on the
open sector S(r), we have the identity∮

∂S(r)

|f(z)|2|dz| = 2 cos r

∞∑
j=0

(2 sin r)2j

(2j)!

∫
R
x2j |f (j)(x)|2dx, (5.7)

where f(x) means the nontangential Fatou limit on ∂S(r) for x ∈ R . Conversely,
if any f ∈ C∞(0,∞) has a convergent sum in the right-hand side in (5.7), then
the function f(x) extends analytically onto the open sector S(r) and the identity
(5.7) is valid.

5.3. Fischer Spaces. As a simple case, we shall refer to the Fischer space Fa(C)
admitting the reproducing kernel, for any fixed a > 0

Ka(z, u) = exp(a2zu) (z, u ∈ C)
with finite norms for entire functions f(z)

‖f‖Fa(C) = a

√
1

π

∫∫
C
|f(z)|2 exp(−a2|z|2) dx dy.

See [14], page 170. We thus have the relation for any positive a, b
Ka(z, u)Kb(z, u) = K√

a2+b2(z, u)

and the corresponding result.

An experiment:
For the case a = 1, and for K1 = K1(z, u) and K = K1(z, u) and so, we have

K1K = K√
2(z, u). Then, for g = f1(z)e

z = 1 ∈ HK1K1
= HK√

2
= H√

2, we
obtain the curious result

f1(z) = ez/2+1/2 =
(
ez2 (1, ez1K1(z1, z2))H√

2
, ez2K1(z2, z)

)
H√

2

, (5.8)

when assuming the formula (3.10). This means that the identity assumption is
not valid.

In order to see the formula (3.8), we calculate

L∗LK(z, u) = L∗Lezu = exp

(
1

2

)
exp

(z
2

)
exp

(
u

2

)
exp

(
1

2
zu

)
and

L∗LL∗LK(z, u) = exp

(
5

4

)
exp

(
3z

4

)
exp

(
3u

4

)
exp

(
1

4
zu

)
.

We can realize the spaces HKK and Hk, concretely and analytically, however,
the application of the formula (3.8) is involved analytically.

Indeed, the reproducing kernel Hilbert space Hk is realized as follows:
Any member f(z) of Hk is represented with the form

f(z) = C∗ exp

(
5

4

)
exp

(
3z

4

) ∞∑
n=0

Cnz
n

4nn!
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with a finite norm

||f ||2Hk
= |C∗|2 exp

(
5

4

) ∞∑
n=0

|Cn|2

4nn!
,

as we see from the expansion of the kernel k. Then, the corresponding coefficients
are given as follows:

For L∗LK(z, u)

C∗ = exp

(
−3

4

)(
u

2

)
, Cn = (2u− 1)n.

For L∗1,

C∗ = exp

(
−5

4

)
, Cn = (−3)n.

By using these results, by the formula (3.8), we have the right result

fd = e−z,

that is, it is the natural solution to the identity

fde
z = 1.

5.4. Matrices case. Meanwhile, any positive definite Hermitian matrix may be
considered as a reproducing kernel and so we can apply the theory of reproducing
kernels to that of positive definite Hermitian matrices ([7, 9]). For the product
of two positive definite Hermitian matrices A,B with the same size, and for the
Hadamard product ∗ and for the complex conjugate transpose ∗, we can state the
results as in

(
x(1) ∗ x(2)

)∗ (
A−1 ∗B−1

)−1
(
x(1) ∗ x(2)

)
≤

(
x(1) ∗Ax(1)

)(
x(2) ∗Bx(2)

)
and (

A−1 ∗B−1
)−1 ≤ A ∗B,

symbolically ([7], page 128). Equality problems are all solved .

6. Division by Zero Calculus

We note that the famous division by zero 1/0, 0/0 and any fractional g/0 for
f ≡ 0 are 0 and the zero function, respectively, trivially in our sense in the both
senses of any Tikhonov functionals with any parameter α > 0 and the Moore-
Penrose generalized solutions α = 0. See [15, 16] for the details.

If b = 0 in KH(a,b;R)(x, x1), then, by the division by zero calculus

KH(a,0;R)(x, x1) = − 1

2a2
|x− x1|

and this is the reproducing kernel for the corresponding space H(a, 0;R) equipped
with the norm

‖f‖2H(a,0;R) = a2
∫ a

0

(f ′(x)2dx.
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See [15, 16] for the division by zero calculus. Note that it is the Green’s function
in one dimensional space on the whole space and the Green’s function may be
related to the reproducing kernel. See [14], pages 62-63.

Meanwhile, if a = 0,KH(0,b;R)(x, x1) = 0, then it is the trivial reproducing
kernel for the zero function space.

However, from the representation
1

2ab
exp

(
− b

a
|x− y|

)
=

1

2π

∫ +∞

−∞

eiξ(x−y)dξ

a2ξ2 + b2
,

for a = 0, we have the reasonable result
1

b2
δ(x− y)

that may be considered as the reproducing kernel for the L2 space. See Section
8.8 in [14].
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