
ISSN: 2666-2795 Vol. 7 No. 1, 2022, Netherland

 International Journal of Applied Engineering Research

113

Copyrights @ Roman Science Publications Vol. 7 No. 1 June, 2022, Netherland
 International Journal of Applied Engineering Research

Agile Security Requirements Engineering for
Conservation

A Proposed Framework

Muhammad Ali Abid1, Mudasir Mahmood2*, Muhammad Ijaz Khan2,
Saadat Ullah2, Muhammad Sajjad Hussain2, Asad Ullah2, Muhammad Mustafa2

ali.abid@uad.edu.pk, mudasir@gu.edu.pk, ijazkhan@gu.edu.pk, ksaadat125@gmail.com,
muhammadsajjadhussain@gmail.com, asadullahpushia@gmail.com, attleramustafa@gmail.com

1Department of Internet of Things, University of Agriculture, Dera Ismail Khan.
 2Institute of Computing and Information Technology, Gomal University, Dera Ismail Khan.

Pakistan 29050
2*Corresponding Author: mudasir@gu.edu.pk

Abstract: This research paper proposes a novel method for extending Agile principles to facilitate the
integration of security requirements engineering into Agile Development while maintaining its iterative and
responsive nature. The proposed method leverages Agile practices such as the creative planning game and
coding rules to create two new types of Agile User stories: heckler stories to represent threat repercussions and
security-related user stories to represent security functionality. These additions aid in communicating and
implementing explicit coding and design standards for software development projects that include security
requirements, as well as accommodating special security-related user stories. The proposed method was
evaluated in a university student project to test its effectiveness.
Keywords: Security Engineering Requirements, Hackler Stories, Software Security Management and its
protection, Security related User Stories, Agile Software Development methodology (ASDM), Software
Engineering Management (SEM)

1. Introduction

For several decades, software project management has been guided by the technical coherence
method, which employs a sequential approach known as the waterfall lifecycle. However,
according to the latest CHAOS report [26], a significant percentage of software projects still
fail, with less than 69% achieving success. One of the reasons for this is the limited
opportunity for customer input and testing, as these activities are typically performed at the
end of the project. This can result in issues related to misunderstood requirements and poor
user comprehension of the software flow, which are also common problems with agile,
template-based, and document-driven software development.

Traditional software development approaches often require a significant amount of paperwork,
which can be time-consuming and resource-intensive [10]. Moreover, prevailing security
engineering standards and criteria assume a stable development environment with clearly

mailto:ali.abid@uad.edu.pk
mailto:ijazkhan@gu.edu.pk
mailto:ksaadat125@gmail.com,%20muhammadsajjadhussain@gmail.com,%20asadullahpushia@gmail.com
mailto:ksaadat125@gmail.com,%20muhammadsajjadhussain@gmail.com,%20asadullahpushia@gmail.com

Agile Security Requirements Engineering for Conservation A Proposed Framework

114

Copyrights @ Roman Science Publications Vol. 7 No. 1 June, 2022, Netherland
 International Journal of Applied Engineering Research

defined, fixed, and documented software project strategies and security requirements. These
standards are designed around a progressive, non-iterative lifecycle, which can be challenging
for agile methodologies that prioritize iterative development and responsiveness.

To address these issues, there is a need for a more flexible and adaptable approach to software
project management that integrates security engineering practices while maintaining the
iterative and responsive nature of agile methodologies. This research paper proposes a new
framework for security requirements engineering in agile software development that leverages
the strengths of both approaches. The proposed framework combines agile principles such as
user stories and iterative development with security engineering best practices, including threat
modeling and risk assessment, to enable the development of secure software that meets
customer requirements and expectations. The effectiveness of the proposed framework was
evaluated through a case study, which demonstrated its potential for improving software
project success rates and enhancing software security.

 The ISO 15408 Common Criteria (CC) were originally developed for military purposes,
resulting in significant documentation requirements. However, CC has been criticized for its
resource-intensive and time-consuming nature. Consequently, attempts have been made to
design a more flexible CC process. This is a common misconception of the Common Criteria
for Information Technology Security Evaluation (2012) that allows independent security
evaluation results to be compared. It sets forth a uniform set of requirements for IT product
security capabilities and assurance measures. The CC can be used to aid in the creation,
evaluation, and/or procurement of IT products with security features. However, users are
cautioned not to abuse the standard's flexibility. Although the CC is intended to be adaptable,
challenges still exist.

Given the low success rate of software projects, a new category of project management
methodologies known as "agile methods" has emerged. These methods are iterative and
leverage software engineering's "soft" nature. The new methodologies are based on the
principles of "speculate, collaborate, and learn," rather than "plan, design, and build."

It is a practical approach to add more effective phases and document items to the agile
development, iterative, and rapid feedback development processes. There are no provisions for
software engineering or security requirements, for example. In a recent study, researchers
examined how systems security engineering approaches align or do not align with agile
methodologies.

One option is to combine Agile Software Development with traditional system security
engineering, but this would limit the benefits of agile software development. We propose a
balanced approach between documentation-centric and plan-driven, traditional software
security engineering approaches. Our approach is based on the findings of a previous

Muhammad Ali Abid, Mudasir Mahmood, Muhammad Ijaz Khan

115

Copyrights @ Roman Science Publications Vol. 7 No. 1 June, 2022, Netherland
 International Journal of Applied Engineering Research

investigation into how Agile approaches the activities and requirements of system security, as
defined by SSE, Capability Maturity Model (CMM), and Common Criteria (CC).

Our technique is discussed in detail. By introducing new phases, it covers the agile planning
game's approach to identifying and prioritizing occupational requirements. Two new concepts
for understanding agile user stories' security are "addictive user stories" and "security-related
user stories."

The objective of this research paper is to explicate the importance of addressing security-related
user stories during software development, particularly to developers and consumers. The paper
showcases the efficacy of our approach by presenting a case study wherein safety engineering
students utilized our method to formulate requirements for a secure communication system
they were developing [17]. The subsequent section delves into the agile planning process and
elucidates on the potential extensions that can be incorporated into the process. The paper
culminates with conclusions drawn from the study and outlines avenues for future research,
with Sections 4 and 5 presenting analogous findings.

2. Agile Planning Game: An Overview

The Agile planning game is a planning process that comprises two distinct planning
approaches. Firstly, the statement planning method is employed to establish a structural
declaration plan, which involves identifying system requirements, specifying project scope, and
outlining performance criteria. Secondly, the speedy iteration plan is derived from the release
plan and is used to add or remove new requirements and enhance existing ones [32].

To create the structural declaration plan, the statement planning approach necessitates the use
of user stories. These stories are brief, quantifiable, and testable descriptions of the users'
needs, typically written on index cards and employed in Agile projects. The 3Cs User Stories
methodology, which entails using Cards, Conversations, and Confirmation, is utilized to
obtain most of the consumer information by selecting it from a list [4, 28].

3. Extending the Planning Game

In this research paper, we propose the integration of security engineering activities into the
planning game to enhance the security of Agile software development. However, we caution
against transforming Agile into a heavy, document-centric, plan-driven methodology as it would
diminish its effectiveness. Thus, a delicate balance between security and Agile priorities must
be struck, and the appropriate extensions must be tailored to the specific project's needs and

Agile Security Requirements Engineering for Conservation A Proposed Framework

116

Copyrights @ Roman Science Publications Vol. 7 No. 1 June, 2022, Netherland
 International Journal of Applied Engineering Research

goals. Our experience with security engineering has led us to believe that these goals are critical
[23, 31].

To achieve this integration, we recommend the following guidelines. Firstly, new activities
should align with Agile methodologies and terminology as much as possible. Secondly, the
activities should promote iterative work, emphasizing simplicity in rewriting results rather than
relying solely on documentation [23, 31]. Thirdly, the output of the requirements process
should be easy to follow during the testing and coding phases of the iteration. Fourthly,
relevant sections of the product should be modified requirements to facilitate external
evaluation [21]. Fifthly, gathering activities should encourage the development of proactive
security measures. Finally, risk analysis should be considered when establishing requirements to
identify potential security threats [30].

Figure 1. Out puts of expanded Agile Planning Game

Muhammad Ali Abid, Mudasir Mahmood, Muhammad Ijaz Khan

117

Copyrights @ Roman Science Publications Vol. 7 No. 1 June, 2022, Netherland
 International Journal of Applied Engineering Research

To achieve our objectives, we propose a diagram outlining the recommended steps for
including security requirements in the Agile Planning Game:

1. Identify assets with high security risks.
2. Simulate heckler stories using the Threat Scenarios mode.
3. Conduct a risk assessment for each heckler story.
4. Negotiate the heckler user stories.
5. Define security-related user stories.
6. Define coding standards associated with security.
7. Cross-check countermeasures for each heckler story.

Figure 1 depicts the recommended steps for including security requirements in the Agile
Planning Game, which are discussed in detail below. To illustrate the application of this
approach, we also present artifacts generated during its implementation in a secure negotiation
system.
1 - Assets with high security risks must always be identified.
In Agile software development, the primary objective of a team is to identify and validate
critical assets within the system under iterative development. Assets refer to anything that holds
value for the organization or system users and are listed on the planning whiteboard. In the
context of a negotiation system, an example of such an asset would be "confidential negotiation
approaches" that exist within the system's architecture [17].
2. Simulation of heckler stories (Threat scenarios)
Heckler stories are security-related narratives that communicate potential risks to critical assets
in a format and language that is easily understandable by both agile developers and customers.
Similar to user stories, they are represented on index cards using the 3Cs approach, which
facilitates communication between developers and customers. The creation of threat scenarios
requires a thorough understanding of security risks and attacks, and hence, the involvement of
a security engineer is crucial. A Heckler story outlines a hypothetical adverse interaction
between a threat actor and a system that, if successful, would put the system's owner or user at
risk. The customer team discusses the Heckler stories with the Agile Team to ensure their
relevance and significance. Tools such as assault patterns can be used to develop these stories
[11].
We argue that for agile projects, security requirements should be derived from detailed Heckler
stories rather than general ones. Our reasoning is based on two factors. Firstly, it is impossible
to test the mitigation of risks based on general types of threats. Developers must be able to
demonstrate mitigation through test results to convince customers that a particular threat
category will be objectively addressed [27]. Despite the differences in the nature of threats
represented by Heckler stories and the Planning Game, a system architecture based on both
narratives can be generic enough to address both types of risks. Heckler stories provide a
common and measurable basis for developers to integrate ongoing security requirements into
the agile planning game.
3. Risk assessment for the Heckler narrative

Agile Security Requirements Engineering for Conservation A Proposed Framework

118

Copyrights @ Roman Science Publications Vol. 7 No. 1 June, 2022, Netherland
 International Journal of Applied Engineering Research

The client and security teams evaluate the risks identified in the Hackler stories and allocate a
risk level. The probability and effects of the threat being realized for each Hackler story are
calculated. The risk of the product is determined by multiplying the threat probability with its
consequence. In evaluating the business impact of the risks, the expertise of the customer team
is crucial. This is in line with sources [19,34].
The attractiveness of Hackler stories is discovered through action and affected encounters,
which is typically not fully developed. This is achieved through economy of setting, brief
storytelling, and the avoidance of a convoluted plot. Despite their limited scope, Hackler
stories are widely assessed for their ability to present their characters and themes in a complete
or fulfilling manner.
The Hackler stories are categorized into four quadrants based on the likelihood and
consequences of the events. After the assessment, yellow or red stickers are placed on the
Hackler Stories index to indicate the level of risk on the maps. These findings are consistent
with source [18].

4. Negotiation between the Heckler User stories
The process of iteration planning commences by allowing the customer to identify the hackler
user stories that necessitate addressing in the forthcoming iteration after conducting a
comprehensive risk assessment. This approach mirrors the typical agile planning game
methodology utilized for selecting user stories for implementation. Subsequently, the agile
developers and security engineers collaborate to estimate the duration required to mitigate the
identified hacker stories provided. This estimation process is essential in determining the
feasibility and viability of addressing the identified security risks within the iteration timeframe
[15].
5. Defining user stories about security.
In this research paper, it is emphasized that Hackler stories are essential for functional security
requirements in response to hacker stories. Unlike security-related user stories, Hackler stories
require validation through module, system, and integration testing. The research stresses that
security-related user stories mandate encryption for all interactions and transmission of papers
during debates. Collaboration and communication are integral to the creation of user stories,
and security stakeholders should be involved in this process. The research suggests that security
needs can be tied to the story map to avoid scope creep. Acceptance criteria complement the
user story and are necessary to ensure the story's success.
The research proposes that security patterns can assist in identifying the necessary security
features to combat hacker stories. Developers can specify security standards through standard
user stories in the technical stage. This defines the security function that needs to be developed
for a given user story.
A significant difference between user stories and requirements is highlighted in the research. A
typical requirement focuses on the product's functionality, whereas a security requirement is a

Muhammad Ali Abid, Mudasir Mahmood, Muhammad Ijaz Khan

119

Copyrights @ Roman Science Publications Vol. 7 No. 1 June, 2022, Netherland
 International Journal of Applied Engineering Research

statement of the required security functionality that assures one of the software's many security
attributes is met.
Furthermore, the research identifies security-related user stories as those that a third-party
security researcher would be interested in. It is suggested that these user stories should be
emphasized to distinguish them easily from other user stories. Finally, the research points out
that no user stories on the list provided are linked to security outside of the ones identified as
security-related.
6. Security Linked Coding Standards Definition
In the context of cybersecurity, it is not valid to dismiss a hacker's account of a security breach
solely based on a customer's report. System-wide approaches are required to address major
security threats, such as binary code injection through buffer overflow. Secure coding is a
critical component of the software development lifecycle, and adherence to secure coding
standards is necessary to prevent security flaws in software [2]. Such standards provide
principles and guidelines to avoid, identify, and eliminate vulnerabilities that could
compromise software security. Prior to the addition of new code, existing code must comply
with the latest design or coding standards. For instance, an extension to the coding standard
could dictate that "none of the dangerous C features are to be used in the code at any point."
7. Cross checking countermeasures in the Heckler story

To develop a secure application, it is essential to identify the attacks that the application may
face in its business and technical environment [3, 12]. This practical approach enables the
application to be designed with adequate countermeasures, such as security protection, user
history protection, and verification activity protection. Adherence to coding standards is crucial
to achieving software security. An example of a coding standard extension is the prohibition of
using harmful C functions in the code. To combat major security threats, a system-wide
approach is necessary.

Application of the technique to a student thesis project.

Agile Security Requirements Engineering for Conservation A Proposed Framework

120

Copyrights @ Roman Science Publications Vol. 7 No. 1 June, 2022, Netherland
 International Journal of Applied Engineering Research

The present study involves the use of a risk assessment matrix to evaluate Hackler stories and
molester stories based on their respective dangers and consequences. The primary objective of
this study is to develop a secure agreement planner that can be utilized for negotiating Service
Level Agreements (SLAs) in virtual organizations through the internet. The study's participants
documented and analyzed the process's various artifacts using a whiteboard, including user
stories, assets, and risk assessment findings. The risk assessment matrix was then populated
with numerical values assigned to the Hackler stories, representing the initial validation of our
SLA negotiation technique [20]. The Hackler stories countermeasure crosschecking table is
situated at the bottom left of the whiteboard. Furthermore, Figure 2 depicts a few Hacklers and
security-related user stories that were created during the study. The CORAS approach was
selected by the students to conduct the risk analysis work, given their familiarity with it. This

study serves as a prospective example of the Common Criteria for Risk Analysis process
improvement.

Figure 2: For a secure intercessor system, safety hacker stories are required.

3.2 Agile Process impact on other activities (Effects)

In the implementation phase of an agile iteration, developers are responsible for creating tests
and implementing the system's stated user stories. Once the system is delivered to the
customer, it is essential that they are informed of the assumptions made during the
development process regarding potential threats and their sources, as well as the system's
background. In addition to unit and acceptance tests, automated resistance testing and
motionless analysis of the system's source code can be valuable.

Agile methodologies, which employ iterative development and prototyping, are frequently used
in various industry projects as a lightweight development process that can adapt to changing
requirements. Traditional software development approaches are insufficient in coping with

Muhammad Ali Abid, Mudasir Mahmood, Muhammad Ijaz Khan

121

Copyrights @ Roman Science Publications Vol. 7 No. 1 June, 2022, Netherland
 International Journal of Applied Engineering Research

rapidly changing needs. Some critics argue that Agile disregards architectural and design
considerations, leading to minor design decisions.

Operational deliverables from the planning game processor, such as hackler stories, secure
design and coding standards, and security-related user stories, are used to identify and
document these assumptions. These internal deliverables from the Planning Game's processor
are adequate for determining and documenting such assumptions. However, Hackler's
methodology does not provide any specific methods for creating these assumptions, although
this could be a topic for future research. It is not reasonable to expect clients to have enough
knowledge about security to document their assumptions. Hackler contends that such
assumptions are ineffective in agile story-centric planning, testing, and implementation
procedures.

3.3 Security Requirements and Roles Game of Engineering and Planning

To define the suggested process adaptation, it is essential to identify the roles of different
participants involved in an agile project, where all team members work closely together [5]. The
client team comprises domain experts, product managers, and end-users, while the customer
team consists of the development team and safety engineer(s).

The first and most crucial step in building a robust security plan is understanding information
security requirements. However, compliance requirements should not dictate the commitments
that must be examined. Instead, the security commitments should align with the company's
and customers' needs, which may be greater than what was initially set out [25]. These
commitments can be categorized into Business Requirements, Regulatory Obligations, and
Customer Omissions.

The client team is responsible for gathering requirements and prioritizing projects, while the
development team consists of programmers, testers, and system analysts who help refine
requirements and conduct acceptance tests. A security engineer, who may be one or more
individuals, provides security knowledge to both the customer and the developers throughout
the project.

A security requirement is a statement of necessary security functionality that ensures one or
more of the software's security attributes are met. Security requirements are developed using
industry standards, current regulations, and historical vulnerabilities [22]. Security
requirements engineering is the primary concern of early-stage security engineering approaches.
Implementing information security requirements helps companies be better prepared for
security threats faced by both the company and its customers.

Agile Security Requirements Engineering for Conservation A Proposed Framework

122

Copyrights @ Roman Science Publications Vol. 7 No. 1 June, 2022, Netherland
 International Journal of Applied Engineering Research

The primary responsibility of the security engineer is to assist the customer in identifying
security requirements during the requirements phase. During implementation, the security
engineer supports developers through training and pair programming, playing the role of
devil's advocate by identifying potential hazards that must be considered in the system's
production environment [24, 29].

4. Conclusions and Future Plans

Incompatibilities exist between the requirements for security engineering and the agile process
approach. The latter involves a limited number of work outputs that are distributed iteratively,
with security actions being integrated relatively normally. However, security engineers can still
gain insights from the iterative development process.

Agile development, being iterative, enables the prompt assessment of the effectiveness of
security requirement techniques and their execution through a sequence of user stories and
design standards. Agile methodologies employ simple documentation tools such as index cards
and whiteboard drawings.

The conflict between agile methodologies and security concerns can affect the quality attributes
of complex or operation critical systems, impacting safety, high availability, and high
performance. Basic agile methodologies may need to be adapted, and architectural and design
standards must be prioritized.

Further research is necessary to comprehend how agile assurance approaches such as pair
programming and testing can be employed to monitor security requirements. The Software
Approach Improvement Network will initiate a preliminary validation via workshops (SPIN-
Stockholm). As revealed in the first student project, adding more assistance to consider the
system environment could enhance the process, although this should be viewed as a standard
component of the process.

This paper elucidates how safety requirements can be preserved while maintaining agile
planning, thereby completing projects on time instead of abandoning them.

Muhammad Ali Abid, Mudasir Mahmood, Muhammad Ijaz Khan

123

Copyrights @ Roman Science Publications Vol. 7 No. 1 June, 2022, Netherland
 International Journal of Applied Engineering Research

 References

1. De Lange, M. (2015). The playful city: using play and games to foster citizen participation.
2. Danchev, D. (2011). Malicious PDF files becoming the attack vector of choice.
3. Paige, R. F., Galloway, A., Charalambous, R., Ge, X., & Brooke, P. J. (2011). High-integrity

agile processes for the development of safety critical software. International Journal of Critical

Computer-Based Systems, 2(2), 181-216.

4. Highsmith, J. (2013). Adaptive software development: a collaborative approach to managing complex

systems. Addison-Wesley.
5. Demissie, S., Keenan, F., & McCaffery, F. (2016, June). Investigating the suitability of using

agile for medical embedded software development. In International Conference on Software Process

Improvement and Capability Determination (pp. 409-416). Springer, Cham.
6. Baca, D., & Carlsson, B. (2011, May). Agile development with security engineering activities.

In Proceedings of the 2011 International Conference on Software and Systems Process (pp. 149-158).
7. NAZIR, R. (2021). Studying Software Architecture Design Challenges, Best Practices and Main

Decisions for Machine Learning Systems.

8. J&rjens, J. (2009). Security and dependability engineering. In Security and dependability for

Ambient Intelligence (pp. 21-36). Springer, Boston, MA.

9. Woody, C. (2013). Agile security-review of current research and pilot usage. SEI White Paper.
10. Gupta, A. D., Jaiswal, B. S., & Tewari, C. A. (2013). Security Requirements Engineering:

Analysis and Prioritization. In Proceedings of the International Conference on Software Engineering

Agile Security Requirements Engineering for Conservation A Proposed Framework

124

Copyrights @ Roman Science Publications Vol. 7 No. 1 June, 2022, Netherland
 International Journal of Applied Engineering Research

Research and Practice (SERP) (p. 1). The Steering Committee of The World Congress in
Computer Science, Computer Engineering and Applied Computing (WorldComp).

11. Flechais, I., Mascolo, C., & Sasse, M. A. (2007). Integrating security and usability into the

requirements and design process. International Journal of Electronic Security and Digital

Forensics, 1(1), 12-26.
12. Kotilainen, W. (2018). System-Level Checkpointing of Verification Tools.

13. Highsmith, J. (2013). Adaptive software development: a collaborative approach to managing complex

systems. Addison-Wesley.
14. Setapa, S., Isa, M. A. M., Abdullah, N., & Ab Manan, J. L. (2010, December). Trusted

computing based microkernel. In 2010 International Conference on Computer Applications and

Industrial Electronics (pp. 1-4). IEEE.

15. van Oorschot, Paul C. "Software security and systematizing knowledge." IEEE Security &

Privacy 17.03 (2019): 4-6.
16. Elder, Sarah E., et al. "Structuring a comprehensive software security course around the

OWASP application security verification standard." 2021 IEEE/ACM 43rd International

Conference on Software Engineering: Software Engineering Education and Training (ICSE-SEET). IEEE,
2021.

17. Anwar Mohammad, Malik Nadeem, Mohammed Nazir, and Khurram Mustafa. "A systematic
review and analytical evaluation of security requirements engineering approaches." Arabian
Journal for Science and Engineering 44.11 (2019): 8963-8987.

18. Zarour, Mohammad, Mamdouh Alenezi, and Khalid Alsarayrah. "Software security
specifications and design: How software engineers and practitioners are mixing things

up." Proceedings of the Evaluation and Assessment in Software Engineering. 2020. 451-456.
19. Mishra, Aditya Dev, and Khurram Mustafa. "A Survey on Formal Specification of Security

Requirements." 2021 3rd International Conference on Advances in Computing, Communication

Control and Networking (ICAC3N). IEEE, 2021.
20. Xu, Yilin, et al. "A co-occurrence recommendation model of software security

requirement." 2019 International Symposium on Theoretical Aspects of Software Engineering (TASE).
IEEE, 2019.

21. Arogundade, Oluwasefunmi ‘Tale, et al. "A study of existing use case extensions and

experience: a systematic review." International Journal of Computer Mathematics: Computer Systems

Theory 5.4 (2020): 263-281.

22. Viega, John. "20 years of software security." Computer 53.11 (2020): 75-78.
23. Koç, Güler, Murat Aydos, and Mehmet Tekerek. "Evaluation of trustworthy scrum

employment for agile software development based on the views of software developers." 2019

4th International Conference on Computer Science and Engineering (UBMK). IEEE, 2019.
24. Newton, Nathan, Craig Anslow, and Andreas Drechsler. "Information Security in Agile

Software Development Projects: a Critical Success factor Perspective." ECIS. 2019.

Muhammad Ali Abid, Mudasir Mahmood, Muhammad Ijaz Khan

125

Copyrights @ Roman Science Publications Vol. 7 No. 1 June, 2022, Netherland
 International Journal of Applied Engineering Research

25. Ionita, Dan, et al. "Towards risk-driven security requirements management in agile software

development." International Conference on Advanced Information Systems Engineering. Springer,
Cham, 2019.

26. NYMAN, NICK. "Threat Awareness in Agile Environments: Creating a Developer-Driven
Threat Modeling Process for Agile Software Development Teams." (2020).

27. Bishop, Dave, and Pam Rowland. "Agile and secure software development: an unfinished
story." (2019).

28. Ruiz, Jose Fran, et al. "Emergency systems modelling using a security engineering process." Proc.

of 3rd Int. Conf. SIMULTECH. SciTePress. 2013.
29. ben Othmane, Lotfi, et al. "Extending the agile development process to develop acceptably

secure software." IEEE Transactions on dependable and secure computing 11.6 (2014): 497-509.
30. Baca, Dejan, et al. "A novel security-enhanced agile software development process applied in an

industrial setting." 2015 10th International Conference on Availability, Reliability and Security.
IEEE, 2015.

31. Zech, Philipp. "Risk-based security testing in cloud computing environments." 2011 Fourth

IEEE International Conference on Software Testing, Verification and Validation. IEEE, 2011.
32. Ray, Mitrabinda, and Durga Prasad Mohapatra. "Risk analysis: a guiding force in the

improvement of testing." IET Software 7.1 (2013): 29-46.
33. Mohammed, Nabil M., et al. "Exploring software security approaches in software development

lifecycle: A systematic mapping study." Computer Standards & Interfaces 50 (2017): 107-115.
34. Singhal, Archana. "Integration analysis of security activities from the perspective of

agility." 2012 Agile India. IEEE, 2012.
35. Gurusamy, Kavitha, Narayanan Srinivasaraghavan, and Sisira Adikari. "An integrated

framework for design thinking and agile methods for digital transformation." International

Conference of Design, User Experience, and Usability. Springer, Cham, 2016.

