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Abstract: Elliptic curves are smooth, projective algebraic curves of the first genus 
with a designated point O. (EC). On an elliptic curve, which makes it a 
commutative group by necessity, the multiplication operation is defined 
algebraically where point O acts as the identity element, satisfying the axioms of 
the abelian group. Without mentioning the point O, the curve is referred to as 
an elliptic curve. There are numerous ways to create elliptic curves, and by using 
these curves, several advanced writing and computing techniques have been 
developed. In elliptic curve encryption, creating a prime elliptic curve is essential. 
There is a need of an elliptic curve to increase security, but for increasing the 
scope of safety, prime elliptic curve has been introduced. In this paper, prime 
points on elliptic curves, prime elliptic curves, their characteristics has been 
described and also the relationship between prime elliptic curve coefficients has 
been established. 
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1 Introduction  

Any elliptic curve can be expressed as a function specified by or a plane algebraic curve as, 

                                           y2 = x3 + ax + b                 (1) 

is shown in Figure 1. 
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Figure 1: Elliptic curve 

where a and b are real numbers. This type of equation is known as Weierstrass equation. 
The curve must also not be singular in order to meet the description of an elliptic curve, 
which means that its graph must not contain cusps or self-intersections. Elliptic curves are 
important in number theory and are the subject of much recent study. They also have uses 
in integer factorization and elliptic curve encryption (ECC). 

The elliptic curve cryptosystem, which was based on elliptic curves, was developed 
by Miller, V. (1985), and Koblitz, N. (1987), who also described how elliptic curves are 
used in cryptography. Algorithms based on elliptic curve cryptography were widely used in 
cryptographic systems for security in 2004 and 2005, and the National Institute of 
Standards and Technology accepted and authorised these algorithms in 2006. 

2 Review of Literature  

Broker, R. (et al., 2007) developed an effective algorithm to create an elliptic curve E and a 
finite field F where the order of the point group E(F) is a given prime integer N. It's 
interesting that this method only requires polynomial time O((log N)3) and is so quick that 
it can be effectively applied to the related problem of finding elliptic curves with point 
groups of specified order. 

The comparison between elliptic curve encryption and other cryptography 
algorithms was covered by Shanmugalakshmi, R. (et al, 2009). They have emerged as the 
rapidly evolving cryptography researchers in the area of information security. 

Like RSA, ECC provides the highest strength-per-key-bit of any first generation 
public key system, according to research by Agarwal, S. (et al., 2015). ECC has performed 
better compared to RSA because fewer bits are needed to provide the same protection.  

Agrawal, H. (et.al, 2016), presented a survey paper on an RFID authentication 
method based on elliptic curve cryptography. The plan was practical and applicable in 
circumstances where security is a top concern. The paper also discussed how the ECC 
authentication scheme greatly increases data security for a given key size. Because it uses 
less energy and generates less heat when the key size is smaller, it can be used to provide a 
certain degree of security. Smaller key sizes have the primary benefit of requiring less data, 
more compact software, and smaller chips to carry out quick cryptographic operations. 
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Based on a mod 4 congruence of 2-adic logarithms of Heegner points for specific 
elliptic curves E/Q with E(Q)[2] = Z/2Z, Kriz, D. (et al., 2017) proved a condition for 
prime twists of E to have analytic rank 0 or 1. 

3 Prime Points on Elliptic Curve  

If y = ax3 + bx2 + cx + d is an elliptic curve then a point P(p,q) is said to be prime point if p 
and q both are primes. 

Further, if P(p1,q1) and Q(p2,q2) are two prime points on elliptic curve such that 
P+Q is also a prime point then such an elliptic curve is called prime elliptic curve. 

4 Characteristics of Prime Elliptic Curve  

Number of pairs of prime points on a prime elliptic curve is called the characteristic of a 
prime elliptic curve. 

5 Relationship between the Coefficients of Prime Elliptic Curve 

Let,                             y = ax3 + bx2 + cx + d                            (2) 
 
is a prime elliptic curve and P(p1,q1) and Q(p2,q2) are two points on it, then they must 
satisfy the equation of elliptic curve 

q1 = ap1
3 + bp1

2 + cp1 + d 
q2 = ap2

3 + bp2
2 + cp2 + d 

q1 – q2 = a(p1
3 – p2

3) + b(p1
2 – p2

2) + c(p1 – p2) 
(q1 – q2) / (p1 – p2) = a(p1

2 + p1p2 + p2
2) + b(p1

 + p2) + c 
 
Since the curve passing through P(p1,q1) and Q(p2,q2) therefore, 

y – q1 = [(q2 – q1) / (p2 – p1)] (x – p1) 
 
Let,                          (q2 – q1) / (p2 – p1) = α               (3) 
 
Hence,                        y – q1 = α (x – p1) 

y = α (x – p1) + q1 
      ax3 + bx2 + cx + d = α (x – p1) + q1                  (using eqn. (2)) 

       ax3 + bx2 + (c – α) x + d + αp1 – q1 = 0                     (4) 
 
Let α1, α2 and α3 be the roots of equation (4) then, we must have 

α1 + α2 + α3 = – b/a 
p1 + p2 + α3 = – b/a 

 
If R(p3,q3) be the third point which satisfy equation (2) then 
                         p1 + p2 + p3 = – b/a                   (5) 
and          q3 = α (p3 – p1) + q1 
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          q3 – q1 = α (p3 – p1) 
           (q3 – q1) / (p3 – p1) = α  
          (q3 – q1) / (p3 – p1) = (q2 – q1) / (p2 – p1)               (6) 
 
also,              p1p2 + p2p3 + p3p1 = (c – α) /a             (7) 
and            p1p2p3 = (d + αp1 – q1) /a              (8) 
 
from (5), (7) & (8), we have 

                a = – b/( p1 + p2 + p3)  
     = (c – α) / (p1p2 + p2p3 + p3p1)                       (9) 
                   = (d + αp1 – q1) / (p1p2p3) 

Equation (9) shows the relationship between the coefficients a, b, c & d of prime elliptic 
curve (2). 

6 Conclusion 

The relationship between the prime elliptic curve's coefficients will be helpful for further 
research into the prime elliptic curve and can also be used to design more secure 
encryption and decryption algorithms in cryptography. By using the relationship between 
the coefficients, the elliptic curve can be transformed in such a way that makes it difficult 
for an unauthorised user to understand, which will result in a high level of security. 
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