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Abstract. The relationship between the risk premium, the asset trend (-
risk) and the Merton fraction is close. In this paper, we define amd discuss
the concept of regressive assets and show the expression of the risk premium
when the asset is risky in the sense that, in addition to the perturbations, it
tends to regress. By applying dynamic programming to this asset and optimal
control, we determine the Merton fraction for this regressive asset. We present
a fact on the relation between the risk premium and the Merton fraction of a
regressive asset and demonstrate the proposition with a numerical simulation.

1. Introduction

In general, except at the start time, the price of an asset with risk over time
is random, hence it is difficult to predict. However, probability theory allows us
to better model this random trajectory linked to several types of perturbations.
It is therefore becoming more beneficial for investors to know with sufficient cer-
tainty the price dynamics of a risky asset in order to take an optimal strategy [12].
For more than forty years, several models predicting economic behavior have been
modified to respond to the challenge of fairly high volatility. As a result, much
attention has been paid to measuring the risk premiums associated with these
types of assets [10].

The object of an investment can be divided into two categories, namely assets
with risk and assets without risk. This distinction alludes to whether the future
performance cab be known beforehand. For example, stock prices and derivatives
are risky assets, whereas bonds are risk-free assets. However, in order to maxi-
mize profit, an investor should have to ask himself the following question: What
strategy is the best to maximize this investment?”. In other words, ”How many
risky and risk-free assets would it take to maximize this investment?”. Robert
C. Merton solved this problem by determining the optimal fraction of risky and
risk-free assets that maximizes the portfolio [6].

We pursue our objectives in the next three sections. Section 2 discusses the pre-
liminaries, including the price dynamics of an asset that loses value as a regressive
asset for which an acceptable definition is given. As well, the underlying equation
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receives due attention. In section 3, we present a model for the market and we
determine the risk premium for a regressive asset while making some important
observations about it. In the last section, we proceed with the dynamic program-
ming of our model, determine the Merton fraction and make some remarks. This
last section concludes with a numerical simulation showing the contribution of the
optimal strategy on the value of the portfolio.

2. Preliminary

Definition 2.1 (Brownian Motion). A one dimensional Brownian Motion is an
R-valued process B := (Bt)t∈[0,T ] such that:

(i). B0 = 0 P-a.s
(ii). B has independent increments, i.e for every 0 ≤ t < s ≤ u < v, the random

variable Bv −Bu and Bt −Bs are independent;
(iii). B has stationary normally distributed increments with

Bt −Bs ∼ N (0, t− s), ∀t > s ≥ 0

(iv). B has P-a.s continuous paths.

Definition 2.2 (Itô Process). Let (Bt)t∈[0,T ] be a Brownian Motion defined on

(Ω,F ,P) and FB its natural filtration. We call an Itô process any random process
(Xt)t∈[0,T ] of the form

Xt = X0 +

! t

0

µsds+

! t

0

σsdBs, ∀t ∈ [0, T ] (2.1)

where X0 is FB
0 -adapted, the process

"# t

0
σsdBs

$

t∈[0,T ]
is an Itô integral and the

process (µt)t∈[0,T ] is FB-adapted process such that E
%# T

0
|µs|ds

&
< ∞.

Corollary 2.3 (Itô product rule). Let X be an Itô process given by (2.2) and
Y := (Yt)t∈[0,T ] be another Itô process defined as following

Yt = Y0 +

! t

0

asds+

! t

0

ξdBs, t ∈ [0, T ]. (2.2)

Then, for every t ∈ [0, T ], it holds :

XtYt = X0Y0 +

! t

0

XsdYs +

! t

0

YsdXs + 〈X,Y 〉t. (2.3)

Definition 2.4 (Itô formula). Let (Xt)t∈[0,T ] denote an Itô process and F : R+ →
R be a bounded C1,2. Then it holds:

F (t,Xt) = F (0, X0) +
# t

0

∂

∂t
F (s,Xs)ds+

# t

0

∂

∂x
F (s,Xs)dXs

+
1

2

# t

0

∂2

∂x2
F (s,Xs)d〈X〉s

(2.4)

where 〈X〉s =
# s

0
σ2
kdk, ∀s < t.
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Definition 2.5. Let (St)t∈[0,T ] be a stochastic process that describes the price of
an asset. We will call regressive asset an asset for which the price has the following
trend

∀t1, t2 ∈ [0, T ], t1 < t2, St1 ≥ St2 (a.e), (2.5)

which is a monotone decreasing process.

Definition 2.6. Let the following linear equation stochastic differential equation
'
dSt = −µStdt+ σStdWt

S0 ∈ R (2.6)

where : µ is the drift coefficient and σ the diffusion coefficient which are strictly
positive, (Wt)t∈[0,T ] a Brownian Motion.

In the usual Black-Scholes model, µ ∈ R, which is different from our stochastic
differential equation (2.6) where we fix µ to be strictly positive, and multiply it
by the negative sign.

Proposition 2.7. There exist only one solution (St)t∈[0,T ] for equation (2.6) of
the form

St = S0 exp

'
−
(
µ+

σ2

2

)
t+ σWt

*
; ∀t ∈ [0, T ]. (2.7)

Proof. By extending the Cauchy-Lipschitz theorem for SDEs we have the follow-
ing. Let f, g : R → R, the functions defined by f(x) = −µx and g(x) = σx, ∀x ∈ R.
Then, there is a constant C > 0, such that : |f(x) − f(y)| + |g(x) − g(y)| ≤
C.|x−y| ⇐⇒ |µx−µy|+ |σx−σy| = µ1|x−y|+σ|x−y| = (µ+σ)|x−y| ≤ C.|x−y|
and |f(x)| − |g(x)| ≤ C(1 + |x|) ⇐⇒ |µx| − |σx| = µ|x| − σ|x| = (µ − σ)|x| ≤
(µ+ σ)(1 + |x|) (We can take for example C = µ+ σ).

Now, taking Yt = −
"
µ+ σ2

2

$
t + σWt, we get F (t, St) = St = S0 expYt such

that

∂

∂t
F (t, St) = −

(
µ+

σ2

2

)
St;

∂

∂x
F (t, St) = σSt and

∂2

∂x2
F (t, St) = σ2St

where x := Wt. By applying the Itô’s formula to the equation (2.7) we get

dSt = −µStdt+ σStdWt, ∀t ∈ [0, T ]. (2.8)

□

In the following, we will use S0
t := (S0

t )t∈[0,T ] to describe the price of a risk-free
asset.

1Since µ and σ are strictly positives by definition.
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Figure 1. Dynamics of risky assets. With T = 1, dt = 0.01,
σ = 0.4, µ = 0.8 and S0 = 20.

3. Modeling of the Market

In this section, P and Q are respectively the historical probability and the
risk-neutral probability, (Ft)t∈[0,T ] is the filtration and (Bt)t∈[0,T ] represents a
Brownian Motion adapted to this filtration. Ft will represent, ∀t ∈ [0, T ], the
price information St available on the date t, such as

Ft = σ(Su : u ≤ t), ∀u, t ∈ [0, T ]. (3.1)

Definition 3.1. Let St and S0
t respectively represent the prices of assets with and

without risk at t ∈ [0, T ]. We define the discounted price of the risky asset by

S̃t =
St

S0
t

, ∀t ∈ [0, T ]. (3.2)

Definition 3.2. Let (Vt(πt))t∈[0,T ] be the value of the portofolio for a strategy
πt = [αt,βt] ∀t ∈ [0, T ]. Then, the self-financing condition is given by

dVt(πt) = βtdS
0
t + αtdSt, ∀t ∈ [0, T ]. (3.3)

Definition 3.3. Let (Vt(πt))t∈[0,T ] be the value of the portofolio for a strategy
πt := (πt)t∈[0,T ]. We define the present value of the portofolio for this same
strategy by

Ṽt(πt) =
Vt(πt)

S0
t

, ∀t ∈ [0, T ]. (3.4)

We have the following:

Proposition 3.4. Let Ṽt(π) := (Ṽt(πt))t∈[0,T ] be the present value of the portofo-

lio, αt = (αt)t∈[0,T ] the quantity of risk assets and S̃t := (S̃t)t∈[0,T ] the discounted
price of risky asset. Then, the dynamic of the present value of the portfolio is
given by

dṼ (πt) = αtdS̃t, ∀t ∈ [0, T ]. (3.5)
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Proof. By applying the Itô product rule to the present value of the portfolio for
the π := πt strategy, we obtain

Ṽt(π) = Ṽ0(π)−
! t

0

Vu(π)dS
0
u

(S0
u)

2
+

! t

0

dVu(π)

S0
u

, (3.6)

by integrating equation (3.3) in equation (3.6), we get

Ṽt(π) = Ṽ0(π)−
! t

0

Vu(π)dS
0
u

(S0
u)

2
+

! t

0

βudS
0
u + αudSu

S0
u

= Ṽ0(π) +

! t

0

αu

+
−SudS

0
u

(S0
u)

2
+

dSu

S0
u

,
(3.7)

By applying the Itô product rule on S̃t we get

S̃t = S̃0 +

! t

0

dSu

S0
u

−
! t

0

St

(S0
t )

2
dS0

u

= S̃0 +

! t

0

+
dSu

S0
u

− SudS
0
u

(S0
u)

2

,
=⇒ dS̃t =

dSt

S0
t

− StdS
0
t

(S0
t )

2
∀t ∈ [0, T ]. (3.8)

Then, setting S0
0 = 1, we arrive at

Ṽt(π) = Ṽ0(π) +

! t

0

αudS̃u, ∀t ∈ [0, T ]. (3.9)

□

Definition 3.5 (Risk Premium). The risk premium is the additional return on
investment offered by an asset compared to a risk-free investment.

This additional return remunerates the investor for his greater risk-taking. The
value of the risk premium depends on variations in the risk level of an asset or a
stock index. In general, riskier assets have a higher risk premium in theory. We
can see, according to this definition of ”Café de la Bourse,” that the more our
assets are risky, the higher the risk premium is.

Theorem 3.6 (Girsanov theorem). Let (Θt)t∈[0,T ] be a stochastic process such
that (Lt)t∈[0,T ] defined by

Lt = exp

'
−
! t

0

ΘsdBs −
1

2

! t

0

Θ2
sds

*
, ∀t ∈ [0, T ]

is a martingale. Then, under the probability measure Q which is absolutely con-
tinuous with respect to P (dQ = LtdP ), the process

(
Bt +

! t

0

Θsds

)

t∈[0,T ]

is a Brownian Motion, where

Ep

+
exp

'
−
! t

0

ΘsdBs −
1

2

! t

0

Θ2
sds

*,
< ∞
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Proposition 3.7. Under the probability Q, we define the Brownian Motion (Wt)t∈[0,T ]

by
Wt = λt−Bt, t ∈ [0, T ], (3.10)

such that

λ =
r + µ

σ
(3.11)

is the risk premium relative to our regressive assets, where r > 0 is the interest
rate of the risk-free asset and

dS̃t = σS̃tdWt, ∀t ∈ [0, T ]. (3.12)

Proof. Firstly, let (Lt)t∈[0,T ] be defined by

Lt = exp

-
−
! t

0

r + µ

σ
dBs −

1

2

! t

0

(
r + µ

σ

)2

ds

.

= exp

-
−r + µ

σ
(Bt −B0)−

1

2

(
r + µ

σ

)2

t

.
,

by taking λ =
r + µ

σ
, we get

Lt = exp

'
−λBt −

1

2
λ2t

*
. (3.13)

We now show that Lt is a martingale. Indeed, ∀s, t ∈ [0, T ] such that s ≤ t,

E[Lt|Fs] = E
+
exp

'
−λBt −

1

2
λ2t

*
|Fs

,

= e
−
λ2t

2 E [exp {−λ(Bt −Bs +Bs)} |Fs]

= e
−
λ2t

2 e−λBsE [exp {−λ(Bt −Bs)} |Fs] .

Since Bt −Bs ∼ N (0, t− s),

E[Lt|Fs] = exp

'
−λ2t

2
− λBs +

λ2

2
(t− s)

*

= exp

-
−
(
r + µ

σ

)
Bs −

1

2

(
r + µ

σ

)2

s

.
,

hence, (Lt)t∈[0,T ] is a martingale. According to Girsanov’s theorem, there exists a
process (Wt)t∈[0,T ] such that

Wt = Bt +

! t

0

r + µ

σ
ds, t ∈ [0, T ],

is a Brownian motion. Since in equation (3.10) we have the symmetry of Bt which

has the same distribution as Bt (Bt
Law
= −Bt). Then

Wt :=

! t

0

r + µ

σ
ds−Bt = λt−Bt, ∀t ∈ [0, T ],

6
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is a Brownian motion.

Secondly,

Wt = λt−Bt ⇐⇒ σWt = (r + µ)t− σBt ⇐⇒ σdWt = (µ+ r)dt− σdBt.

On the other hand, we know that S̃t =
St

S0
t

and therefore, by applying the Itô’s

product rule, we have

S̃t = S̃0 +

! t

0

1

S0
u

+
−SudS

0
u

S0
u

+ dSu

,
= S̃0 +

! t

0

S̃u[−σdBu + (µ+ r)du],

hence,

dS̃t = S̃t[(µ+ r)du− σdBu] = σS̃tdWt, ∀t ∈ [0, T ]. (3.14)

□

Remark 3.8. Contrary to the usual Black-Scholes model, this risk premium cannot,

∀t ∈ [0, T ], be zero. In the case where µ = r we observe that λ =
2r

σ
. This confirms

the fact that, ∀t ∈ [0, T ], the risk premium for a regressive asset is higer.

4. Dynamic programming of a regressive asset and numerical
simulation

In this section, we are interested in the dynamic programming of the regressive
asset and in applying the optimal stochastic control to it. Based on the expo-
nential structure of the equation 4.9, we selected the logarithmic function for the
utility function.

Let the following stochastic differential equation represent the dynamics of a
one-dimensional controlled state (Xt)t∈[0,T ]

'
dXt = a(t,Xt,πt)dt+ b(t,Xt,πt)dWt

X0 = x0 ∈ R (4.1)

with a, b : [0, T ] × R × R → R. We will assume that the control (Markovian-
control) πt := (πt)t∈[0,T ] is F-adapted and has value in R ∀t ∈ [0, T ].

Definition 4.1. When we restrict πt to π(t,Xt) ∀t ∈ [0, T ], π̃ is called decision
rule.

Definition 4.2 (Performance criterion or Reward function). We define the per-
formance criterion by

J (x0;π) = E

/! T

0

F (s,Xπ
s ,πs)ds+ Φ (Xπ

T )

0
(4.2)

where F is the running reward F : [0, T ]× R×K ⊂ R → R and Φ is the terminal
reward Φ : R → R.

Definition 4.3. (πt)t∈[0,T ] with πt = π̃(t,Xt) is said to be admissible when:

(i). π̃(t,Xt) ∈ K, ∀(t, x) ∈ [0, T ]× R.

7
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(ii). For every initial value (t, x), the stochastic differential equation
'
dXs = a(s,Xs, π̃(s,Xs))ds+ b(s,Xs, π̃(s,Xs))dWs

Xt = x ∈ R , ∀s ∈ [s, T ] (4.3)

has a unique solution, for which the performance criterion J0 in equation
(4.2) is

E

/! T

0

|F (s,Xπ
s , π̃(s,Xs))|ds+ |Φ (Xπ

T ) |
0
< ∞ (4.4)

Definition 4.4. We call the value function of the control problem

V0(x0) = sup
π∈A

J0(x0;π) (4.5)

where A is the set of admissible controls.

Remark 4.5. If there exist π∗ ∈ A control such as

J0(x0;π
∗) = V0(x0),

then π∗ is called optimal control and we have the following equality

X∗π = Xπ∗

The basic notions of optimal stochastic control having been stated, we can now
determine the control on our regressive asset.

Let the wealth invested or the value of the portfolio be defined by V := (Vt)t∈[0,T ].
Let the condition of self-financing be defined by 3.3. In the following, we will
use πt := (πt)t∈[0,T ] for the investment strategy ∀t ∈ [0, T ], αt = (αt)t∈[0,T ] the
number of risky-assets and βt := (βt)t∈[0,T ] the number of assets without risk.

The fraction of the portfolio value (fraction of wealth) invested in risky assets
(stocks) and risk-free assets (bounds) are respectively:

πt =
αtSt

Vt
and 1− πt =

βtS
0
t

Vt
(4.6)

Consider the following system of equations
'

dS0
t = rS0

t dt
dSt = −µStdt+ σStdWt

, ∀t ∈ [0, T ] (4.7)

modelling the dynamics of assets without and with risks. By taking the expressions
of αt and βt from the equation (4.6) and replacing then in (3.3) we get

dV π
t = V π

t ((r − (r + µ)πt)dt+ σπtdWt), ∀t ∈ [0, T ]. (4.8)

Proposition 4.6. Let the stochastic differential equation (4.8) define the self-
financing dynamic. Then, the solution of equation (4.8) is of the form

V π
t = Vt(π) = V0 exp

'! t

0

(
r − (r + µ)πs −

1

2
(σπs)

2

)
ds+

! t

0

σπsdWs

*
(4.9)

8
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Proof. Let Yt =
# t

0
(r−(r+µ)πs−

1

2
(σπs)

2)ds+
# t

0
σπsdWs. We get2 Vt(π) = V0e

Yt

such that

∂

∂t
Vt(π) = (r − (r + µ)πt −

1

2
(σπt)

2)Vt(π);
∂

∂x
Vt(π) = σπtVt(π)

and
∂2

∂x2
Vt(π) = (σπt)

2Vt(π)

with

〈W 〉t =
1
B. +

! .

0

r + µ

σ
d.

2

t

= 〈B.〉t = t

where x := Wt. By applying The Itô’s formula to the equation (4.9) we get

dV π
t = (r − (r + µ)πt −

1

2
(σπt)

2)V π
t dt+ σπtV

π
t dWt +

1

2
(σπt)

2V π
t dt

= V π
t ((r − (r + µ)πt)dt+ σπtdWt), ∀t ∈ [0, T ].

□

Let the performance criteria be defined by

J (x0;π) = E [U(V π
T )] → max

π
(4.10)

We are interested in the expected terminal utility instead of running wealth. For
simplicity we use the log utility function thanks to the relationship between log-
arithmic and exponential functions. Then, our performance criterion defined by
equation (4.10) becomes

J (x0;π) = E [log V π
T ] (4.11)

knowing that

log V π
T = log V π

0 +

! T

0

(
r − (r + µ)πs −

1

2
(σπs)

2

)
ds+

! T

0

σπsdWs

this implies that

E [log V π
T ] = E [log V π

0 ]+E

/! T

0

(
r − (r + µ)πs −

1

2
(σπs)

2

)
ds

0
+E

/! T

0

σπsdWs

0

knowing that, by the martingality of the stochastic integral with respect to the
Brownian motion, we have

E

/! T

0

σπsdWs

0
= 0

=⇒ E [log V π
T ] = E [log V π

0 ] + E

/! T

0

(
r − (r + µ)πs −

1

2
(σπs)

2

)
ds

0

E [log V π
0 ] being a constant we will maximize the second expectation. Let’s take

g(πs) = r − (r + µ)πs −
1

2
(σπs)

2

2V0 := V0(π).

9
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and we get

π∗ = − (r + µ)

σ2
(4.12)

Remark 4.7. Contrary to the usual Black-Scholes model, the Merton fraction never

vanishes for all t ∈ [0, T ] and we have that when r = µ, π∗ = −2r

σ
. In addition, the

optimal strategy cannot be pure bond (buy only risk-free assets) since (r+µ) ∕= 0,
t ∈ [0, T ] or pure stock (buy only risky assets) since (r+µ) ∕= −σ3 for all t ∈ [0, T ]
when the asset price is regressive.

Then, we can conclude by making the following proposition.

Proposition 4.8. Let λ = (λt)t∈[0,T ] define the risk premium of a risky asset and
σ = (σt)t∈[0,T ] its volatility. Then, the Merton fraction is given by

π∗ = −λ

σ
. (4.13)

Figure 2. Dynamics of risky assets with T = 2, σ = 0.74, µ =
0.13, r = 0.134 and S0 = 18.

3Since r, µ > 0.
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Figure 3. Dynamics of the portfolio T = 2, σ = 0.74, µ = 0.13,
r = 0.134 and V0 = 2500.

We observe that the value of the portfolio increases when the strategies are re-

spectively π∗ and π1
t =

Stαt

Vt
, ∀t ∈ [0, T ]. However, when the strategy is π =

µ− r

σ2
,

as classically presented by several authors, we notice that the value of the portfolio
has a small increasing trend.

We can understand that the optimal strategies depend on the nature of the
price and therefore on the nature of its parameters, in order to expect maximum
portfolio value. Thus, we also notice that the negative values of the strategy π
mean ”sell the risky assets”.

5. Conclusion

In this paper we have shown that the Black-Scholes model, although critical,
could be a good interpreter in the world of finance with the above determination
of the risk premium being a brief example. We have shown that the more an asset
loses value, the greater the return on investment. By doing dynamic stochastic
programming on this regressive asset we were able to determine the Merton frac-
tion, and state a proposition on the relationship between return on investment and
optimal strategy. This has been verified by a numerical simulation.
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